Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multistep, site-selective noncovalent synthesis of two-dimensional block supramolecular polymers

Abstract

Although the principles of noncovalent bonding are well understood and form the basis for the syntheses of many intricate supramolecular structures, supramolecular noncovalent synthesis cannot yet achieve the levels of precision and complexity that are attainable in organic and/or macromolecular covalent synthesis. Here we show the stepwise synthesis of block supramolecular polymers from metal–porphyrin derivatives (in which the metal centre is Zn, Cu or Ni) functionalized with fluorinated alkyl chains. These monomers first undergo a one-dimensional supramolecular polymerization and cyclization process to form a toroidal structure. Subsequently, successive secondary nucleation, elongation and cyclization steps result in two-dimensional assemblies with concentric toroidal morphologies. The site selectivity endowed by the fluorinated chains, reminiscent of regioselectivity in covalent synthesis, enables the precise control of the compositions and sequences of the supramolecular structures, as demonstrated by the synthesis of several triblock supramolecular terpolymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Formation of SCTs.
Fig. 2: Characterization of diblock SCTs.
Fig. 3: Depolymerization of SCTs of 1Zn using DMAP.
Fig. 4: Characterization of di- and triblock SCTs.
Fig. 5: Multistep noncovalent synthesis of triblock SCTs.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within this paper and its Supplementary Information. Source data are provided with this paper.

References

  1. Whitesides, G. M., Mathias, J. P. & Seto, C. T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Lehn J.-M. Supramolecular Chemistry: Concepts and Perspectives (Wiley, 1995).

  3. Service, R. F. How far can we push chemical self-assembly? Science 309, 95 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Wehner, M. & Würthner, F. Supramolecular polymerization through kinetic pathway control and living chain growth. Nat. Rev. Chem. 4, 38–53 (2020).

    Article  CAS  Google Scholar 

  5. Hartlieb, M., Mansfield, E. D. H. & Perrier, S. A guide to supramolecular polymerizations. Polym. Chem. 11, 1083–1110 (2020).

    Article  CAS  Google Scholar 

  6. Ogi, S., Sugiyasu, K., Manna, S., Samitsu, S. & Takeuchi, M. Living supramolecular polymerization realized through a biomimetic approach. Nat. Chem. 6, 188–195 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Kang, J. et al. A rational strategy for the realization of chain-growth supramolecular polymerization. Science 347, 646–651 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Ogi, S., Stepanenko, V., Sugiyasu, K., Takeuchi, M. & Würthner, F. Mechanism of self-assembly process and seeded supramolecular polymerization of perylene bisimide organogelator. J. Am. Chem. Soc. 137, 3300–3307 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Kemper, B. et al. Kinetically controlled stepwise self-assembly of AuI-metallopeptides in water. J. Am. Chem. Soc. 140, 534–537 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Besenius, P. Controlling supramolecular polymerization through multicomponent self-assembly. J. Polym. Sci., Part A: Polym. Chem. 55, 34–78 (2017).

    Article  CAS  Google Scholar 

  11. Vantomme, G. & Meijer, E. W. The construction of supramolecular systems. Science 363, 1396–1397 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Dong, Y. et al. Multistep molecular and macromolecular assembly for the creation of complex nanostructures. Chem. Phys. Rev. 3, 021305 (2022).

    Article  Google Scholar 

  13. Zhang, W. et al. Supramolecular linear heterojunction composed of graphite-like semiconducting nanotubular segments. Science 334, 340–343 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Korevaar, P. A. et al. Pathway complexity in supramolecular polymerization. Nature 481, 492–496 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Adelizzi, B., Van Zee, N. J., de Windt, L. N. J., Palmans, A. R. A. & Meijer, E. W. Future of supramolecular copolymers unveiled by reflecting on covalent copolymerization. J. Am. Chem. Soc. 141, 6110–6121 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Jung, S. H., Bochicchio, D., Pavan, G. M., Takeuchi, M. & Sugiyasu, K. A block supramolecular polymer and its kinetically enhanced stability. J. Am. Chem. Soc. 140, 10570–10577 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Wagner, W., Wehner, M., Stepanenko, V. & Würthner, F. Supramolecular block copolymers by seeded living polymerization of perylene bisimides. J. Am. Chem. Soc. 141, 12044–12054 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Sarkar, A., Sasmal, R., Das, A., Agasti, S. S. & George, S. J. Kinetically controlled synthesis of supramolecular block copolymers with narrow dispersity and tunable block lengths. Chem. Commun. 57, 3937–3940 (2021).

    Article  CAS  Google Scholar 

  19. Sakamoto, J., van Heijst, J., Lukin, O. & Schlüter, A. D. Two-dimensional polymers: just a dream of synthetic chemists? Angew. Chem. Int. Ed. 48, 1030–1069 (2009).

    Article  CAS  Google Scholar 

  20. Payamyar, P., King, B. T., Öttinger, H. C. & Schlüter, A. D. Two-dimensional polymers: concepts and perspectives. Chem. Commun. 52, 18–34 (2016).

    Article  CAS  Google Scholar 

  21. Zheng, Y. et al. Supramolecular thiophene nanosheets. Angew. Chem. Int. Ed. 52, 4845–4848 (2013).

    Article  CAS  Google Scholar 

  22. Ghosh, S., Philips, D. S., Saeki, A. & Ajayaghosh, A. Nanosheets of an organic molecular assembly from aqueous medium exhibit high solid-state emission and anisotropic charge-carrier mobility. Adv. Mater. 29, 1605408 (2017).

    Article  Google Scholar 

  23. Lin, Y. et al. Residue-specific solvation-directed thermodynamic and kinetic control over peptide self-assembly with 1D/2D structure selection. ACS Nano 13, 1900–1909 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Insua, I. & Montenegro, J. 1D to 2D self-assembly of cyclic peptides. J. Am. Chem. Soc. 142, 300–307 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Fukui, T. et al. Control over differentiation of a metastable supramolecular assembly in one and two dimensions. Nat. Chem. 9, 493–499 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Sasaki, N., Yuan, J., Fukui, T., Takeuchi, M. & Sugiyasu, K. Control over the aspect ratio of supramolecular nanosheets by molecular design. Chem. Eur. J. 26, 7840–7846 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Sasaki, N. et al. Supramolecular double-stranded Archimedean spirals and concentric toroids. Nat. Commun. 11, 3578 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Brendel, J. C. & Schacher, F. H. Block copolymer self-assembly in solution—Quo Vadis? Chem. Asian J. 13, 230–239 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Karayianni, M. & Pispas, S. Block copolymer solution self-assembly: recent advances, emerging trends, and applications. J. Polym. Sci. 59, 1874–1898 (2021).

    Article  CAS  Google Scholar 

  30. Wang, X. et al. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science 317, 644–647 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Gilroy, J. B. et al. Monodisperse cylindrical micelles by crystallization-driven living self-assembly. Nat. Chem. 2, 566–570 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Ganda, S. & Stenzel, M. H. Concepts, fabrication methods and applications of living crystallization-driven self-assembly of block copolymers. Prog. Polym. Sci. 101, 101195 (2020).

    Article  CAS  Google Scholar 

  33. Rupar, P. A., Chabanne, L., Winnik, M. A. & Manners, I. Non-centrosymmetric cylindrical micelles by unidirectional growth. Science 337, 559–562 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Hudson, Z. M., Lunn, D. J., Winnik, M. A. & Manners, I. Colour-tunable fluorescent multiblock micelles. Nat. Commun. 5, 3372 (2014).

    Article  PubMed  Google Scholar 

  35. Qiu, H. et al. Uniform patchy and hollow rectangular platelet micelles from crystallizable polymer blends. Science 352, 697–701 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Merg, A. D. et al. Seeded heteroepitaxial growth of crystallizable collagen triple helices: engineering multifunctional two-dimensional core-shell nanostructures. J. Am. Chem. Soc. 141, 20107–20117 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Yang, S., Kang, S.-Y. & Choi, T.-L. Semi-conducting 2D rectangles with tunable length via uniaxial living crystallization-driven self-assembly of homopolymer. Nat. Commun. 12, 2602 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kitamoto, Y. et al. One-shot preparation of topologically chimeric nanofibers via a gradient supramolecular copolymerization. Nat. Commun. 10, 4578 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Li, Y. et al. Corner-, edge-, and facet-controlled growth of nanocrystals. Sci. Adv. 7, eabf1410 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Datta, S. et al. Self-assembled poly-catenanes from supramolecular toroidal building blocks. Nature 583, 400–405 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Datta, S., Takahashi, S. & Yagai, S. Nanoengineering of curved supramolecular polymers: toward single-chain mesoscale materials. Acc. Mater. Res. 3, 259–271 (2022).

    Article  CAS  Google Scholar 

  42. Pearce, A. K., Wilks, T. R., Arno, M. C. & O’Reilly, R. K. Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nat. Rev. Chem. 5, 21–45 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. MacFarlane, L. R. et al. Functional nanoparticles through π-conjugated polymer self-assembly. Nat. Rev. Mater. 6, 7–26 (2021).

    Article  CAS  Google Scholar 

  44. Helmich, F. et al. Dilution-induced self-assembly of porphyrin aggregates: a consequence of coupled equilibria. Angew. Chem. Int. Ed. 49, 3939–3942 (2010).

    Article  CAS  Google Scholar 

  45. Hirose, T., Helmich, F. & Meijer, E. W. Photocontrol over cooperative porphyrin self-assembly with phenylazopyridine ligands. Angew. Chem. Int. Ed. 52, 304–309 (2013).

    Article  CAS  Google Scholar 

  46. Cremers, J. et al. Nanorings with copper(II) and zinc(II) centers: forcing copper porphyrins to bind axial ligands in heterometallated oligomers. Chem. Sci. 7, 6961–6968 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thies, S. et al. Coordination-induced spin crossover (CISCO) through axial bonding of substituted pyridines to nickel-porphyrins: σ-donor versus π–acceptor effects. Chem. Eur. J. 16, 10074–10083 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Ando, T., Uchihashi, T. & Scheuring, S. Filming biomolecular processes by high-speed atomic force microscopy. Chem. Rev. 114, 3120–3188 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fukui, T. et al. Direct observation and manipulation of supramolecular polymerization by high-speed atomic force microscopy. Angew. Chem. Int. Ed. 57, 15465–15470 (2018).

    Article  CAS  Google Scholar 

  50. Bochicchio, D., Salvalaglio, M. & Pavan, G. M. Into the dynamics of a supramolecular polymer at submolecular resolution. Nat. Commun. 8, 147 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yamamoto, K., Higuchi, M., Shiki, S., Tsuruta, M. & Chiba, H. Stepwise radial complexation of imine groups in phenylazomethine dendrimers. Nature 415, 509–511 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Rousseaux, S. A. L. et al. Self-assembly of Russian doll concentric porphyrin nanorings. J. Am. Chem. Soc. 137, 12713–12718 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kondratuk, D. V. et al. Supramolecular nesting of cyclic polymers. Nat. Chem. 7, 317–322 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministry of Education, Culture, Sports, Science and Technology (MEXT): Grants-in-Aid for Scientific Research (JP19K05592 and JP22H02134 for K.S.), a Grant-in-Aid for Scientific Research on Innovative Areas ‘Soft Crystals’ (20H04682 for K.S.; 20H04669 for T.U.) and a Grant-in-Aid for Transformative Research Areas (A) ‘Condensed Conjugation’ (JP20H05868 for M.T.), and Data Creation and Utilization-Type Material Research and Development Project (JPMXP1122714694). Financial support from the Izumi Science and Technology Foundation, the Iketani Science and Technology Foundation, the Murata Science Foundation, the Sekisui Chemical Grant Program and the Mitsubishi Foundation is also acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

N.S. and K.S. conceived the project. N.S. and H.I. synthesized the molecules and investigated their self-assembly. J.K. conducted the STEM measurements. Y.I. and T.U. performed the high-speed AFM measurements. All of the authors discussed the results. N.S. and K.S. wrote the manuscript with input from all of the authors.

Corresponding author

Correspondence to Kazunori Sugiyasu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Subi George and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–33 and Tables 1–4.

Supplementary Video 1

Real-time observation of depolymerization of SCTs induced by DMAP using high-speed AFM.

Supplementary Data 1

Source data for Supplementary Fig. 14.

Supplementary Data 2

Source data for Supplementary Fig. 15.

Supplementary Data 3

Source data for Supplementary Fig. 16.

Supplementary Data 4

Source data for Supplementary Fig. 17.

Supplementary Data 5

Source data for Supplementary Fig. 18.

Supplementary Data 6

Source data for Supplementary Fig. 19.

Supplementary Data 7

Source data for Supplementary Fig. 20.

Supplementary Data 8

Source data for Supplementary Fig. 21.

Supplementary Data 9

Source data for Supplementary Fig. 22.

Supplementary Data 10

Source data for Supplementary Fig. 23.

Supplementary Data 11

Source data for Supplementary Fig. 24.

Supplementary Data 12

Source data for Supplementary Fig. 25.

Supplementary Data 13

Source data for Supplementary Fig. 26.

Supplementary Data 14

Source data for Supplementary Fig. 27.

Supplementary Data 15

Source data for Supplementary Fig. 29.

Supplementary Data 16

Source data for Supplementary Fig. 30.

Supplementary Data 17

Source data for Supplementary Fig. 31.

Supplementary Data 18

Source data for Supplementary Fig. 33.

Source data

Source Data Fig. 3

Time-dependent absorption spectral changes of SCTs. Statistical source data of external circumference, internal circumference and area of SCTs.

Source Data Fig. 4

Elemental mapping profiles obtained across the ABC type and ACB type triblock SCTs.

Source Data Fig. 5

Changes in the absorbance observed during the multistep noncovalent synthesis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasaki, N., Kikkawa, J., Ishii, Y. et al. Multistep, site-selective noncovalent synthesis of two-dimensional block supramolecular polymers. Nat. Chem. 15, 922–929 (2023). https://doi.org/10.1038/s41557-023-01216-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01216-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing