Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Supramolecular ferroelectrics

Abstract

Supramolecular chemistry uses non-covalent interactions to coax molecules into forming ordered assemblies. The construction of ordered materials with these reversible bonds has led to dramatic innovations in organic electronics, polymer science and biomaterials. Here, we review how supramolecular strategies can advance the burgeoning field of organic ferroelectricity. Ferroelectrics — materials with a spontaneous and electrically reversible polarization — are touted for use in non-volatile computer memories, sensors and optics. Historically, this physical phenomenon has been studied in inorganic materials, although some organic examples are known and strong interest exists to extend the search for ferroelectric molecular systems. Other undiscovered applications outside this regime could also emerge. We describe the key features necessary for molecular and supramolecular dipoles in organic ferroelectrics and their incorporation into ordered systems, such as porous frameworks and liquid crystals. The goal of this Review is to motivate the development of innovative supramolecular ferroelectrics that exceed the performance and usefulness of known systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Supramolecular designs for ferroelectricity.
Figure 2: Mechanisms for ferroelectricity in hydrogen-bonded crystals.
Figure 3: Ferroelectricity in CT crystals.
Figure 4: Metal–ligand systems and molecular rotators as ferroelectrics.
Figure 5: Ferroelectric liquid crystals.
Figure 6: Ferroelectricity in columnar liquid crystals.
Figure 7: Perspective.

Similar content being viewed by others

References

  1. Valasek, J. Piezo-electric and allied phenomena in Rochelle salt. Phys. Rev. 17, 475–481 (1921).

    CAS  Google Scholar 

  2. Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, 1977).

    Google Scholar 

  3. Kawai, H. The piezoelectricity of poly (vinylidene fluoride). Jpn. J. Appl. Phys. 8, 975–976 (1969).

    CAS  Google Scholar 

  4. Horiuchi, S. et al. Above-room-temperature ferroelectricity in a single-component molecular crystal. Nature 463, 789–792 (2010).

    CAS  PubMed  Google Scholar 

  5. Fu, D.-W. et al. Diisopropylammonium bromide is a high-temperature molecular ferroelectric crystal. Science 339, 425–428 (2013).

    CAS  PubMed  Google Scholar 

  6. Wen, Z., Li, C., Wu, D., Li, A. & Ming, N. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nature Mater. 12, 617–621 (2013).

    CAS  Google Scholar 

  7. Naber, R. C. G. et al. High-performance solution-processed polymer ferroelectric field-effect transistors. Nature Mater. 4, 243–248 (2005).

    CAS  Google Scholar 

  8. Fu, D.-W. et al. Diisopropylammonium chloride: A ferroelectric organic salt with a high phase transition temperature and practical utilization level of spontaneous polarization. Adv. Mater. 23, 5658–5662 (2011).

    CAS  PubMed  Google Scholar 

  9. Zhang, W., Ye, H.-Y. & Xiong, R.-G. Metal-organic coordination compounds for potential ferroelectrics. Coord. Chem. Rev. 253, 2980–2997 (2009).

    CAS  Google Scholar 

  10. Katrusiak, A. & Szafrański, M. Ferroelectricity in NH...N hydrogen bonded crystals. Phys. Rev. Lett. 82, 576–579 (1999).

    CAS  Google Scholar 

  11. Szafrański, M., Katrusiak, A. & McIntyre, G. J. Ferroelectric order of parallel bistable hydrogen bonds. Phys. Rev. Lett. 89, 215507 (2002).

    PubMed  Google Scholar 

  12. Horiuchi, S. et al. Ferroelectricity near room temperature in co-crystals of nonpolar organic molecules. Nature Mater. 4, 163–166 (2005).

    CAS  Google Scholar 

  13. Kumai, R. et al. Structural assignment of polarization in hydrogen-bonded supramolecular ferroelectrics. J. Am. Chem. Soc. 129, 12920–12921 (2007).

    CAS  PubMed  Google Scholar 

  14. Horiuchi, S., Kumai, R. & Tokura, Y. Room-temperature ferroelectricity and gigantic dielectric susceptibility on a supramolecular architecture of phenazine and deuterated chloranilic Acid. J. Am. Chem. Soc. 127, 5010–5011 (2005).

    CAS  PubMed  Google Scholar 

  15. Horiuchi, S., Kumai, R. & Tokura, Y. A supramolecular ferroelectric realized by collective proton transfer. Angew. Chem. Int. Ed. 46, 3497–3501 (2007).

    CAS  Google Scholar 

  16. Kumai, R., Horiuchi, S., Okimoto, Y. & Tokura, Y. Large dielectric susceptibility associated with proton transfer in a supramolecular structure of chloranilic acid and 5,5′-dimethyl-2,2′-bipyridine. J. Chem. Phys. 125, 084715 (2006).

    PubMed  Google Scholar 

  17. Horiuchi, S., Kumai, R., Tokunaga, Y. & Tokura, Y. Proton dynamics and room-temperature ferroelectricity in anilate salts with a proton sponge. J. Am. Chem. Soc. 130, 13382–13391 (2008).

    CAS  PubMed  Google Scholar 

  18. Desiraju, G. R. Supramolecular synthons in crystal engineering — A new organic synthesis. Angew. Chem. Int. Ed. 34, 2311–2327 (1995).

    CAS  Google Scholar 

  19. Desiraju, G. R. Hydrogen bridges in crystal engineering: Interactions without borders. Acc. Chem. Res. 35, 565–573 (2002).

    CAS  PubMed  Google Scholar 

  20. Horiuchi, S., Kumai, R. & Tokura, Y. Hydrogen-bonding molecular chains for high-temperature ferroelectricity. Adv. Mater. 23, 2098–2103 (2011).

    CAS  PubMed  Google Scholar 

  21. Horiuchi, S. et al. Above-room-temperature ferroelectricity and antiferroelectricity in benzimidazoles. Nature Commun. 3, 1308 (2012).

    Google Scholar 

  22. Alves, H., Molinari, A. S., Xie, H. & Morpurgo, A. F. Metallic conduction at organic charge-transfer interfaces. Nature Mater. 7, 574–580 (2008).

    CAS  Google Scholar 

  23. Collet, E. et al. Laser-induced ferroelectric structural order in an organic charge-transfer crystal. Science 300, 612–615 (2003).

    CAS  PubMed  Google Scholar 

  24. Torrance, J. B., Vazquez, J. E., Mayerle, J. J. & Lee, V. Y. Discovery of a neutral-to-ionic phase transition in organic materials. Phys. Rev. Lett. 46, 253–257 (1981).

    CAS  Google Scholar 

  25. Torrance, J. B. et al. Anomalous nature of neutral-to-ionic phase transition in tetrathiafulvalene-chloranil. Phys. Rev. Lett. 47, 1747–1750 (1981).

    CAS  Google Scholar 

  26. Girlando, A., Marzola, F., Pecile, C. & Torrance, J. B. Vibrational spectroscopy of mixed stack organic semiconductors: Neutral and ionic phases of tetrathiafulvalene–chloranil (TTF–CA) charge transfer complex. J. Chem. Phys. 79, 1075–1085 (1983).

    CAS  Google Scholar 

  27. Horiuchi, S., Okimoto, Y., Kumai, R. & Tokura, Y. Quantum phase transition in organic charge-transfer complexes. Science 299, 229–232 (2003).

    CAS  PubMed  Google Scholar 

  28. Girlando, A., Pecile, C., Brillante, A. & Syassen, K. Neutral-ionic interface in mixed stack charge transfer compounds: Pressure induced ionic phase of tetrathiafulvalene-chloranil (TTFCA). Solid State Commun. 57, 891–896 (1986).

    CAS  Google Scholar 

  29. Okamoto, H. et al. Anomalous dielectric response in tetrathiafulvalene-p-chloranil as observed in temperature- and pressure-induced neutral-to-ionic phase transition. Phys. Rev. B 43, 8224–8232 (1991).

    CAS  Google Scholar 

  30. Matsuzaki, H., Takamatsu, H., Kishida, H. & Okamoto, H. Valence fluctuation and domain-wall dynamics in pressure-induced neutral-to-ionic phase transition of organic charge-transfer crystal. J. Phys. Soc. Jpn 74, 2925–2928 (2005).

    CAS  Google Scholar 

  31. Horiuchi, S. & Tokura, Y. Organic ferroelectrics. Nature Mater. 7, 357–366 (2008).

    CAS  Google Scholar 

  32. Kagawa, F., Horiuchi, S., Tokunaga, M., Fujioka, J. & Tokura, Y. Ferroelectricity in a one-dimensional organic quantum magnet. Nature Phys. 6, 169–172 (2010).

    CAS  Google Scholar 

  33. Kobayashi, K. et al. Electronic ferroelectricity in a molecular crystal with large polarization directing antiparallel to ionic displacement. Phys. Rev. Lett. 108, 237601 (2012).

    PubMed  Google Scholar 

  34. Tayi, A. S. et al. Room-temperature ferroelectricity in supramolecular networks of charge-transfer complexes. Nature 488, 485–489 (2012).

    CAS  PubMed  Google Scholar 

  35. Kumar, M., Venkata Rao, K. & George, S. J. Supramolecular charge transfer nanostructures. Phys. Chem. Chem. Phys. 16, 1300–1313 (2014).

    CAS  PubMed  Google Scholar 

  36. Das, A. & Ghosh, S. Supramolecular assemblies by charge-transfer interactions between donor and acceptor chromophores. Angew. Chem. Int. Ed. 53, 2038–2054 (2014).

    CAS  Google Scholar 

  37. Solomon, A. L. Thiourea, a new ferroelectric. Phys. Rev. 104, 1191 (1956).

    CAS  Google Scholar 

  38. Naber, R. C. G. et al. Organic nonvolatile memory devices based on ferroelectricity. Adv. Mater. 22, 933–945 (2009).

    Google Scholar 

  39. Ng, T. N. et al. Scalable printed electronics: An organic decoder addressing ferroelectric non-volatile memory. Sci. Rep. 2, 585 (2012).

    PubMed  PubMed Central  Google Scholar 

  40. Lovinger, A. J. Ferroelectric polymers. Science 220, 1115–1121 (1983).

    CAS  PubMed  Google Scholar 

  41. Cox, S. D., Gier, T. E., Stucky, G. D. & Bierlein, J. Inclusion tuning of nonlinear optical materials: Switching the SHG of p-nitroaniline and 2-methyl-p-nitroaniline with molecular sieve hosts. J. Am. Chem. Soc. 110, 2986–2987 (1988).

    CAS  Google Scholar 

  42. Marlow, F. et al. Dipole chains in zeolite pores: The effects of symmetry breaking. Mol. Cryst. Liq. Cryst. 276, 295–304 (1996).

    CAS  Google Scholar 

  43. Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999).

    CAS  Google Scholar 

  44. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    CAS  PubMed  Google Scholar 

  45. Cui, H. et al. Ferroelectric porous molecular crystal, [Mn3(HCOO)6](C2H5OH), exhibiting ferrimagnetic transition. J. Am. Chem. Soc. 128, 15074–15075 (2006).

    CAS  PubMed  Google Scholar 

  46. Cui, H.-B. et al. Dielectric properties of porous molecular crystals that contain polar molecules. Angew. Chem. Int. Ed. 44, 6508–6512 (2005).

    CAS  Google Scholar 

  47. Jain, P., Dalal, N. S., Toby, B. H., Kroto, H. W. & Cheetham, A. K. Order−disorder antiferroelectric phase transition in a hybrid inorganic−organic framework with the perovskite architecture. J. Am. Chem. Soc. 130, 10450–10451 (2008).

    CAS  PubMed  Google Scholar 

  48. Jain, P. et al. Multiferroic behavior associated with an order−disorder hydrogen bonding transition in metal−organic frameworks (MOFs) with the perovskite ABX3 architecture. J. Am. Chem. Soc. 131, 13625–13627 (2009).

    CAS  PubMed  Google Scholar 

  49. Zhang, W. & Xiong, R.-G. Ferroelectric metal–organic frameworks. Chem. Rev. 112, 1163–1195 (2011).

    PubMed  Google Scholar 

  50. Xu, G.-C., Ma, X.-M., Zhang, L., Wang, Z.-M. & Gao, S. Disorder−order ferroelectric transition in the metal formate framework of [NH4][Zn(HCOO)3]. J. Am. Chem. Soc. 132, 9588–9590 (2010).

    CAS  PubMed  Google Scholar 

  51. Akutagawa, T. et al. Ferroelectricity and polarity control in solid-state flip-flop supramolecular rotators. Nature Mater. 8, 342–347 (2009).

    CAS  Google Scholar 

  52. Fu, D.-W. et al. Supramolecular bola-like ferroelectric: 4-methoxyanilinium tetrafluoroborate-18-crown-6. J. Am. Chem. Soc. 133, 12780–12786 (2011).

    CAS  PubMed  Google Scholar 

  53. Fu, D.-W. et al. 4-methoxyanilinium perrhenate 18-crown-6: A new ferroelectric with order originating in swinglike motion slowing down. Phys. Rev. Lett. 110, 257601 (2013).

    PubMed  Google Scholar 

  54. Ye, H.-Y. et al. Solid state molecular dynamic investigation of an inclusion ferroelectric: [(2,6-diisopropylanilinium)([18]crown-6)]BF4 . J. Am. Chem. Soc. 136, 10033–10040 (2014).

    CAS  PubMed  Google Scholar 

  55. Deng, H., Olson, M. A., Stoddart, J. F. & Yaghi, O. M. Robust dynamics. Nature Chem. 2, 439–443 (2010).

    CAS  Google Scholar 

  56. Khuong, T.-A. V., Nuñez, J. E., Godinez, C. E. & Garcia-Garibay, M. A. Crystalline molecular machines: A quest toward solid-state dynamics and function. Acc. Chem. Res. 39, 413–422 (2006).

    CAS  PubMed  Google Scholar 

  57. Gould, S. L., Tranchemontagne, D., Yaghi, O. M. & Garcia-Garibay, M. A. Amphidynamic character of crystalline MOF-5: Rotational dynamics of terephthalate phenylenes in a free-volume, sterically unhindered environment. J. Am. Chem. Soc. 130, 3246–3247 (2008).

    CAS  PubMed  Google Scholar 

  58. Devautour-Vinot, S. et al. Structure and dynamics of the functionalized MOF type UiO-66(Zr): NMR and dielectric relaxation spectroscopies coupled with DFT calculations. Chem. Mater. 24, 2168–2177 (2012).

    CAS  Google Scholar 

  59. Comotti, A., Bracco, S., Ben, T., Qiu, S. & Sozzani, P. Molecular rotors in porous organic frameworks. Angew. Chem. Int. Ed. 53, 1043–1047 (2014).

    CAS  Google Scholar 

  60. Horansky, R. D. et al. Dielectric response of a dipolar molecular rotor crystal. Phys. Rev. B 72, 014302 (2005).

    Google Scholar 

  61. Winston, E. B. et al. Dipolar molecular rotors in the metal–organic framework crystal IRMOF-2. Phys. Chem. Chem. Phys. 10, 5188–5191 (2008).

    CAS  PubMed  Google Scholar 

  62. Vukotic, V. N., Harris, K. J., Zhu, K., Schurko, R. W. & Loeb, S. J. Metal–organic frameworks with dynamic interlocked components. Nature Chem. 4, 456–460 (2012).

    CAS  Google Scholar 

  63. Zhang, W. et al. Tunable and switchable dielectric constant in an amphidynamic crystal. J. Am. Chem. Soc. 135, 5230–5233 (2013).

    CAS  PubMed  Google Scholar 

  64. Zhang, Q.-C. et al. Modulating the rotation of a molecular rotor through hydrogen-bonding interactions between the rotator and stator. Angew. Chem. Int. Ed. 52, 12602–12605 (2013).

    CAS  Google Scholar 

  65. Meyer, R. B., Liebert, L., Strzelecki, L. & Keller, P. Ferroelectric liquid crystals. J. Phys. Lett. 36, 69–71 (1975).

    Google Scholar 

  66. Clark, N. A. & Lagerwall, S. T. Submicrosecond bistable electro-optic switching in liquid crystals. Appl. Phys. Lett. 36, 899–901 (1980).

    CAS  Google Scholar 

  67. Lagerwall, S. T. Ferroelectric and antiferroelectric liquid crystals. Ferroelectrics 301, 15–45 (2004).

    CAS  Google Scholar 

  68. Hird, M. Ferroelectricity in liquid crystals — materials, properties and applications. Liq. Cryst. 38, 1467–1493 (2011).

    CAS  Google Scholar 

  69. Bock, H. & Helfrich, W. Ferroelectrically switchable columnar liquid crystal. Liq. Cryst. 12, 697–703 (1992).

    CAS  Google Scholar 

  70. Scherowsky, G. & Chen, X. H. Ferroelectric switching in columnar phases of novel chiral discotic liquid crystals. J. Mater. Chem. 5, 417–421 (1995).

    CAS  Google Scholar 

  71. Barberá, J. et al. Switchable columnar metallomesogens. New helical self-assembling systems. J. Am. Chem. Soc. 120, 2908–2918 (1998).

    Google Scholar 

  72. Guillon, D. in Advances in Chemical Physics (eds Prigogine, I., Rice, S. A. & Vij, J. K.) 1–49 (2007).

    Google Scholar 

  73. Niori, T., Sekine, T., Watanabe, J., Furukawa, T. & Takezoe, H. Distinct ferroelectric smectic liquid crystals consisting of banana shaped achiral molecules. J. Mater. Chem. 6, 1231–1233 (1996).

    CAS  Google Scholar 

  74. Akutagawa, T., Matsunaga, Y. & Yasuhara, K. Mesomorphic behaviour of 1,3-phenylene bis4-(4-alkoxyphenyliminomethyl)benzoates and related compounds. Liq. Cryst. 17, 659–666 (1994).

    CAS  Google Scholar 

  75. Reddy, R. A. & Tschierske, C. Bent-core liquid crystals: Polar order, superstructural chirality and spontaneous desymmetrisation in soft matter systems. J. Mater. Chem. 16, 907 (2006).

    CAS  Google Scholar 

  76. Takezoe, H. & Takanishi, Y. Bent-core liquid crystals: Their mysterious and attractive world. Jpn. J. Appl. Phys. 45, 597–625 (2006).

    CAS  Google Scholar 

  77. Eremin, A. & Jákli, A. Polar bent-shape liquid crystals — from molecular bend to layer splay and chirality. Soft Matter 9, 615–637 (2012).

    Google Scholar 

  78. Dantlgraber, G. et al. Chirality and macroscopic polar order in a ferroelectric smectic liquid-crystalline phase formed by achiral polyphilic bent-core molecules. Angew. Chem. Int. Ed. 41, 2408–2412 (2002).

    CAS  Google Scholar 

  79. Reddy, R. A. et al. Spontaneous ferroelectric order in a bent-core smectic liquid crystal of fluid orthorhombic layers. Science 332, 72–77 (2011).

    CAS  PubMed  Google Scholar 

  80. Zimmermann, H., Poupku, R., Luz, Z. & Billard, J. Pyramidic mesophases. Z. Phys. Chem. Kosmophys. 40, 149–160 (1985).

    Google Scholar 

  81. Pleiner, H., Brand, H. R. & Cladis, P. E. Polar columnar and tetrahedratic phases. Mol. Cryst. Liq. Cryst. 396, 169–176 (2003).

    CAS  Google Scholar 

  82. Malthete, J. & Collet, A. Inversion of the cyclotribenzylene cone in a columnar mesophase: A potential way to ferroelectric materials. J. Am. Chem. Soc. 109, 7544–7545 (1987).

    CAS  Google Scholar 

  83. Sawamura, M. et al. Stacking of conical molecules with a fullerene apex into polar columns in crystals and liquid crystals. Nature 419, 702–705 (2002).

    CAS  PubMed  Google Scholar 

  84. Dalcanale, E., Antonioli, G., Ricco, M., Groothues, H. & Kremer, F. Molecular dynamics and conformational behaviour of mesogenic resorcinarenes. Liq. Cryst. 27, 1161–1169 (2000).

    CAS  Google Scholar 

  85. Xu, B. & Swager, T. M. Rigid bowlic liquid crystals based on tungsten-oxo calix[4]arenes: Host–guest effects and head-to-tail organization. J. Am. Chem. Soc. 115, 1159–1160 (1993).

    CAS  Google Scholar 

  86. Xu, B. & Swager, T. M. Host–Guest mesomorphism: Cooperative stabilization of a bowlic columnar phase. J. Am. Chem. Soc. 117, 5011–5012 (1995).

    CAS  Google Scholar 

  87. Kilian, D. et al. Columnar phases of achiral vanadyl liquid crystalline complexes. Liq. Cryst. 27, 509–521 (2000).

    CAS  Google Scholar 

  88. Haase, W. et al. Enhanced conductivity and dielectric absorption in discotic liquid crystalline columnar phases of a vanadyl complex. Liq. Cryst. 29, 133–139 (2002).

    CAS  Google Scholar 

  89. Jakli, A. & Saupe, A. Indication of ferroelectricity in columnar mesophases of pyramidic molecules. Liq. Cryst. 22, 309–316 (1997).

    CAS  Google Scholar 

  90. Gorecka, E. et al. Axially polar columnar phase made of polycatenar bent-shaped molecules. J. Am. Chem. Soc. 126, 15946–15947 (2004).

    CAS  PubMed  Google Scholar 

  91. Kishikawa, K., Nakahara, S., Nishikawa, Y., Kohmoto, S. & Yamamoto, M. A ferroelectrically switchable columnar liquid crystal phase with achiral molecules: Superstructures and properties of liquid crystalline ureas. J. Am. Chem. Soc. 127, 2565–2571 (2005).

    CAS  PubMed  Google Scholar 

  92. Fitié, C. F. C., Roelofs, W. S. C., Kemerink, M. & Sijbesma, R. P. Remnant polarization in thin films from a columnar liquid crystal. J. Am. Chem. Soc. 132, 6892–6893 (2010).

    PubMed  Google Scholar 

  93. Okada, Y. et al. Three relaxation processes from an electric-field-induced polar structure in a columnar liquid crystalline urea derivative. Phys. Rev. E 76, 041701 (2007).

    Google Scholar 

  94. Miyajima, D. et al. Columnar liquid crystal with a spontaneous polarization along the columnar axis. J. Am. Chem. Soc. 132, 8530–8531 (2010).

    CAS  PubMed  Google Scholar 

  95. Miyajima, D. et al. Ferroelectric columnar liquid crystal featuring confined polar groups within core–shell architecture. Science 336, 209–213 (2012).

    CAS  PubMed  Google Scholar 

  96. Araoka, F. et al. High-optical-quality ferroelectric film wet-processed from a ferroelectric columnar liquid crystal as observed by non-linear-optical microscopy. Adv. Mater. 25, 4014–4017 (2013).

    CAS  PubMed  Google Scholar 

  97. Fukada, E. & Yasuda, I. On the piezoelectric effect of bone. J. Phys. Soc. Jpn 12, 1158–1162 (1957).

    Google Scholar 

  98. Shamos, M. H. & Lavine, L. S. Piezoelectricity as a fundamental property of biological tissues. Nature 213, 267–269 (1967).

    CAS  PubMed  Google Scholar 

  99. Athenstaedt, H. Ferroelektrische und piezoelektrische eigenschaften biologisch bedeutsamer stoffe. Naturwissenschaften 48, 465–472 (1961).

    CAS  PubMed  Google Scholar 

  100. Lang, S. B. Piezoelectricity, pyroelectricity and ferroelectricity in biomaterials: Speculation on their biological significance. IEEE Trans. Dielectr. Electr. Insul. 7, 466–473 (2000).

    CAS  Google Scholar 

  101. Kalinin, S. V. et al. Nanoscale electromechanics of ferroelectric and biological systems: A new dimension in scanning probe microscopy. Annu. Rev. Mater. Res. 37, 189–238 (2007).

    CAS  Google Scholar 

  102. Heredia, A. et al. Nanoscale ferroelectricity in crystalline γ-glycine. Adv. Func. Mater. 22, 2996–3003 (2012).

    CAS  Google Scholar 

  103. Li, T. & Zeng, K. Piezoelectric properties and surface potential of green abalone shell studied by scanning probe microscopy techniques. Acta Mater. 59, 3667–3679 (2011).

    CAS  Google Scholar 

  104. Liu, Y., Zhang, Y., Chow, M.-J., Chen, Q. N. & Li, J. Biological ferroelectricity uncovered in aortic walls by piezoresponse force microscopy. Phys. Rev. Lett. 108, 078103 (2012).

    PubMed  PubMed Central  Google Scholar 

  105. Liu, Y. et al. Ferroelectric switching of elastin. Proc. Natl Acad. Sci. USA 111, E2780–E2786 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Liu, Y. et al. Glucose suppresses biological ferroelectricity in aortic elastin. Phys. Rev. Lett. 110, 168101 (2013).

    PubMed  PubMed Central  Google Scholar 

  107. LeBard, D. N. & Matyushov, D. V. Ferroelectric hydration shells around proteins: Electrostatics of the protein−water interface. J. Phys. Chem. B 114, 9246–9258 (2010).

    CAS  PubMed  Google Scholar 

  108. Jackson, S. M. & Whitworth, R. W. Evidence for ferroelectric ordering of ice Ih. J. Chem. Phys. 103, 7647–7648 (1995).

    CAS  Google Scholar 

  109. Su, X., Lianos, L., Shen, Y. R. & Somorjai, G. A. Surface-induced ferroelectric ice on Pt(111). Phys. Rev. Lett. 80, 1533–1536 (1998).

    CAS  Google Scholar 

  110. Köfinger, J., Hummer, G. & Dellago, C. Macroscopically ordered water in nanopores. Proc. Natl Acad. Sci. USA 105, 13218–13222 (2008).

    PubMed  PubMed Central  Google Scholar 

  111. Zhao, H.-X. et al. Transition from one-dimensional water to ferroelectric ice within a supramolecular architecture. Proc. Natl Acad. Sci. USA 108, 3481–3486 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Leuchtag, H. R. & Bystrov, V. S. Theoretical models of conformational transitions and ion conduction in voltage-dependent ion channels: Bioferroelectricity and superionic conduction. Ferroelectrics 220, 157–204 (1999).

    CAS  Google Scholar 

  113. Todorov, A. T., Petrov, A. G. & Fendler, J. H. Flexoelectricity of charged and dipolar bilayer lipid membranes studied by stroboscopic interferometry. Langmuir 10, 2344–2350 (1994).

    CAS  Google Scholar 

  114. Kalinin, S. V., Jesse, S., Liu, W. & Balandin, A. A. Evidence for possible flexoelectricity in tobacco mosaic viruses used as nanotemplates. Appl. Phys. Lett. 88, 153902 (2006).

    Google Scholar 

  115. Li, D. et al. Direct in situ determination of the polarization dependence of physisorption on ferroelectric surfaces. Nature Mater. 7, 473–477 (2008).

    CAS  Google Scholar 

  116. Piperno, S. et al. Water-induced pyroelectricity from nonpolar crystals of amino acids. Angew. Chem. Int. Ed. 52, 6513–6516 (2013).

    CAS  Google Scholar 

  117. Elemans, J. A. A. W., Lei, S. & de Feyter, S. Molecular and supramolecular networks on surfaces: From two-dimensional crystal engineering to reactivity. Angew. Chem. Int. Ed. 48, 7298–7332 (2009).

    CAS  Google Scholar 

  118. Kobr, L. et al. Inclusion compound based approach to arrays of artificial dipolar molecular rotors. A surface inclusion. J. Am. Chem. Soc. 134, 10122–10131 (2012).

    CAS  PubMed  Google Scholar 

  119. Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Kholkin, A., Amdursky, N., Bdikin, I., Gazit, E. & Rosenman, G. Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano 4, 610–614 (2010).

    CAS  PubMed  Google Scholar 

  121. Gan, Z., Wu, X., Zhu, X. & Shen, J. Light-induced ferroelectricity in bioinspired self-assembled diphenylalanine nanotubes/microtubes. Angew. Chem. Int. Ed. 52, 2055–2059 (2013).

    CAS  Google Scholar 

  122. Ortony, J. H. et al. Internal dynamics of a supramolecular nanofibre. Nature Mater. 13, 812–816 (2014).

    CAS  Google Scholar 

  123. Scott, J. F. Ferroelectrics go bananas. J. Phys. Condens. Matter 20, 021001 (2008).

    Google Scholar 

  124. Görbitz, C. H. Nanotube formation by hydrophobic dipeptides. Chem. Eur. J. 7, 5153–5159 (2001).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.S.T. and A.K. contributed equally to this work.

Corresponding author

Correspondence to Samuel I. Stupp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tayi, A., Kaeser, A., Matsumoto, M. et al. Supramolecular ferroelectrics. Nature Chem 7, 281–294 (2015). https://doi.org/10.1038/nchem.2206

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2206

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing