Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Storage of mechanical energy in DNA nanorobotics using molecular torsion springs

Abstract

DNA nanostructures are increasingly used for the realization of mechanically active nanodevices and DNA-based nanorobots. A fundamental challenge in this context is the design of molecular machine elements that connect the rigid structural components and are powered in an effective way. Here we investigate a pivot joint that enables rotational motion of a nanorobotic arm and show the storage and release of mechanical energy by winding up and relaxing the joint that functions as a molecular torsion spring. Using electrical manipulation of the nanorobotic arm and simultaneous observation via single molecule fluorescence microscopy, we study the mechanical properties of various joint designs. Brownian dynamics simulations suggest that breaking of stacking interactions is a major contributor to enthalpic energy storage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The structure of the DNA nanorobotic arm.
Fig. 2: Probing the mechanics of molecular joints.
Fig. 3: Characterization of the torsion spring.
Fig. 4: Simple bifurcation model for back-skipping.
Fig. 5: Energy storage within a molecular torsion spring and directed rotation upon release.
Fig. 6: Coarse-grained simulations of the nanorobotic arm using oxDNA.

Similar content being viewed by others

Data availability

Localization event lists of the microscopy videos are available at https://doi.org/10.14459/2022mp1694147. Source data and all other data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The source code of the data analysis routines and simulation files employed in this study is available from the corresponding authors upon reasonable request.

References

  1. Liu, N. DNA nanotechnology for building artificial dynamic systems. MRS Bull. 44, 576–581 (2019).

    Article  ADS  Google Scholar 

  2. Bertosin, E. et al. A nanoscale reciprocating rotary mechanism with coordinated mobility control. Nat. Commun. 12, 7138 (2021).

    Article  ADS  Google Scholar 

  3. Fu, D. & Reif, J. 3D DNA nanostructures: the nanoscale architect. Appl. Sci. 11, 2624 (2021).

    Article  Google Scholar 

  4. Su, H.-J., Castro, C. E., Marras, A. E. & Zhou, L. The kinematic principle for designing DNA origami mechanisms: challenges and opportunities. In Proc. 39th Mechanisms and Robotics Conference (eds Flores, P. et al.) (American Society of Mechanical Engineers, 2015).

  5. Zhou, L., Marras, A. E., Su, H.-J. & Castro, C. E. Direct design of an energy landscape with bistable DNA origami mechanisms. Nano Lett. 15, 1815–1821 (2015).

    Article  ADS  Google Scholar 

  6. Marras, A. E., Zhou, L., Su, H.-J. & Castro, C. E. Programmable motion of DNA origami mechanisms. Proc. Natl Acad. Sci. USA 112, 713–718 (2015).

    Article  ADS  Google Scholar 

  7. Howard, J. Mechanics of Motor Proteins and the Cytoskeleton, 1st edn (Sinauer, 2001).

  8. Astumian, R. D. & Hänggi, P. Brownian motors. Phys. Today 55, 33–39 (2002).

    Article  Google Scholar 

  9. Hwang, W. & Karplus, M. Structural basis for power stroke vs. Brownian ratchet mechanisms of motor proteins. Proc. Natl Acad. Sci. USA. 116, 19777–19785 (2019).

    Article  ADS  Google Scholar 

  10. Chen, J. H. & Seeman, N. C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).

    Article  ADS  Google Scholar 

  11. Winfree, E., Liu, F., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    Article  ADS  Google Scholar 

  12. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  ADS  Google Scholar 

  13. Wei, B., Dai, M. & Yin, P. Complex shapes self-assembled from single-stranded DNA tiles. Nature 485, 623–626 (2012).

    Article  ADS  Google Scholar 

  14. Yurke, B., Turberfield, A. J., Mills, A. P., Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    Article  ADS  Google Scholar 

  15. Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).

    Article  ADS  Google Scholar 

  16. List, J., Weber, M. & Simmel, F. C. Hydrophobic actuation of a DNA origami bilayer structure. Angew. Chem. 53, 4236–4239 (2014).

    Article  Google Scholar 

  17. Funke, J. J. & Dietz, H. Placing molecules with Bohr radius resolution using DNA origami. Nat. Nanotechnol. 11, 47–52 (2016).

    Article  ADS  Google Scholar 

  18. Lei, D. et al. Three-dimensional structural dynamics of DNA origami Bennett linkages using individual-particle electron tomography. Nat. Commun. 9, 592 (2018).

    Article  ADS  Google Scholar 

  19. Gerling, T., Wagenbauer, K. F., Neuner, A. M. & Dietz, H. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 347, 1446–1452 (2015).

    Article  ADS  Google Scholar 

  20. Ketterer, P., Willner, E. M. & Dietz, H. Nanoscale rotary apparatus formed from tight-fitting 3D DNA components. Sci. Adv. 2, e1501209 (2016).

  21. Kosuri, P., Altheimer, B. D., Dai, M., Yin, P. & Zhuang, X. Rotation tracking of genome-processing enzymes using DNA origami rotors. Nature 572, 136–140 (2019).

    Article  Google Scholar 

  22. Jester, S.-S. & Famulok, M. Mechanically interlocked DNA nanostructures for functional devices. Acc. Chem. Res. 47, 1700–1709 (2014).

    Article  Google Scholar 

  23. List, J., Falgenhauer, E., Kopperger, E., Pardatscher, G. & Simmel, F. C. Long-range movement of large mechanically interlocked DNA nanostructures. Nat. Commun. 7, 12414 (2016).

    Article  ADS  Google Scholar 

  24. Stömmer, P. et al. A synthetic tubular molecular transport system. Nat. Commun. 12, 4393 (2021).

    Article  ADS  Google Scholar 

  25. Smith, S. B., Cui, Y. & Bustamante, C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996).

    Article  ADS  Google Scholar 

  26. Dessinges, M. N. et al. Stretching single stranded DNA, a model polyelectrolyte. Phys. Rev. Lett. 89, 248102 (2002).

    Article  ADS  Google Scholar 

  27. Schickinger, M., Zacharias, M. & Dietz, H. Tethered multifluorophore motion reveals equilibrium transition kinetics of single DNA double helices. Proc. Natl Acad. Sci. USA 115, E7512–E7521 (2018).

    Article  ADS  Google Scholar 

  28. Kilchherr, F. et al. Single-molecule dissection of stacking forces in DNA. Science 353, aaf5508 (2016).

    Article  Google Scholar 

  29. Nickels, P. C. et al. Molecular force spectroscopy with a DNA origami-based nanoscopic force clamp. Science 354, 305–307 (2016).

    Article  ADS  Google Scholar 

  30. Funke, J. J. et al. Uncovering the forces between nucleosomes using DNA origami. Sci. Adv. 2, e1600974 (2016).

    Article  ADS  Google Scholar 

  31. Brockman, J. M. et al. Live-cell super-resolved PAINT imaging of piconewton cellular traction forces. Nat. Methods 17, 1018–1024 (2020).

    Article  Google Scholar 

  32. Iwake, M., Wickham, S. F., Ikezaki, K., Yanagida, T. & Shih, W. M. A programmable DNA origami nanospring that reveals force-induced adjacent binding of myosin VI heads. Nat. Commun. 7, 13715 (2016).

    Article  ADS  Google Scholar 

  33. Wang, Y. et al. A nanoscale DNA force spectrometer capable of applying tension and compression on biomolecules. Nucleic Acids Res. 49, 8987–8999 (2021).

    Article  Google Scholar 

  34. Wang, M. D., Yin, H., Landick, R., Gelles, J. & Block, S. M. Stretching DNA with optical tweezers. Biophys. J. 72, 1335–1346 (1997).

    Article  ADS  Google Scholar 

  35. Bryant, Z. et al. Structural transitions and elasticity from torque measurements on DNA. Nature 424, 338–341 (2003).

    Article  ADS  Google Scholar 

  36. Lipfert, J., Wiggin, M., Kerssemakers, J. W., Pedaci, F. & Dekker, N. H. Freely orbiting magnetic tweezers to directly monitor changes in the twist of nucleic acids. Nat. Commun. 2, 439 (2011).

    Article  ADS  Google Scholar 

  37. Bustamante, C., Bryant, Z. & Smith, S. B. Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 (2003).

    Article  ADS  Google Scholar 

  38. Bustamente, C. J., Chemla, Y. R., Liu, S. & Wang, M. D. Optical tweezers in single-molecule biophysics. Nat. Rev. Methods Primers 1, 25 (2021).

    Article  Google Scholar 

  39. Smith, S. B., Finzi, L. & Bustamante, C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258, 1122–1126 (1992).

    Article  ADS  Google Scholar 

  40. Marko, J. F. & Siggia, E. D. Stretching DNA. Macromolecules 28, 8759–8770 (1995).

    Article  ADS  Google Scholar 

  41. Wiggins, P. et al. High flexibility of dna on short length scales probed by atomic force microscopy. Nat. Nanotechnol. 1, 137–141 (2006).

    Article  ADS  Google Scholar 

  42. Marko, J. F. Torque and dynamics of linking number relaxation in stretched supercoiled DNA. Phys. Rev. E 76, 021926 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  43. Lipfert, J., Kerssemakers, J. W. J., Jager, T. & Dekker, N. H. Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments. Nat. Methods 7, 977–980 (2010).

    Article  Google Scholar 

  44. Gao, X., Hong, Y., Ye, F., Inman, J. T. & Wang, M. D. Torsional stiffness of extended and plectonemic DNA. Phys. Rev. Lett. 127, 028101 (2021).

    Article  ADS  Google Scholar 

  45. Strick, T. R., Allemand, J. F., Bensimon, D., Bensimon, A. & Croquette, V. The elasticity of a single supercoiled DNA molecule. Science 271, 1835–1837 (1996).

    Article  ADS  MATH  Google Scholar 

  46. Allemand, J. F., Bensimon, D., Lavery, R. & Croquette, V. Stretched and overwound DNA forms a Pauling-like structure with exposed bases. Proc. Natl Acad. Sci. USA 95, 14152–14157 (1998).

    Article  ADS  Google Scholar 

  47. Sheinin, M. Y., Forth, S., Marko, J. F. & Wang, M. D. Underwound DNA under tension: structure, elasticity, and sequence-dependent behaviors. Phys. Rev. Lett. 107, 108102 (2011).

    Article  ADS  Google Scholar 

  48. Kahn, J. D., Yun, E. & Crothers, D. M. Detection of localized DNA flexibility. Nature 368, 163–166 (1994).

    Article  ADS  Google Scholar 

  49. Oberstrass, F. C., Fernandes, L. E. & Bryant, Z. Torque measurements reveal sequence-specific cooperative transitions in supercoiled DNA. Proc. Natl Acad. Sci. USA 109, 6106–6111 (2012).

    Article  ADS  Google Scholar 

  50. Woodside, M. T. et al. Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. Proc. Natl Acad. Sci. USA 103, 6190–6195 (2006).

    Article  ADS  Google Scholar 

  51. Shon, M. J., Rah, S.-H. & Yoon, T.-Y. Submicrometer elasticity of double-stranded DNA revealed by precision force-extension measurements with magnetic tweezer. Sci. Adv. 5, eaav1697 (2019).

    Article  ADS  Google Scholar 

  52. Kauert, D. J., Kurth, T., Liedl, T. & Seidel, R. Direct mechanical measurements reveal the material properties of three-dimensional DNA origami. Nano Lett. 11, 5558–5563 (2011).

    Article  ADS  Google Scholar 

  53. Endo, M. & Sugiyama, H. DNA origami nanomachines. Molecules 23, 1766 (2018).

    Article  Google Scholar 

  54. Nummelin, S. et al. Robotic DNA nanostructures. ACS Synth. Biol. 9, 1923–1940 (2020).

    Article  Google Scholar 

  55. Lauback, S. et al. Real-time magnetic actuation of DNA nanodevices via modular integration with stiff micro-levers. Nat. Commun. 9, 1446 (2018).

    Article  ADS  Google Scholar 

  56. Bennet-Clark, H. C. & Lucey, E. C. A. The jump of the flea: a study of the energetics and a model of the mechanism. J. Exp. Biol. 47, 59–76 (1967).

    Article  Google Scholar 

  57. Gosline, J. et al. Elastic proteins: biological roles and mechanical properties. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357, 121–132 (2002).

    Article  Google Scholar 

  58. Martin, J. L., Ishmukhametov, R., Spetzler, D., Hornung, T. & Frasch, W. D. Elastic coupling power stroke mechanism of the F1-ATPase molecular motor. Proc. Natl Acad. Sci. USA 115, 5750–5755 (2018).

    Article  ADS  Google Scholar 

  59. Schliwa, M. & Woehlke, G. Molecular motors. Nature 422, 759–765 (2003).

    Article  ADS  Google Scholar 

  60. Veigel, C., Schmitz, S., Wang, F. & Sellers, J. R. Load-dependent kinetics of myosin-V can explain its high processivity. Nat. Cell Biol. 7, 861–869 (2005).

    Article  Google Scholar 

  61. Holt, N. C. Beyond bouncy gaits: the role of multiscale compliance in skeletal muscle performance. J. Exp. Zool. A 333, 50–59 (2020).

    Article  Google Scholar 

  62. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. & Gaub, H. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109 – 1112 (1997).

    Article  Google Scholar 

  63. Green, S. J., Lubrich, D. & Turberfield, A. J. DNA hairpins: fuel for autonomous DNA devices. Biophys. J. 91, 2966–2975 (2006).

    Article  ADS  Google Scholar 

  64. Kopperger, E. et al. A self-assembled nanoscale robotic arm controlled by electric fields. Science 359, 296–301 (2018).

    Article  ADS  Google Scholar 

  65. Snodin, B. E. K. et al. Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. J. Chem. Phys. 142, 234901 (2015).

    Article  ADS  Google Scholar 

  66. Shi, Z., Castro, C. E. & Arya, G. Conformational dynamics of mechanically compliant DNA nanostructures from coarse-grained molecular dynamics simulations. ACS Nano 11, 4617–4630 (2017).

    Article  Google Scholar 

  67. Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F. & Jungmann, R. Super-resolution microscopy with DNA-PAINT. Nat. Protoc. 12, 1198–1228 (2017).

    Article  Google Scholar 

  68. Murphy, M. C., Rasnik, I., Cheng, W., Lohman, T. M. & Ha, T. Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy. Biophys. J. 86, 2530–2537 (2004).

    Article  ADS  Google Scholar 

  69. Srinivas, N. et al. On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids Res. 41, 10641–10658 (2013).

    Article  Google Scholar 

  70. von Hippel, P. H., Johnson, N. P. & Marcus, A. H. 50 years of DNA ‘breathing’: reflections on old and new approaches. Biopolymers 99, 923–954 (2013).

    Google Scholar 

  71. Büchl, A. et al. Energy landscapes of rotary DNA origami devices determined by fluorescence particle tracking. Biophys. J. 121, 4849–4859 (2022).

    Article  ADS  Google Scholar 

  72. Alberty, R. A. Effect of temperature on standard transformed Gibbs energies of formation of reactants at specified pH and ionic strength and apparent equilibrium constants of biochemical reactions. J. Phys. Chem. B 105, 7865–7870 (2001).

    Article  Google Scholar 

  73. SantaLucia, J. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl Acad. Sci. USA 95, 1460–1465 (1998).

    Article  ADS  Google Scholar 

  74. Šulc, P. et al. Sequence-dependent thermodynamics of a coarse-grained DNA model. J. Chem. Phys. 137, 135101 (2012).

    Article  ADS  Google Scholar 

  75. Rovigatti, L., Šulc, P., Reguly, I. Z. & Romano, F. A comparison between parallelization approaches in molecular dynamics simulations on gpus. J. Comput. Chem. 36, 1–8 (2015).

    Article  Google Scholar 

  76. Doye, J. P. K. et al. Coarse-graining DNA for simulations of DNA nanotechnology. Phys. Chem. Chem. Phys. 15, 20395–20414 (2013).

    Article  Google Scholar 

  77. Poppleton, E. et al. Design, optimization and analysis of large DNA and RNA nanostructures through interactive visualization, editing and molecular simulation. Nucleic Acids Res. 48, e72 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the group of H. Dietz for providing us with in-house produced scaffold strands. F.R. gratefully acknowledges support from the Konrad-Adenauer-Stiftung. J.L. gratefully acknowledges support from the Peter und Traudl Engelhorn Stiftung. F.C.S. acknowledges support from the Deutsche Forschungsgemeinschaft, SFB 1032 (project ID 201269156 TPA2) and SFB 863 (project ID 111166240 TPA8). This work was funded by the Federal Ministry of Education and Research and the Free State of Bavaria under the Excellence Strategy of the Federal Government and the Länder through the ONE MUNICH Project Munich Multiscale Biofabrication and the TUM Innovation Network RISE (Robotic Intelligence in the Synthesis of Life).

Author information

Authors and Affiliations

Authors

Contributions

M.V., E.K. and J.L. designed and produced the DNA nanostructures. E.K., M.L. and J.L. built the experimental set-up. M.V. performed single molecule measurements with support from E.K. and J.L. F.R. recorded the AFM images and prepared linearized scaffold strands supported by J.L. M.V. and M.G. programmed data analysis routines. M.V., M.L., E.K., F.C.S. and J.L. planned the research. E.K., F.C.S. and J.L. mainly developed the theoretical model. oxDNA simulations were performed by M.L. and M.G.. All the authors discussed the scientific results and contributed to the writing process.

Corresponding authors

Correspondence to Friedrich C. Simmel or Jonathan List.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Pallav Kosuri and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–15, Figs. 1–51 and Tables 1–3.

Supplementary Video 1

Trajectory (oxDNA viewer representation) of the rotation simulation for the 3 nt spring domain variant. In the video, every 25th configuration of the trajectory is shown.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogt, M., Langecker, M., Gouder, M. et al. Storage of mechanical energy in DNA nanorobotics using molecular torsion springs. Nat. Phys. 19, 741–751 (2023). https://doi.org/10.1038/s41567-023-01938-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-01938-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing