Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A single-molecule analysis reveals morphological targets for cellulase synergy

Abstract

The mechanisms of enzyme activity on solid substrates are not well understood. Unlike enzyme catalysis in aqueous solutions, enzyme activity on surfaces is complicated by adsorption steps and structural heterogeneities that make enzyme-substrate interactions difficult to characterize. Cellulase enzymes, which catalyze the depolymerization of cellulose, show binding specificities for different cellulose surface morphologies, but the influence of these specificities on the activity of multienzyme mixtures has remained unclear. We developed a metric to quantify binding-target arrangements determined by photoactivated localization microscopy, and we used that metric to show that combinations of cellulases designed to bind within similar but nonidentical morphologies can have synergistic activity. This phenomenon cannot be explained with the binary crystalline or amorphous classifications commonly used to characterize cellulase-binding targets. Our results reveal a strategy for improving the activity of cellulolytic mixtures and demonstrate a versatile method for investigating protein organization on heterogeneous surfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Equilibrium binding patterns of CBMs bound to cellulose.
Figure 2: The CBM order parameter.
Figure 3: Order parameters and synergy values.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

References

  1. Martinez, D. et al. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat. Biotechnol. 22, 695–700 (2004).

    Article  CAS  Google Scholar 

  2. Basbaum, C.B. & Werb, Z. Focalized proteolysis: spatial and temporal regulation of extracellular matrix degradation at the cell surface. Curr. Opin. Cell Biol. 8, 731–738 (1996).

    Article  CAS  Google Scholar 

  3. Li, X. & Roseman, S. The chitinolytic cascade in Vibrios is regulated by chitin oligosaccharides and a two-component chitin catabolic sensor/kinase. Proc. Natl. Acad. Sci. USA 101, 627–631 (2004).

    Article  CAS  Google Scholar 

  4. Himmel, M.E. et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315, 804–807 (2007).

    Article  CAS  Google Scholar 

  5. Chundawat, S.P., Beckham, G.T., Himmel, M.E. & Dale, B.E. Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu. Rev. Chem. Biomol. Eng. 2, 121–145 (2011).

    Article  CAS  Google Scholar 

  6. Igarashi, K. et al. Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333, 1279–1282 (2011).

    Article  CAS  Google Scholar 

  7. Fernandes, A.N. et al. Nanostructure of cellulose microfibrils in spruce wood. Proc. Natl. Acad. Sci. USA 108, E1195–E1203 (2011).

    Article  Google Scholar 

  8. Li, X., Beeson, W.T. IV, Phillips, C.M., Marletta, M.A. & Cate, J.H. Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure 20, 1051–1061 (2012).

    Article  Google Scholar 

  9. McLean, B.W. et al. Carbohydrate-binding modules recognize fine substructures of cellulose. J. Biol. Chem. 277, 50245–50254 (2002).

    Article  CAS  Google Scholar 

  10. Boraston, A.B., Bolam, D.N., Gilbert, H.J. & Davies, G.J. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J. 382, 769–781 (2004).

    Article  CAS  Google Scholar 

  11. Horn, S.J., Vaaje-Kolstad, G., Westereng, B. & Eijsink, V.G. Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5, 45 (2012).

    Article  CAS  Google Scholar 

  12. Lynd, L.R. et al. How biotech can transform biofuels. Nat. Biotechnol. 26, 169–172 (2008).

    Article  CAS  Google Scholar 

  13. Quinlan, R.J. et al. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc. Natl. Acad. Sci. USA 108, 15079–15084 (2011).

    Article  CAS  Google Scholar 

  14. Carrard, G., Koivula, A., Soderlund, H. & Beguin, P. Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc. Natl. Acad. Sci. USA 97, 10342–10347 (2000).

    Article  CAS  Google Scholar 

  15. Blake, A.W. et al. Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. J. Biol. Chem. 281, 29321–29329 (2006).

    Article  CAS  Google Scholar 

  16. Teeri, T.T. Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol. 15, 160–167 (1997).

    Article  Google Scholar 

  17. Harris, D., Bulone, V., Ding, S.Y. & DeBolt, S. Tools for cellulose analysis in plant cell walls. Plant Physiol. 153, 420–426 (2010).

    Article  CAS  Google Scholar 

  18. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  Google Scholar 

  19. McKinney, S.A., Murphy, C.S., Hazelwood, K.L., Davidson, M.W. & Looger, L.L. A bright and photostable photoconvertible fluorescent protein. Nat. Methods 6, 131–133 (2009).

    Article  CAS  Google Scholar 

  20. Beckham, G.T. et al. The O-glycosylated linker from the Trichoderma reesei family 7 cellulase is a flexible, disordered protein. Biophys. J. 99, 3773–3781 (2010).

    Article  CAS  Google Scholar 

  21. Receveur, V., Czjzek, M., Schulein, M., Panine, P. & Henrissat, B. Dimension, shape, and conformational flexibility of a two domain fungal cellulase in solution probed by small angle X-ray scattering. J. Biol. Chem. 277, 40887–40892 (2002).

    Article  CAS  Google Scholar 

  22. Poon, D.K.Y., Withers, S.G. & McIntosh, L.P. Direct demonstration of the flexibility of the glycosylated proline-threonine linker in the Cellulomonas fimi xylanase Cex through NMR spectroscopic analysis. J. Biol. Chem. 282, 2091–2100 (2007).

    Article  CAS  Google Scholar 

  23. Lehtiö, J. et al. The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc. Natl. Acad. Sci. USA 100, 484–489 (2003).

    Article  Google Scholar 

  24. Boraston, A.B., Kwan, E., Chiu, P., Warren, R.A. & Kilburn, D.G. Recognition and hydrolysis of noncrystalline cellulose. J. Biol. Chem. 278, 6120–6127 (2003).

    Article  CAS  Google Scholar 

  25. Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A. & Johnson, D.K. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3, 10 (2010).

    Article  Google Scholar 

  26. Lee, S.B., Kim, I.H., Ryu, D.D. & Taguchi, H. Structural properties of cellulose and cellulase reaction mechanism. Biotechnol. Bioeng. 25, 33–51 (1983).

    Article  CAS  Google Scholar 

  27. Linder, M., Salovuori, I., Ruohonen, L. & Teeri, T.T. Characterization of a double cellulose-binding domain. J. Biol. Chem. 271, 21268–21272 (1996).

    Article  CAS  Google Scholar 

  28. Sakon, J., Adney, W.S., Himmel, M.E., Thomas, S.R. & Karplus, P.A. Crystal structure of thermostable family 5 endocellulase E1 from Acidothermus cellulolyticus in complex with cellotetraose. Biochemistry 35, 10648–10660 (1996).

    Article  CAS  Google Scholar 

  29. Tucker, M.P., Mohagheghi, A., Grohmann, K. & Himmel, M.E. Ultra-thermostable cellulases from Acidothermus cellulolyticus—comparison of temperature optima with previously reported cellulases. Nat. Biotechnol. 7, 817–820 (1989).

    Article  CAS  Google Scholar 

  30. Kim, T.W., Chokhawala, H.A., Nadler, D.C., Blanch, H.W. & Clark, D.S. Binding modules alter the activity of chimeric cellulases: effects of biomass pretreatment and enzyme source. Biotechnol. Bioeng. 107, 601–611 (2010); erratum 108, 2247 (2011).

    Article  CAS  Google Scholar 

  31. Dai, Z., Hooker, B.S., Anderson, D.B. & Thomas, S.R. Expression of Acidothermus cellulolyticus endoglucanase E1 in transgenic tobacco: biochemical characteristics and physiological effects. Transgenic Res. 9, 43–54 (2000).

    Article  CAS  Google Scholar 

  32. Greenfield, D. et al. Self-organization of the Escherichia coli chemotaxis network imaged with super-resolution light microscopy. PLoS Biol. 7, e1000137 (2009).

    Article  Google Scholar 

  33. Berk, V. et al. Molecular architecture and assembly principles of Vibrio cholerae biofilms. Science 337, 236–239 (2012).

    Article  CAS  Google Scholar 

  34. Huang, B., Jones, S.A., Brandenburg, B. & Zhuang, X. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat. Methods 5, 1047–1052 (2008).

    Article  CAS  Google Scholar 

  35. Shtengel, G. et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).

    Article  CAS  Google Scholar 

  36. McLean, B.W. et al. Analysis of binding of the family 2a carbohydrate-binding module from Cellulomonas fimi xylanase 10A to cellulose: specificity and identification of functionally important amino acid residues. Protein Eng. 13, 801–809 (2000).

    Article  CAS  Google Scholar 

  37. Boraston, A.B., Chiu, P., Warren, R.A. & Kilburn, D.G. Specificity and affinity of substrate binding by a family 17 carbohydrate-binding module from Clostridium cellulovorans cellulase 5A. Biochemistry 39, 11129–11136 (2000).

    Article  CAS  Google Scholar 

  38. Notenboom, V. et al. Recognition of cello-oligosaccharides by a family 17 carbohydrate-binding module: an X-ray crystallographic, thermodynamic and mutagenic study. J. Mol. Biol. 314, 797–806 (2001).

    Article  CAS  Google Scholar 

  39. Jamal, S., Nurizzo, D., Boraston, A.B. & Davies, G.J. X-ray crystal structure of a non-crystalline cellulose-specific carbohydrate-binding module: CBM28. J. Mol. Biol. 339, 253–258 (2004).

    Article  CAS  Google Scholar 

  40. Dubois, M., Gilles, K., Hamilton, J.K., Rebers, P.A. & Smith, F. A colorimetric method for the determination of sugars. Nature 168, 167 (1951).

    Article  CAS  Google Scholar 

  41. Shroff, H. et al. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc. Natl. Acad. Sci. USA 104, 20308–20313 (2007).

    Article  CAS  Google Scholar 

  42. Annibale, P., Scarselli, M., Kodiyan, A. & Radenovic, A. Photoactivatable fluorescent protein mEos2 displays repeated photoactivation after a long-lived dark state in the red photoconverted form. J. Phys. Chem. Lett. 2010, 1506–1510 (2010).

    Article  Google Scholar 

  43. Taylor, J.R. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements (University Science Books, Mill Valley, California, 1982).

Download references

Acknowledgements

We thank S. Bauer for his assistance in conducting the compositional analysis on cotton and miscanthus. We thank A.L. McEvoy for providing image processing software and J.W. Chu, A.S. Gross, K. Haas and A.L. McEvoy for helpful discussions. J.M.F. is the recipient of a US National Science Foundation predoctoral fellowship and J.L., H.W.B and D.S.C. acknowledge support from the Energy Biosciences Institute (grant no. 50000029463).

Author information

Authors and Affiliations

Authors

Contributions

J.M.F. designed and built fusion constructs, carried out imaging and hydrolysis experiments, developed the mathematical analysis and wrote the paper. P.J. constructed the PALM microscope and assisted with imaging. R.B.J. and G.M.M. built fusion constructs. J.L., D.S.C. and H.W.B. analyzed data and wrote the paper.

Corresponding authors

Correspondence to Jan Liphardt, Douglas S Clark or Harvey W Blanch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Notes 1 and 2 (PDF 10088 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, J., Jess, P., Jambusaria, R. et al. A single-molecule analysis reveals morphological targets for cellulase synergy. Nat Chem Biol 9, 356–361 (2013). https://doi.org/10.1038/nchembio.1227

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1227

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing