Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

True-atomic-resolution insights into the structure and functional role of linear chains and low-barrier hydrogen bonds in proteins

Abstract

Hydrogen bonds are fundamental to the structure and function of biological macromolecules and have been explored in detail. The chains of hydrogen bonds (CHBs) and low-barrier hydrogen bonds (LBHBs) were proposed to play essential roles in enzyme catalysis and proton transport. However, high-resolution structural data from CHBs and LBHBs is limited. The challenge is that their ‘visualization’ requires ultrahigh-resolution structures of the ground and functionally important intermediate states to identify proton translocation events and perform their structural assignment. Our true-atomic-resolution structures of the light-driven proton pump bacteriorhodopsin, a model in studies of proton transport, show that CHBs and LBHBs not only serve as proton pathways, but also are indispensable for long-range communications, signaling and proton storage in proteins. The complete picture of CHBs and LBHBs discloses their multifunctional roles in providing protein functions and presents a consistent picture of proton transport and storage resolving long-standing debates and controversies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: True-atomic-resolution structure of BR in the ground state.
Fig. 2: BR evolution during the photocycle.
Fig. 3: Key functionally important switches in BR.
Fig. 4: PRG evolution during the BR photocycle.
Fig. 5: Mechanisms of proton storage and release in BR.
Fig. 6: Schematic representation of the mechanism of proton storage and vectorial translocation mediated by CHB switches in the course of the BR photocycle.

Data availability

Atomic models built using X-ray crystallography data have been deposited in the Research Collaboratory for Structural Bioinformatics PDB with the codes 7Z09 (for the ground state of BR at 1.05 Å), 7Z0A (for the ground state of BR at 1.22 Å), 7Z0C (for the K state), 7Z0D (for the L state) and 7Z0E (for the M state). The UniProt gene database (uniport.org) was used for bioinformatic analysis of the BR clade of microbial rhodopsins.

References

  1. Pauling, L., Corey, R. B. & Branson, H. R. The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl Acad. Sci. USA 37, 205–211 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pauling, L. & Corey, R. B. The pleated sheet, a new layer configuration of polypeptide chains. Proc. Natl Acad. Sci. USA 37, 251–256 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Watson, J. D. & Crick, F. H. C. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    Article  CAS  PubMed  Google Scholar 

  4. Jeffrey, G. A. J. & Jeffrey, G. A. An Introduction to Hydrogen Bonding (Oxford Univ. Press, 1997).

  5. Nagle, J. F. & Morowitz, H. J. Molecular mechanisms for proton transport in membranes. Proc. Natl Acad. Sci. USA 75, 298–302 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dai, S. et al. Low-barrier hydrogen bonds in enzyme cooperativity. Nature 573, 609–613 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Freier, E., Wolf, S. & Gerwert, K. Proton transfer via a transient linear water-molecule chain in a membrane protein. Proc. Natl Acad. Sci. USA 108, 11435–11439 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bertalan, É., Lešnik, S., Bren, U. & Bondar, A.-N. Protein-water hydrogen-bond networks of G protein-coupled receptors: graph-based analyses of static structures and molecular dynamics. J. Struct. Biol. 212, 107634 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Shinobu, A. & Agmon, N. Proton wire dynamics in the green fluorescent protein. J. Chem. Theory Comput. 13, 353–369 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Bjerregaard-Andersen, K. et al. A proton wire and water channel revealed in the crystal structure of isatin hydrolase. J. Biol. Chem. 289, 21351–21359 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Cleland, W. W., Frey, P. A. & Gerlt, J. A. The low barrier hydrogen bond in enzymatic catalysis. J. Biol. Chem. 273, 25529–25532 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Oltrogge, L. M. & Boxer, S. G. Short hydrogen bonds and proton delocalization in green fluorescent protein (GFP). ACS Cent. Sci. 1, 148–156 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, L., Fried, S. D., Boxer, S. G. & Markland, T. E. Quantum delocalization of protons in the hydrogen-bond network of an enzyme active site. Proc. Natl Acad. Sci. USA 111, 18454–18459 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wolf, S., Freier, E. & Gerwert, K. A delocalized proton-binding site within a membrane protein. Biophysical J. 107, 174–184 (2014).

    Article  CAS  Google Scholar 

  15. Graham, J. D., Buytendyk, A. M., Wang, D., Bowen, K. H. & Collins, K. D. Strong, low-barrier hydrogen bonds may be available to enzymes. Biochemistry 53, 344–349 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Hosur, M. V. et al. Low-barrier hydrogen bonds in proteins. Crystallogr. Rev. 19, 3–50 (2013).

    Article  Google Scholar 

  17. Nichols, D. A. et al. Ligand-induced proton transfer and low-barrier hydrogen bond revealed by X-ray crystallography. J. Am. Chem. Soc. 137, 8086–8095 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tripathi, R., Forbert, H. & Marx, D. Settling the long-standing debate on the proton storage site of the prototype light-driven proton pump bacteriorhodopsin. J. Phys. Chem. B 123, 9598–9608 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Oesterhelt, D. & Stoeckenius, W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat. N. Biol. 233, 149–152 (1971).

    Article  CAS  Google Scholar 

  20. Henderson, R. et al. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213, 899–929 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Lanyi, J. K. Bacteriorhodopsin. Annu. Rev. Physiol. 66, 665–688 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Chizhov, I. et al. Spectrally silent transitions in the bacteriorhodopsin photocycle. Biophysical J. 71, 2329–2345 (1996).

    Article  CAS  Google Scholar 

  23. Stoeckenius, W. & Rowen, R. A morphological study of Halobacterium halobium and its lysis in media of low salt concentration. J. Cell Biol. 34, 365–393 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Henderson, R. & Unwin, P. N. T. Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257, 28–32 (1975).

    Article  CAS  PubMed  Google Scholar 

  25. Zaccai, G. & Gilmore, D. J. Areas of hydration in the purple membrane of Halobacterium halobium: a neutron diffraction study. J. Mol. Biol. 132, 181–191 (1979).

    Article  CAS  PubMed  Google Scholar 

  26. Papadopoulos, G., Dencher, N. A., Zaccai, G. & Bu¨ldt, G. Water molecules and exchangeable hydrogen ions at the active centre of bacteriorhodopsin localized by neutron diffraction: elements of the proton pathway? J. Mol. Biol. 214, 15–19 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Landau, E. M. & Rosenbusch, J. P. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc. Natl Acad. Sci. USA 93, 14532–14535 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pebay-Peyroula, E., Rummel, G., Rosenbusch, J. P. & Landau, E. M. X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science 277, 1676–1681 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Inoue, K. et al. A light-driven sodium ion pump in marine bacteria. Nat. Commun. 4, 1678 (2013).

    Article  PubMed  CAS  Google Scholar 

  30. Nagel, G. et al. Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296, 2395–2398 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl Acad. Sci. USA 100, 13940–13945 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shevchenko, V. et al. Inward H+ pump xenorhodopsin: mechanism and alternative optogenetic approach. Sci. Adv. 3, e1603187 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Inoue, K. et al. A natural light-driven inward proton pump. Nat. Commun. 7, 13415 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pushkarev, A. et al. A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature 558, 595–599 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Yutin, N. & Koonin, E. V. Proteorhodopsin genes in giant viruses. Biol. Direct 7, 34 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hoffmann, A., Hildebrandt, V., Heberle, J. & Buldt, G. Photoactive mitochondria: in vivo transfer of a light-driven proton pump into the inner mitochondrial membrane of Schizosaccharomyces pombe. Proc. Natl Acad. Sci. USA 91, 9367–9371 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P. & Lanyi, J. K. Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol. 291, 899–911 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Edman, K. et al. High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle. Nature 401, 822–826 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Royant, A. et al. Helix deformation is coupled to vectorial proton transport in the photocycle of bacteriorhodopsin. Nature 406, 645–648 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Matsui, Y. et al. Specific damage induced by X-ray radiation and structural changes in the primary photoreaction of bacteriorhodopsin. J. Mol. Biol. 324, 469–481 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Kouyama, T., Nishikawa, T., Tokuhisa, T. & Okumura, H. Crystal structure of the L intermediate of bacteriorhodopsin: evidence for vertical translocation of a water molecule during the proton pumping cycle. J. Mol. Biol. 335, 531–546 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Takeda, K. et al. Crystal structure of the M intermediate of bacteriorhodopsin: allosteric structural changes mediated by sliding movement of a transmembrane helix. J. Mol. Biol. 341, 1023–1037 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Sass, H. J. et al. Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin. Nature 406, 649–653 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Yamamoto, M., Hayakawa, N., Murakami, M. & Kouyama, T. Crystal structures of different substates of bacteriorhodopsin’s m intermediate at various pH levels. J. Mol. Biol. 393, 559–573 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Wickstrand, C., Dods, R., Royant, A. & Neutze, R. Bacteriorhodopsin: would the real structural intermediates please stand up? Biochimica et. Biophysica Acta (BBA) - Gen. Subj. 1850, 536–553 (2015).

    Article  CAS  Google Scholar 

  46. Gerwert, K., Freier, E. & Wolf, S. The role of protein-bound water molecules in microbial rhodopsins. Biochimica et. Biophysica Acta (BBA) - Bioenerg. 1837, 606–613 (2014).

    Article  CAS  Google Scholar 

  47. Maeda, A., Gennis, R. B., Balashov, S. P. & Ebrey, T. G. Relocation of water molecules between the schiff base and the Thr46−Asp96 region during light-driven unidirectional proton transport by bacteriorhodopsin: an FTIR study of the N intermediate. Biochemistry 44, 5960–5968 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Borshchevskiy, V., Efremov, R., Moiseeva, E., Büldt, G. & Gordeliy, V. Overcoming merohedral twinning in crystals of bacteriorhodopsin grown in lipidic mesophase. Acta Cryst. D. 66, 26–32 (2010).

    Article  CAS  Google Scholar 

  49. Borshchevskiy, V. I., Round, E. S., Popov, A. N., Büldt, G. & Gordeliy, V. I. X-ray-radiation-induced changes in bacteriorhodopsin structure. J. Mol. Biol. 409, 813–825 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Nango, E. et al. A three-dimensional movie of structural changes in bacteriorhodopsin. Science 354, 1552–1557 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Nogly, P. et al. Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser. Science 361, 845–851 (2018).

    Article  CAS  Google Scholar 

  52. Nass Kovacs, G. et al. Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin. Nat. Commun. 10, 3177 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Kachalova, G. S., Popov, A. N. & Bartunik, H. D. A steric mechanism for inhibition of CO binding to heme proteins. Science 284, 473–476 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Hasegawa, N., Jonotsuka, H., Miki, K. & Takeda, K. X-ray structure analysis of bacteriorhodopsin at 1.3 Å resolution. Sci. Rep. 8, 13123 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Gordeliy, V. I. et al. Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature 419, 484–487 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Gordeliy, V. I., Schlesinger, R., Efremov, R., Büldt, G. & Heberle, J. in Membrane Protein Protocols: Expression, Purification, and Characterization (ed. Selinsky, B. S.) 305–316 (Humana Press, 2003); https://doi.org/10.1385/1-59259-400-X:305

  57. Borshchevskiy, V. et al. Low-dose X-ray radiation induces structural alterations in proteins. Acta Crystallogr. Sect. D: Biol. Crystallogr. 70, 2675–2685 (2014).

    Article  CAS  Google Scholar 

  58. Moukhametzianov, R. et al. Development of the signal in sensory rhodopsin and its transfer to the cognate transducer. Nature 440, 115–119 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Kovalev, K. et al. Molecular mechanism of light-driven sodium pumping. Nat. Commun. 11, 2137 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gushchin, I. et al. Active state of sensory rhodopsin II: structural determinants for signal transfer and proton pumping. J. Mol. Biol. 412, 591–600 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Frey, P. A. in Encyclopedia of Biological Chemistry 594–598 (Elsevier, 2004); https://doi.org/10.1016/B0-12-443710-9/00367-7

  62. Garczarek, F. & Gerwert, K. Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature 439, 109–112 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Rammelsberg, R., Hessling, B., Chorongiewski, H. & Gerwert, K. Molecular reaction mechanisms of proteins monitored by nanosecond step-scan FT-IR difference spectroscopy. Appl. Spectrosc., 51, 558–562 (1997).

    Article  CAS  Google Scholar 

  64. Zscherp, C., Schlesinger, R., Tittor, J., Oesterhelt, D. & Heberle, J. In situ determination of transient pKa changes of internal amino acids of bacteriorhodopsin by using time-resolved attenuated total reflection Fourier-transform infrared spectroscopy. Proc. Natl Acad. Sci. USA 96, 5498–5503 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Garczarek, F., Brown, L. S., Lanyi, J. K. & Gerwert, K. Proton binding within a membrane protein by a protonated water cluster. Proc. Natl Acad. Sci. USA 102, 3633–3638 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Goyal, P. et al. Proton storage site in bacteriorhodopsin: new insights from quantum mechanics/molecular mechanics simulations of microscopic pKa and infrared spectra. J. Am. Chem. Soc. 133, 14981–14997 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bada Juarez, J. F. et al. Structures of the archaerhodopsin-3 transporter reveal that disordering of internal water networks underpins receptor sensitization. Nat. Commun. 12, 629 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Ballesteros, J. A. et al. Activation of the β2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6*. J. Biol. Chem. 276, 29171–29177 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Schneider, E. H., Schnell, D., Strasser, A., Dove, S. & Seifert, R. Impact of the DRY motif and the missing ‘ionic lock’ on constitutive activity and G-protein coupling of the human histamine H4 receptor. J. Pharm. Exp. Ther. 333, 382–392 (2010).

    Article  CAS  Google Scholar 

  71. Lorenz-Fonfria, V. A., Saita, M., Lazarova, T., Schlesinger, R. & Heberle, J. pH-sensitive vibrational probe reveals a cytoplasmic protonated cluster in bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 114, E10909–E10918 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nakamura, A. et al. ‘Newton’s cradle’ proton relay with amide–imidic acid tautomerization in inverting cellulase visualized by neutron crystallography. Sci. Adv. 1, e1500263 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Heberle, J., Riesle, J., Thiedemann, G., Oesterhelt, D. & Dencher, N. A. Proton migration along the membrane surface and retarded surface to bulk transfer. Nature 370, 379–382 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Maeda, A., Sasaki, J., Shichida, Y. & Yoshizawa, T. Water structural changes in the bacteriorhodopsin photocycle: analysis by Fourier transform infrared spectroscopy. Biochemistry 31, 462–467 (1992).

    Article  CAS  PubMed  Google Scholar 

  75. Zaccai, G. How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 288, 1604–1607 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Subramaniam, S. & Henderson, R. Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. Nature 406, 653–657 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Weinert, T. et al. Proton uptake mechanism in bacteriorhodopsin captured by serial synchrotron crystallography. Science 365, 61–65 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Lanyi, J. K. & Váró, G. The photocycles of bacteriorhodopsin. Isr. J. Chem. 35, 365–385 (1995).

    Article  CAS  Google Scholar 

  79. Lanyi, J. K. & Schobert, B. Crystallographic structure of the retinal and the protein after deprotonation of the schiff base: the switch in the bacteriorhodopsin photocycle. J. Mol. Biol. 321, 727–737 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Ho, B. K. & Gruswitz, F. HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct. Biol. 8, 49 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–D376 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Liebschner, D. et al. Polder maps: improving OMIT maps by excluding bulk solvent. Acta Crystallogr. D. Struct. Biol. 73, 148–157 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Efremov, R., Gordeliy, V. I., Heberle, J. & Büldt, G. Time-resolved microspectroscopy on a single crystal of bacteriorhodopsin reveals lattice-induced differences in the photocycle kinetics. Biophysical J. 91, 1441–1451 (2006).

    Article  CAS  Google Scholar 

  84. Kabsch, W. XDS. Acta Crystallogr. D. Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Karplus, P. A. & Diederichs, K. Linking crystallographic model and data quality. Science 336, 1030–1033 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yeates, T. O. in Methods in Enzymology Vol. 276, 344–358 (Academic Press, 1997).

  87. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Cryst. D. 67, 235–242 (2011).

    Article  CAS  Google Scholar 

  88. Perrakis, A., Harkiolaki, M., Wilson, K. S. & Lamzin, V. S. ARP/wARP and molecular replacement. Acta Cryst. D. 57, 1445–1450 (2001).

    Article  CAS  Google Scholar 

  89. Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. Sect. D., Biol. Crystallogr. 67, 355–367 (2011).

    Article  CAS  Google Scholar 

  90. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. Sect. D. Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  CAS  Google Scholar 

  92. Bourgeois, D. New processing tools for weak and/or spatially overlapped macromolecular diffraction patterns. Acta Cryst. D. 55, 1733–1741 (1999).

    Article  CAS  Google Scholar 

  93. Brünger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Cryst. D. 54, 905–921 (1998).

    Article  Google Scholar 

  94. Cruickshank, D. W. J. Remarks about protein structure precision. Acta Crystallogr. D. Biol. Crystallogr. 55, 583–601 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Wheeler, T. J. & Eddy, S. R. nhmmer: DNA homology search with profile HMMs. Bioinformatics 29, 2487–2489 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Madeira, F. et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47, W636–W641 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. von Stetten, D. et al. In crystallo optical spectroscopy (icOS) as a complementary tool on the macromolecular crystallography beamlines of the ESRF. Acta Crystallogr. D. Biol. Crystallogr. 71, 15–26 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Structural Biology Group of the ESRF for granting access to the synchrotron beamlines. We are deeply thankful to A. Round for his help with manuscript preparation. This work was supported by the common program of Agence Nationale de la Recherche (ANR), France and Deutsche Forschungsgemeinschaft, Germany (grant no. ANR-15-CE11-0029-02) and by funding from Frankfurt: Cluster of Excellence Frankfurt Macromolecular Complexes (to E.B.) by the Max Planck Society (to E.B.) and by the Commissariat à l’Energie Atomique et aux Energies Alternatives (Institut de Biologie Structurale)–Helmholtz-Gemeinschaft Deutscher Forschungszentren (Forschungszentrum Jülich) Special Terms and Conditions 5.1 specific agreement. V.G. greatly acknowledges his HGF Professorship. V.B. acknowledges DAAD Young Talents Programme Line A. This work used the icOS and HTX platforms of the Grenoble Instruct-ERIC center (ISBG; UMS3518 CNRS-CEA-UJF-EMBL) within the Grenoble Partnership for Structural Biology (PSB)98. Platform access was supported by FRISBI (grant no. ANR-10-INBS-05-02) and GRAL, a project of the University Grenoble Alpes graduate school (Ecoles Universitaires de Recherche) CBH-EUR-GS (grant no. ANR-17-EURE-0003). Protein crystallization was supported by the Russian Foundation for Basic Research (RFBR) according to the research project no. 18-02-40020. Data collections for the K intermediate state structures were supported by RFBR (project no. 19-29-12022). Data collections for the L intermediate state structures were supported by the Russian Ministry of Science and Higher Education (grant no. 075-15-2021-1354). Data collection of ground state was supported by RFBR-CNRS (project no. 19-52-15017). Data treatment and structure solution were supported by the Russian Science Foundation (RSF) (project no. 21-64-00018). Bioinformatic analysis was supported by RSF-Helmholtz (grant no. 19-44-06302). The work is supported by Ministry of Science and Higher Education of the Russian Federation (project no. 075-00958-21-05/730000F.99.1.BV10AA00006 to A.R. for data analysis, and project 075-00337-20-03/FSMG-2020-0003 to V.B. for X-ray data treatment).

Author information

Authors and Affiliations

Authors

Contributions

C.B. and D.B. expressed and purified the protein. T.B. supervised the expression and purification. V.G., E.R. and V.B. crystallized the protein. R.A. helped with the crystallization. R.E. and V.B. collected absorption spectra from crystals and performed cryo-trapping of the intermediates. V.G. supervised the absorption spectra collection. V.B. and E.R. collected the diffraction data. V.B. and K.K. solved the structures. K.K. performed final refinement of the structures with the help of V.B. and G. Bourenkov. I.G. helped with structure analysis. A.R., V.B., E.B., M.E., I.C., D.W., A.K. and G.B. helped with data analysis. A.A. performed bioinformatic analysis of the archaeal outward proton-pumping rhodopsins. V.G. developed crystallization approaches allowing growth of high-quality crystals. V.G. designed and supervised the project with contribution of G. Büldt. and analyzed major structure-function relationships. K.K. and V.G. analyzed the results and prepared the manuscript with the important contribution of V.B. and with input from all the other authors.

Corresponding author

Correspondence to Valentin Gordeliy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural and Molecular Biology thanks Richard Henderson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Florian Ullrich was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Spectroscopy of BR crystals and validation of the cryotrapped intermediates.

A. Spectrum of the ground state of BR in a crystal at 100K. B. Difference absorption spectrum (final minus ground) of after cryotrapping of the K state in BR crystals at 100K. C. Difference absorption spectra (final minus ground) after the cryotrapping of the L and M states in BR crystals at 150 (black), 170 (red), 190 (green), 210 (blue), 230 (gold), and 250 K (orange).

Extended Data Fig. 2 Examples of the difference FoINT-FoGR electron density maps in BR.

A. Difference FoK-FoGR electron density maps built around the retinal cofactor and D212, W86, and W182 residues indicating structural rearrangements in the K state of BR. The maps are contoured at the level of 5σ. Views from two sides are shown. B,C. Difference FoL-FoGR electron density maps built around the central part of BR indicating structural rearrangements in the L state of BR. The maps are contoured at the level of 3σ. D. Difference FoL-FoGR electron density maps built around the R82 residue and proton release group of BR indicating structural rearrangements in the L state of BR. The maps are contoured at the level of 3σ.

Extended Data Fig. 3 Examples of the difference FoM-FoGR electron density maps in BR.

A. Maps built around the central part of BR indicating structural rearrangements in the M state of BR. The maps are contoured at the level of 3σ. B. Maps built around the R82 residue and PRG of BR indicating structural rearrangements in the M state of BR. The maps are contoured at the level of 3σ. C. Maps built around retinal cofactor and W182 and W86 residues indicating structural rearrangements in retinal binding pocket in the M state of BR. The maps are contoured at the level of 3σ.

Extended Data Fig. 4 BR trimer and lipid molecules resolved in the structure.

A. View on the crystal monolayer from the extracellular side of BR. The trimer of BR (cartoon representation) is contoured for clarity. B. Overall view of one BR trimer (white surface) surrounded by the ring of lipid molecules (green spheres). C,D. Side views of the BR trimer (white surface) surrounded by the ring of lipid molecules (green spheres).

Extended Data Fig. 5 Structure of the proton release group of BR.

A,B. Different side views of the PRG in the triple conformation obtained in the present work. The polder maps are contoured at the level of 3σ. C. Three conformations coexisting in the model from present work. D. Two conformations coexisting in the model from Hasegawa et al.54 (PDB ID: 5ZIL). E. Model of BR obtained using serial femtosecond crystallography (SFX) at XFEL at room temperature from Nogly et al.51 (PDB ID: 6G7H). F. Model of BR from Luecke et al.37 (PDB ID: 1C3W).

Extended Data Fig. 6 Overall BR structure and cavities evolution.

A. Side view of the ground state (violet). B. Side view of the K state (blue). C. Side view of the L state (salmon). D. Side view of the M state (yellow) of the photocycle. Retinal cofactor is colored teal. Cavities were calculated using HOLLOW and are shown with grey-blue surfaces. Helices F and G are hidden for clarity. Hydrophobic/hydrophilic membrane core boundaries were calculated using PPM server and are shown with black horizontal lines.

Extended Data Fig. 7 Helix G of BR in ground, L, and M states.

A. Alignment of the backbones of the central part of helix G in the ground (violet), L (salmon), and M (yellow) states. Black arrows indicated most critical rearrangements in the backbones of residues A215 and K216 during photocycle. Water molecules are shown with spheres with the color corresponding to each state. B. Backbone of helix G in the ground state of BR. C. Backbone of helix G in the L state of BR. D. Backbone of helix G in the M state of BR. H-bonds are shown with dashed black lines. Water molecules in panels B-C are shown with red spheres.

Extended Data Fig. 8 Comparison of the proton release group regions of BR in different structures of the M state.

A. The PRG of BR in the M state obtain in present work. B. The most similar organization of the PRG of BR found in the M state obtained with cryotrapping procedure44 (PDB ID: 2ZZL). C. The PRG organization in the highest-resolution structure of BR in the M state obtained using time-resolved serial femtosecond crystallography at X-ray Free Electron Laser51 (PDB ID: 6G7L). Cavities were calculated using HOLLOW and are shown with grey-blue surfaces.

Extended Data Fig. 9 RSB deprotonation pathway in BR.

A. The ground state of BR. B. The L state of BR. C. The M state of BR. H-bonds are shown with black dashed lines. A weak H-bond between T89 and D85 in the L state is shown with black solid line. The distance between RSB and D85 in the L and M states as well as the distance between T89 and D85 in the M state are shown with red arrows. Distance lengths are shown near the lines with bold italic numbers and are in Å. Retinal cofactor and K216 residue are colored teal.

Extended Data Fig. 10 Bioinformatic analysis of archaeal outward proton-pumping rhodopsins.

A. The phylogenetic tree of archaeal outward proton-pumping rhodopsins. BR is shown with red dot. The group of 9 unusual rhodopsins having substitutions at the key functional positions (E194, E204, S193) compared to the other members of the group is contoured and labelled. Also, one of them (E194G, 5 of 9 proteins have this substitution) was shown not to have proton pumping activity. B. Amino acid alignment of the representatives of the group of archaeal proton pumps. Only key regions of the protein are shown. Last 4 proteins (marked with a black bracket) belong the group of 9 unusual proteins contoured in panel A. C. Fractions of proteins with specific amino acid at specific position according to the BR numeration. The group of 9 unusual rhodopsins is excluded for the calculation of the fractions. Total number of rhodopsins used is 261. D. Fractions of proteins with specific amino acid at specific position according to the BR numeration. All 270 proteins were used for calculations. Red arrows indicate essential residues forming the proton wires in course of the BR photocycle.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borshchevskiy, V., Kovalev, K., Round, E. et al. True-atomic-resolution insights into the structure and functional role of linear chains and low-barrier hydrogen bonds in proteins. Nat Struct Mol Biol 29, 440–450 (2022). https://doi.org/10.1038/s41594-022-00762-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-022-00762-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing