Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic variation in the ABCC2 gene is associated with dose decreases or switches to other cholesterol-lowering drugs during simvastatin and atorvastatin therapy

Abstract

Several statins are substrates for the multidrug resistance-associated protein 2 transporter, encoded by the ABCC2 gene. We analyzed in the Rotterdam Study whether the common polymorphisms −24C>T, 1249G>A and 3972C>T in the ABCC2 gene were associated with a dose decrease or switch to another cholesterol-lowering drug in simvastatin and atorvastatin users. These events could indicate an adverse effect or a too strong reduction in cholesterol level. We identified 1014 simvastatin and atorvastatin users during the period 1 January 1991 to 1 January 2010. Associations between genetic variation and the risk of these events were analyzed using Cox proportional hazards modelling. The ABCC2 −24C>T genotype (HR 1.32 95% CI 1.04–1.69) and the H12 haplotype versus the H2 haplotype (HR 1.49; 95% CI 1.06–2.09) were associated with these events in simvastatin users. A similar but not significant association was found in atorvastatin users. To conclude, genetic variation in the ABCC2 gene is associated with these events in simvastatin users.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383–1389.

    Google Scholar 

  2. Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH . Common genetic variation in the ABCB1 gene is associated with the cholesterol-lowering effect of simvastatin in males. Pharmacogenomics 2009; 10: 1743–1751.

    Article  CAS  PubMed  Google Scholar 

  3. Rodrigues AC . Efflux and uptake transporters as determinants of statin response. Expert Opin Drug Metab Toxicol 2010; 6: 621–632.

    Article  CAS  PubMed  Google Scholar 

  4. Link E, Parish S, Armitage J, Bowman L, Heath S, Matsuda F et al. SLCO1B1 variants and statin-induced myopathy--a genomewide study. N Engl J Med 2008; 359: 789–799.

    Article  CAS  PubMed  Google Scholar 

  5. Cascorbi I . Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacol Ther 2006; 112: 457–473.

    Article  CAS  PubMed  Google Scholar 

  6. Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL et al. Membrane transporters in drug development. Nat Rev Drug Discov 2010; 9: 215–236.

    Article  CAS  PubMed  Google Scholar 

  7. Kivisto KT, Grisk O, Hofmann U, Meissner K, Moritz KU, Ritter C et al. Disposition of oral and intravenous pravastatin in MRP2-deficient TR- rats. Drug Metab Dispos 2005; 33: 1593–1596.

    Article  PubMed  Google Scholar 

  8. Li J, Volpe DA, Wang Y, Zhang W, Bode C, Owen A et al. Use of transporter knockdown Caco-2 cells to investigate the in vitro efflux of statin drugs. Drug Metab Dispos 2011; 39: 1196–1202.

    Article  CAS  PubMed  Google Scholar 

  9. Laechelt S, Turrini E, Ruehmkorf A, Siegmund W, Cascorbi I, Haenisch S . Impact of ABCC2 haplotypes on transcriptional and posttranscriptional gene regulation and function. Pharmacogenomics J 2011; 11: 25–34.

    Article  CAS  PubMed  Google Scholar 

  10. Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH . Influence of genetic variation in CYP3A4 and ABCB1 on dose decrease or switching during simvastatin and atorvastatin therapy. Pharmacoepidemiol Drug Saf 2010; 19: 75–81.

    Article  CAS  PubMed  Google Scholar 

  11. Hofman A, Breteler MM, van Duijn CM, Janssen HL, Krestin GP, Kuipers EJ et al. The Rotterdam Study: 2010 objectives and design update. Eur J Epidemiol 2009; 24: 553–572.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Richards JB, Rivadeneira F, Inouye M, Pastinen TM, Soranzo N, Wilson SG et al. Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 2008; 371: 1505–1512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. The International HapMap Project. Nature 2003; 426: 789–796.

  14. Fang Y, van Meurs JB, d'Alesio A, Jhamai M, Zhao H, Rivadeneira F et al. Promoter and 3′-untranslated-region haplotypes in the vitamin d receptor gene predispose to osteoporotic fracture: the Rotterdam study. Am J Hum Genet 2005; 77: 807–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stephens M, Donnelly P . A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 2003; 73: 1162–1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stephens M, Smith NJ, Donnelly P . A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001; 68: 978–989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cummins CL, Wu CY, Benet LZ . Sex-related differences in the clearance of cytochrome P450 3A4 substrates may be caused by P-glycoprotein. Clin Pharmacol Ther 2002; 72: 474–489.

    Article  CAS  PubMed  Google Scholar 

  18. Wacher VJ, Silverman JA, Zhang Y, Benet LZ . Role of P-glycoprotein and cytochrome P450 3A in limiting oral absorption of peptides and peptidomimetics. J Pharm Sci 1998; 87: 1322–1330.

    Article  CAS  PubMed  Google Scholar 

  19. Chen C, Lin J, Smolarek T, Tremaine L . P-glycoprotein has differential effects on the disposition of statin acid and lactone forms in mdr1a/b knockout and wild-type mice. Drug Metab Dispos 2007; 35: 1725–1729.

    Article  CAS  PubMed  Google Scholar 

  20. Chen C, Mireles RJ, Campbell SD, Lin J, Mills JB, Xu JJ et al. Differential interaction of 3-hydroxy-3-methylglutaryl-coa reductase inhibitors with ABCB1, ABCC2, and OATP1B1. Drug Metab Dispos 2005; 33: 537–546.

    Article  CAS  PubMed  Google Scholar 

  21. Keskitalo JE, Kurkinen KJ, Neuvoneni PJ, Niemi M . ABCB1 haplotypes differentially affect the pharmacokinetics of the acid and lactone forms of simvastatin and atorvastatin. Clin Pharmacol Ther 2008; 84: 457–461.

    Article  CAS  PubMed  Google Scholar 

  22. Fiegenbaum M, da Silveira FR, Van der Sand CR, Van der Sand LC, Ferreira ME, Pires RC et al. The role of common variants of ABCB1, CYP3A4, and CYP3A5 genes in lipid-lowering efficacy and safety of simvastatin treatment. Clin Pharmacol Ther 2005; 78: 551–558.

    Article  CAS  PubMed  Google Scholar 

  23. Donnelly LA, Doney AS, Tavendale R, Lang CC, Pearson ER, Colhoun HM et al. Common nonsynonymous substitutions in SLCO1B1 predispose to statin intolerance in routinely treated individuals with type 2 diabetes: a Go-DARTS study. Clin Pharmacol Ther 2011; 89: 210–216.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B H Stricker.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, M., Elens, L., Visser, L. et al. Genetic variation in the ABCC2 gene is associated with dose decreases or switches to other cholesterol-lowering drugs during simvastatin and atorvastatin therapy. Pharmacogenomics J 13, 251–256 (2013). https://doi.org/10.1038/tpj.2011.59

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2011.59

Keywords

This article is cited by

Search

Quick links