Sensors and probes articles within Nature Chemistry

Featured

  • Article |

    Detecting genetic mutations, such as single nucleotide polymorphisms (SNPs), is essential for disease diagnostics but can be difficult using homomultivalent DNA hybridization-based approaches. Now, heteromultivalent hybridization is used to fine-tune binding specificity for the detection of one or two SNPs in a single target, enabling straightforward discrimination between adjacent and distant mutations and different viral strains.

    • Brendan R. Deal
    • , Rong Ma
    •  & Khalid Salaita
  • Perspective |

    Bioresponsive hyperpolarized probes contain magnetic resonance signals that can be many orders of magnitude larger than those of common, thermally polarized probes. This Perspective discusses how bioresponsive hyperpolarized probes can be directly linked to biological events to give functional information, enabling the mapping of physiological processes and diseases in real time using magnetic resonance.

    • Goran Angelovski
    • , Ben J. Tickner
    •  & Gaoji Wang
  • In Your Element |

    Jane Liao and Allie C. Obermeyer explore the discovery, modification and applications of green fluorescent protein, best known for its use as a tool to cast light on cellular processes.

    • Jane Liao
    •  & Allie C. Obermeyer
  • Article
    | Open Access

    The design of photoactivatable fluorophores—which are required for some super-resolution fluorescence microscopy methods—usually relies on light-sensitive protecting groups imparting lipophilicity and generating reactive by-products. Now, it has been shown that by exploiting a unique intramolecular photocyclization, bright and highly photostable fluorophores can be rapidly generated in situ from appropriately substituted 1-alkenyl-3,6-diaminoxanthone precursors.

    • Richard Lincoln
    • , Mariano L. Bossi
    •  & Stefan W. Hell
  • Article |

    Imaging-based companion diagnostics can provide real-time information to match therapies to patients; however, glutathione is abundant in most cells, making it an unlikely candidate for companion diagnosis. Now, a chemical probe has been developed that can detect elevated glutathione concentrations via photoacoustic imaging. Using this probe enables normal and pathological states in a lung cancer model to be distinguished.

    • Melissa Y. Lucero
    •  & Jefferson Chan
  • Article |

    It is difficult to develop suitable fluorescent probes for live-cell nanoscopy, but a general strategy is now reported that can transform regular fluorophores into fluorogenic probes with excellent cell permeability and low unspecific background signals. Using this approach, probes in a variety of colours were developed for different cellular targets and used for wash-free, multicolour, live-cell confocal and STED microscopy.

    • Lu Wang
    • , Mai Tran
    •  & Kai Johnsson
  • Article |

    Gene-circuit-based sensors have, to date, largely relied on optical proteins (such as green fluorescent protein) to report the output, which limits the signalling bandwidth. Now, an electrochemical output has been developed and integrated with cell-free gene circuits. This approach enables multiplexing of sensors and introduces the possibility of electronic-based logic, memory and response elements to synthetic biology.

    • Peivand Sadat Mousavi
    • , Sarah J. Smith
    •  & Keith Pardee
  • Article |

    I-motif DNA structures are thought to form in cytosine-rich regions of the genome and to have regulatory functions; however, in vivo evidence for the existence of such structures has so far remained elusive. Now an engineered antibody that is selective for i-motif structures has been developed and used to detect i-motifs in the nuclei of human cells.

    • Mahdi Zeraati
    • , David B. Langley
    •  & Daniel Christ
  • Article |

    High-fidelity pairing of nucleic acid polymers is important in the development of sensors and for the application of DNA nanotechnology. Here, a set of hybridization probes is described that discriminates single-base changes with high specificity. The probes function robustly across many different temperatures, salinities and nucleic acid concentrations.

    • David Yu Zhang
    • , Sherry Xi Chen
    •  & Peng Yin