Nanoscience and technology articles within Nature Physics

Featured

  • Article
    | Open Access

    Leggett modes can occur when superconductivity arises in more than one band in a material and represent oscillation of the relative phases of the two superconducting condensates. Now, this mode is observed in Cd3As2, a Dirac semimetal.

    • Joseph J. Cuozzo
    • , W. Yu
    •  & Enrico Rossi
  • Article
    | Open Access

    Using the valley degree of freedom in analogy to spin to encode qubits could be advantageous as many of the known decoherence mechanisms do not apply. Now long relaxation times are demonstrated for valley qubits in bilayer graphene quantum dots.

    • Rebekka Garreis
    • , Chuyao Tong
    •  & Wei Wister Huang
  • Research Briefing |

    Subwavelength photonic gratings can host long-lived, negative-effective-mass photonic modes that couple strongly to electron transitions in constituent active materials. The resulting bosonic hybrid light–matter modes, or exciton-polaritons, can be optically configured to accumulate into various macroscopic artificial complexes and lattices of coherent quantum fluids.

  • Article |

    Bound states in the continuum are topological states with useful symmetry protection properties. An experiment now shows how to use them to form macroscopically coherent complexes of polariton condensates.

    • Antonio Gianfrate
    • , Helgi Sigurðsson
    •  & Daniele Sanvitto
  • News & Views |

    Semiconducting dipolar excitons — bound states of electrons and holes — in artificial moiré lattices constitute a promising condensed matter system to explore the phase diagram of strongly interacting bosonic particles.

    • Nadine Leisgang
  • Article |

    Despite the theoretical prediction of spinaron quasiparticles in artificial nanostructures, experimental evidence has not yet been seen. Now it has been observed in a hybrid system comprising Co atoms on a Cu(111) surface.

    • Felix Friedrich
    • , Artem Odobesko
    •  & Matthias Bode
  • News & Views |

    Measurements of two neighbouring silicon-based qubits show that the charge noise they each experience is correlated, suggesting a common origin. Understanding these correlations is crucial for performing error correction in these systems.

    • Łukasz Cywiński
  • Article |

    Errors in a quantum computer that are correlated between different qubits pose a considerable challenge for correction schemes. Measurements of noise in silicon spin qubits show that electric field fluctuations can create strongly correlated errors.

    • J. Yoneda
    • , J. S. Rojas-Arias
    •  & S. Tarucha
  • News & Views |

    A milestone for the coherence time of a macroscopic mechanical oscillator may be a crucial advance for enabling the development of quantum technologies based on optomechanical architectures and for fundamental tests of quantum mechanics.

    • A. Metelmann
  • Article |

    Achieving low decoherence is challenging in hybrid quantum systems. A superconducting-circuit-based optomechanical platform realizes millisecond-scale quantum state lifetime, which allows tracking of the free evolution of a squeezed mechanical state.

    • Amir Youssefi
    • , Shingo Kono
    •  & Tobias J. Kippenberg
  • Article |

    The behaviour of a superconductor can be altered by changing its symmetry properties. Coherently coupling two Josephson junctions breaks time-reversal and inversion symmetries, giving rise to a device with a controllable superconducting diode effect.

    • Sadashige Matsuo
    • , Takaya Imoto
    •  & Seigo Tarucha
  • Research Briefing |

    A coherent interface between a mechanical oscillator and superconducting electrical circuits would enable the control of quantum states of mechanical motion, but such interfaces often result in excess mechanical energy loss. A new material-agnostic approach is shown to achieve strong electromechanical coupling while preserving a long phonon lifetime.

  • Article
    | Open Access

    Coulomb interactions in free-electron beams are usually seen as an adverse effect. The creation of distinctive number states with one, two, three and four electrons now reveals unexpected opportunities for electron microscopy and lithography from Coulomb correlations.

    • Rudolf Haindl
    • , Armin Feist
    •  & Claus Ropers
  • Article |

    Electrical control of quantum mechanical oscillators is normally performed using piezoelectrics, but incorporating these additional materials can severely reduce performance. Electrostatic control has now been demonstrated in a silicon device.

    • Alkim Bozkurt
    • , Han Zhao
    •  & Mohammad Mirhosseini
  • Article
    | Open Access

    Although mechanical resonators are routinely cooled to their quantum ground state, it has remained unclear if sizable nonlinearities could persist there. Experiments in the ultrastrong-coupling regime now show that this is possible.

    • C. Samanta
    • , S. L. De Bonis
    •  & A. Bachtold
  • News & Views |

    Generating and controlling noncollinear spin textures is a promising route towards developing next-generation logic architectures beyond CMOS. Now, these spin textures can be engineered in twisted magnetic two-dimensional materials.

    • Bevin Huang
  • Article |

    A moiré potential may play a role in determining the magnetic properties of a two-dimensional homo or heterostructure. Now, non-collinear spin structures are observed in twisted double bilayer CrI3, providing a platform to engineer unusual magnetic textures.

    • Hongchao Xie
    • , Xiangpeng Luo
    •  & Liuyan Zhao
  • Article
    | Open Access

    So far, a continuous time crystal has only been implemented on a quantum system. Optically driven many-body interactions in a nanomechanical photonic metamaterial now allow the realization of a classical continuous time crystal.

    • Tongjun Liu
    • , Jun-Yu Ou
    •  & Nikolay I. Zheludev
  • News & Views |

    Two superconductors connected by a weak link form a Josephson junction, a nonlinear circuit element at the heart of many quantum devices. Quantized electrical current steps that were predicted decades ago have now been observed experimentally.

    • Gianluca Rastelli
    •  & Ioan M. Pop
  • Article
    | Open Access

    Ultrafast photon–electron spectroscopy commonly requires a driving laser. Now, an inverse approach based on cathodoluminescence spectroscopy has allowed a compact solution to spectral interferometry inside an electron microscope, without a laser.

    • Masoud Taleb
    • , Mario Hentschel
    •  & Nahid Talebi
  • News & Views |

    Quantum mechanical fluctuations of the electromagnetic field in a vacuum between two close together objects result in an attractive force. Now, it has been experimentally shown that by exploiting a similar repulsive interaction, attraction between objects can be modulated simply by tuning temperature.

    • Victoria Esteso Carrizo
  • Research Briefing |

    Coherent multidimensional spectroscopy with nanoscale spatial resolution was used to directly probe a plasmon polariton quantum wave packet. To reproduce these results an improved quantum model of photoemission was required, in which the coherent coupling between plasmons and electrons is accounted for with the plasmon excitations extending beyond a two-level model.

  • Letter |

    Plasmonics allows precise engineering of light–matter interactions and is the driver behind many optical devices. The local observation of a plasmonic quantum wave packet is a step towards bringing these functionalities to the quantum regime.

    • Sebastian Pres
    • , Bernhard Huber
    •  & Tobias Brixner
  • Article |

    Established methods of controlling silicon spin qubits require high-frequency signals that can be difficult to implement for various reasons. Exploiting the coupling between spin and valley degrees of freedom provides an alternative approach.

    • Xinxin Cai
    • , Elliot J. Connors
    •  & John M. Nichol
  • News & Views |

    The magnetic flux in a superconducting loop can only change by discrete jumps called phase slips. The energy dissipated by an individual phase slip has now been detected thanks to advances in precision temperature measurements.

    • José Aumentado
  • Article |

    Superconducting currents around a loop containing a weak link can be quantized and only change during discrete events called phase slips. Now, the heat generated by a single phase slip and the subsequent relaxation have been experimentally observed.

    • E. Gümüş
    • , D. Majidi
    •  & C. B. Winkelmann
  • Article
    | Open Access

    Casimir forces are normally attractive and cause stiction, that is, static friction preventing surfaces in contact from starting to move. Now, a system exhibiting tunable repulsive critical Casimir forces, relevant for the development of micro- and nanodevices, is demonstrated.

    • Falko Schmidt
    • , Agnese Callegari
    •  & Giovanni Volpe
  • Article |

    Hexagonal boron nitride is a common component of 2D heterostructures. Defects implanted in boron nitride crystals can be used to perform spatially resolved sensing of properties, including temperature, magnetism and current.

    • A. J. Healey
    • , S. C. Scholten
    •  & J.-P. Tetienne
  • News & Views |

    Quantum sensing that uses electron spins in diamond can perform precise magnetic field measurements but does not work well at high magnetic fields. An alternative approach involving the spins of carbon-13 nuclei can operate in the high-field regime.

    • Norikazu Mizuochi
  • News & Views |

    Fractional charges are one of the hallmarks of topological matter and the building blocks of various topological devices. Now, there are indications that their fingerprint in terms of electrical noise is less obvious, but more universal, than expected.

    • Stefano Roddaro