Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Calorimetry of a phase slip in a Josephson junction

Abstract

Josephson junctions are a central element in superconducting quantum technology; in these devices, irreversibility arises from abrupt slips of the quantum phase difference across the junction. This phase slip is often visualized as the tunnelling of a flux quantum in the transverse direction to the superconducting weak link, which produces dissipation. Here we detect the instantaneous heat release caused by a phase slip in a Josephson junction, signalled by an abrupt increase in the local electronic temperature in the weak link and subsequent relaxation back to equilibrium. Beyond the advance in experimental quantum thermodynamics of observing heat in an elementary quantum process, our approach could allow experimentally investigating the ubiquity of dissipation in quantum devices, particularly in superconducting quantum sensors and qubits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phase slip in a hysteretic Josephson junction.
Fig. 2: Hysteretic RF-SQUIPT.
Fig. 3: Heat relaxation dynamics after a phase slip.

Similar content being viewed by others

Data availability

The datasets plotted in this work are available via Zenodo at https://zenodo.org/record/6389955. The raw datasets are large files and can be obtained from the corresponding author upon request.

References

  1. Mooij, J. E. & Harmans, C. J. P. M. Phase-slip flux qubits. New J. Phys. 7, 219 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  2. Mooij, J. E. & Nazarov, Yu. V. Superconducting nanowires as quantum phase-slip junctions. Nat. Phys. 2, 169–172 (2006).

    Article  Google Scholar 

  3. Liebermann, P. J. & Wilhelm, F. K. Optimal qubit control using single-flux quantum pulses. Phys. Rev. Appl. 6, 024022 (2016).

    Article  ADS  Google Scholar 

  4. Leonard, E. et al. Digital coherent control of a superconducting qubit. Phys. Rev. Appl. 11, 014009 (2019).

    Article  ADS  Google Scholar 

  5. Howington, C. et al. Interfacing superconducting qubits with cryogenic logic: readout. IEEE Trans. Appl. Supercond. 29, 1700305 (2019).

    Article  Google Scholar 

  6. McDermott, R. et al. Quantum–classical interface based on single flux quantum digital logic. Quantum Sci. Technol. 3, 024004 (2018).

    Article  ADS  Google Scholar 

  7. Chiorescu, I., Nakamura, Y., Harmans, C. J. P. & Mooij, J. E. Coherent quantum dynamics of a superconducting flux qubit. Science 299, 1869–1871 (2003).

    Article  ADS  Google Scholar 

  8. Yan, F. et al. The flux qubit revisited to enhance coherence and reproducibility. Nat. Commun. 7, 12964 (2016).

    Article  ADS  Google Scholar 

  9. Manucharyan, V. E., Koch, J., Glazman, L. I. & Devoret, M. H. Fluxonium: single Cooper-pair circuit free of charge offsets. Science 326, 113–116 (2009).

    Article  Google Scholar 

  10. Nguyen, L. B. et al. High-coherence fluxonium qubit. Phys. Rev. X 9, 041041 (2019).

    Google Scholar 

  11. Astafiev, O. V. et al. Coherent quantum phase slip. Nature 484, 355–358 (2012).

    Article  ADS  Google Scholar 

  12. Shaikhaidarov, R. S. et al. Quantized current steps due to the a.c. coherent quantum phase-slip effect. Nature 608, 45–49 (2022).

    Article  Google Scholar 

  13. Golubev, D. S. & Zaikin, A. D. Quantum tunneling of the order parameter in superconducting nanowires. Phys. Rev. B 64, 014504 (2001).

    Article  ADS  Google Scholar 

  14. Sahu, M. et al. Individual topological tunnelling events of a quantum field probed through their macroscopic consequences. Nat. Phys. 5, 503–508 (2009).

    Article  Google Scholar 

  15. Tinkham, M. Introduction to Superconductivity 2nd edn (Dover, 1996).

  16. van Der Wal, C. H. et al. Quantum superposition of macroscopic persistent-current states. Science 290, 773–777 (2000).

    Article  ADS  Google Scholar 

  17. Friedman, J. R., Patel, V., Chen, W., Tolpygo, S. K. & Lukens, J. E. Quantum superposition of distinct macroscopic states. Nature 406, 43–46 (2000).

    Article  ADS  Google Scholar 

  18. Likharev, K. K. Superconducting weak links. Rev. Mod. Phys. 51, 101 (1979).

    Article  ADS  Google Scholar 

  19. Giazotto, F., Peltonen, J. T., Meschke, M. & Pekola, J. P. Superconducting quantum interference proximity transistor. Nat. Phys. 6, 254–259 (2010).

    Article  Google Scholar 

  20. Courtois, H., Meschke, M., Peltonen, J. T. & Pekola, J. P. Origin of hysteresis in a proximity Josephson junction. Phys. Rev. Lett. 101, 067002 (2008).

    Article  ADS  Google Scholar 

  21. Angers, L. et al. Proximity d.c. squids in the long-junction limit. Phys. Rev. B 77, 165408 (2008).

    Article  ADS  Google Scholar 

  22. Dutta, B. et al. Single-quantum-dot heat valve. Phys. Rev. Lett. 125, 237701 (2020).

    Article  ADS  Google Scholar 

  23. Schmidt, D. R., Yung, C. S. & Cleland, A. N. Nanoscale radio-frequency thermometry. Appl. Phys. Lett. 83, 1002–1004 (2003).

    Article  ADS  Google Scholar 

  24. Gasparinetti, S. et al. Fast electron thermometry for ultrasensitive calorimetric detection. Phys. Rev. Appl. 3, 014007 (2015).

    Article  ADS  Google Scholar 

  25. Karimi, B. & Pekola, J. P. Noninvasive thermometer based on the zero-bias anomaly of a superconducting junction for ultrasensitive calorimetry. Phys. Rev. Appl. 10, 054048 (2018).

    Article  ADS  Google Scholar 

  26. Karimi, B. et al. Optimized proximity thermometer for ultrasensitive detection. Phys. Rev. Appl. 13, 054001 (2020).

    Article  ADS  Google Scholar 

  27. Karimi, B., Brange, F., Samuelsson, P. & Pekola, J. P. Reaching the ultimate energy resolution of a quantum detector. Nat. Commun. 11, 367 (2020).

    Article  ADS  Google Scholar 

  28. Zhou, F., Charlat, P., Spivak, B. & Pannetier, B. Density of states in superconductor-normal metal-superconductor junctions. J. Low Temp. Phys. 110, 841–850 (1998).

    Article  ADS  Google Scholar 

  29. Le Sueur, H., Joyez, P., Pothier, H., Urbina, C. & Estève, D. Phase controlled superconducting proximity effect probed by tunneling spectroscopy. Phys. Rev. Lett. 100, 197002 (2008).

    Article  ADS  Google Scholar 

  30. Ligato, N., Strambini, E., Paolucci, F. & Giazotto, F. Preliminary demonstration of a persistent Josephson phase-slip memory cell with topological protection. Nat. Commun. 12, 5200 (2021).

    Article  ADS  Google Scholar 

  31. Larkin, A. L. & Ovchinnikov, Yu. N. Quasiclassical method in the theory of superconductivity. Zh. Eksp. Teor. Fiz. 55, 2262–2272 (1968).

    Google Scholar 

  32. Usadel, K. D. Generalized diffusion equation for superconducting alloys. Phys. Rev. Lett. 25, 507 (1970).

    Article  ADS  Google Scholar 

  33. Belzig, W., Wilhelm, F. K., Bruder, C., Schön, G. & Zaikin, A. D. Quasiclassical Green’s function approach to mesoscopic superconductivity. Superlattices Microstruct. 25, 1251 (1999).

    Article  ADS  Google Scholar 

  34. Giazotto, F., Heikkilä, T. T., Luukanen, A., Savin, A. M. & Pekola, J. P. Opportunities for mesoscopics in thermometry and refrigeration: physics and applications. Rev. Mod. Phys. 78, 217 (2006).

    Article  ADS  Google Scholar 

  35. Viisanen, K. L. & Pekola, J. P. Anomalous electronic heat capacity of copper nanowires at sub-kelvin temperatures. Phys. Rev. B 97, 115422 (2018).

    Article  ADS  Google Scholar 

  36. Wang, L. B., Golubev, D. S., Galperin, Y. M. & Pekola, J. P. Dynamic thermal relaxation in metallic films at sub-kelvin temperatures. Preprint at https://arxiv.org/abs/1910.09448 (2019).

  37. Pekola, J. P. & Karimi, B. Ultrasensitive calorimetric detection of single photons from qubit decay. Phys. Rev. X 12, 011026 (2022).

    Google Scholar 

  38. Braine, T. et al. Extended search for the invisible axion with the axion dark matter experiment. Phys. Rev. Lett. 124, 101303 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge help from A. Théry and T. Crozes. The samples were fabricated at the Nanofab platform at Institut Néel. This work received support from the European Union under the Marie Skłodowska-Curie grant agreement no. 766025 (QuESTech), from the Agence Nationale de la Recherche under the program ‘Investissements d’avenir’ (ANR-15-IDEX-02) and the Laboratoire d’excellence LANEF (ANR-10-LABX-51-01), and from Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) via SFB 1432 (project no. 425217212).

Author information

Authors and Affiliations

Authors

Contributions

E.G. performed the experiments, with the help of P.R. D.M. prepared the samples, with the help of E.G. and P.R. D.N. and W.B. performed the theoretical modelling. B.K., J.T.P. and J.P.P. developed and helped installing the RF thermometry methods. E.G. and C.B.W. conceived the experiment. C.B.W. conducted the research and wrote the manuscript, with input from all the authors. All the authors contributed to the discussions and interpretation of data.

Corresponding author

Correspondence to C. B. Winkelmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18 and Sections I–VIII.

Source data

Source Data Fig. 2

Original data for Fig. 2b–e.

Source Data Fig. 3

Original data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gümüş, E., Majidi, D., Nikolić, D. et al. Calorimetry of a phase slip in a Josephson junction. Nat. Phys. 19, 196–200 (2023). https://doi.org/10.1038/s41567-022-01844-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01844-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing