Cancer articles within Nature Chemistry

Featured

  • Article |

    Photoinduced electron transfer (PET) occurs in many chemical processes and has various applications. Here ionizing radiation was used to trigger PET for controlled drug release from an antibody–drug conjugate using a picolinium cage. The radiotherapy-activated prodrug system demonstrated high antitumour efficacy and minimal side effects.

    • Qunfeng Fu
    • , Zhi Gu
    •  & Zhibo Liu
  • Article |

    The design and construction of a stereo-defined DNA-encoded chemical library, featuring the four different 4-amino-proline stereoisomers as a central scaffold, has now enabled the discovery of potent ligands to proteins of pharmaceutical interest. Parallel screening with closely related isoforms (anti-targets) facilitated the isolation of hits with high selectivity ratios.

    • Sebastian Oehler
    • , Laura Lucaroni
    •  & Gabriele Bassi
  • Article
    | Open Access

    The metallophilic interaction between cyclometalated palladium complexes can facilitate supramolecular nanostructure formation in living mice, providing a phototoxic prodrug with a long circulation time and high tumour-targeting efficiency. Upon green light irradiation, this palladium-based drug destroys solid tumours, leaving non-irradiated organs intact.

    • Xue-Quan Zhou
    • , Peiyuan Wang
    •  & Sylvestre Bonnet
  • Article |

    Water-soluble, cell-permeable, inert fluorescent tags called OregonFluors have been developed to withstand environmental changes while resistant towards non-specific binding with subcellular structures. These tags enable quantitative imaging of drug target availability in cells and tissues, providing a route for the future assessment of personalized therapies.

    • Lei G. Wang
    • , Antonio R. Montaño
    •  & Summer L. Gibbs
  • Article |

    Tigilanol tiglate is a therapeutic lead for the treatment of a broad range of cancers. Now, it has been shown that tigilanol tiglate can be synthesized in a time and step economical fashion from phorbol—its naturally abundant biosynthetic precursor. This synthesis provides rapid access to analogues with unprecedented protein kinase C binding activity.

    • Paul A. Wender
    • , Zachary O. Gentry
    •  & Edward Njoo
  • Article
    | Open Access

    A strategy for protecting redox-active ortho-quinones, which show promise as anticancer agents but suffer from redox-cycling behaviour and systemic toxicity, has been developed. The ortho-quinones are derivatized to redox-inactive para-aminobenzyl ketols. Upon amine deprotection, an acid-promoted, self-immolative C–C bond-cleaving 1,6-elimination releases the redox-active hydroquinone. The strategy also enables conjugation to a carrier for targeted delivery of ortho-quinone species.

    • Lavinia Dunsmore
    • , Claudio D. Navo
    •  & Gonçalo J. L. Bernardes
  • Article |

    Reliable intracellular delivery of antibodies is one of the grand challenges in biomedical research, with the potential to address unmet clinical needs or to enable basic research. Now, it has been shown that tricyclic peptide complexes can transport functional antibodies into the cytoplasm and nucleus of cells to specifically target intracellular proteins.

    • Ole Tietz
    • , Fernando Cortezon-Tamarit
    •  & Katherine A. Vallis
  • Article |

    Imaging-based companion diagnostics can provide real-time information to match therapies to patients; however, glutathione is abundant in most cells, making it an unlikely candidate for companion diagnosis. Now, a chemical probe has been developed that can detect elevated glutathione concentrations via photoacoustic imaging. Using this probe enables normal and pathological states in a lung cancer model to be distinguished.

    • Melissa Y. Lucero
    •  & Jefferson Chan
  • Article |

    Prodrugs offer one route to treat cancer, but they require activation once they have been delivered to the tumour. Now, a simultaneous chemo-radiotherapy strategy has been demonstrated in mice that uses gamma or X-ray irradiation to locally activate an anticancer prodrug.

    • Jin Geng
    • , Yichuan Zhang
    •  & Mark Bradley
  • News & Views |

    DNA-encoded libraries are a powerful tool to identify hit compounds for drug discovery. Now, two papers have reported new advances in this technology. One paper reports a method to screen for binders inside a living cell, and the other investigates the effects of stereo- and regiochemistry on ligand discovery.

    • Minsoo Song
    •  & Gil Tae Hwang
  • Review Article |

    Metabolic labelling with unnatural sugars can be used to selectively label tumours with chemical tags. These tags then enable the targeted delivery of molecular cargo including diagnostic and therapeutic agents. This Review Article discusses progress in the design and delivery of unnatural sugars for metabolic labelling of tumour cells and the subsequent development of tumour-targeted chemistry.

    • Hua Wang
    •  & David J. Mooney
  • Article |

    CD44 is a cell-surface adhesion receptor associated with many biological processes that rely on cellular plasticity. Now, CD44 has been shown to mediate endocytosis of iron-bound hyaluronates. Furthermore, iron catalyses the demethylation of repressive histone marks, thereby unlocking the expression of genes regulating cellular plasticity.

    • Sebastian Müller
    • , Fabien Sindikubwabo
    •  & Raphaël Rodriguez
  • News & Views |

    Monoclonal antibodies have shown tremendous success in cancer treatment; however, humanization for clinical applications is expensive and not straightforward. Now, molecularly imprinted polymer nanogels have been developed that can block cell-surface proteins and disrupt tumour spheroids.

    • Alessandra Maria Bossi
  • Article |

    Current photodynamic therapy photosensitizers require oxygen; however, tumours are often hypoxic. Now, an organoiridium complex with an unusually high redox potential, which is effective in normoxia and hypoxia, has been developed. The organoiridium complex kills cancer cells by an immunogenic apoptotic mechanism involving efficient photocatalytic oxidation of NADH to NAD radicals, and reduction of cytochrome c.

    • Huaiyi Huang
    • , Samya Banerjee
    •  & Peter J. Sadler
  • Article |

    Colibactin is produced by human enterobacteria and assumed to be a gut bacterial genotoxin. Now, colibactin-645 has been identified as a macrocyclic colibactin metabolite that contains a C-terminal 5-hydroxy-4-oxazolecarboxylic acid moiety and induces DNA double-strand breaks in vitro and in human cell cultures via a unique copper-mediated oxidative mechanism.

    • Zhong-Rui Li
    • , Jie Li
    •  & Pei-Yuan Qian
  • Article |

    The [4Fe4S]2+ cluster-containing DNA-repair enzyme MUTYH helps safeguard the integrity of Watson–Crick base pairing and the human genetic code. The MUTYH [4Fe4S]2+ cluster mediates DNA redox signalling and DNA lesion identification. Now, a MUTYH pathologic variant associated with catastrophic [4Fe4S]2+ cluster redox degradation, impairment of DNA signalling and human colonic tumorigenesis has been identified.

    • Kevin J. McDonnell
    • , Joseph A. Chemler
    •  & Stephen B. Gruber
  • Article |

    Cell-to-cell variation in gene expression creates a need for techniques that characterize expression at the level of individual cells. Now, a technique for characterizing mRNA expression has been developed. The technique uses the intracellular self-assembly of magnetic nanoparticles to quantitate RNA levels at the single-cell level.

    • Mahmoud Labib
    • , Reza M. Mohamadi
    •  & Shana O. Kelley
  • Article |

    Cancer stem cells are typically refractory to conventional treatments. Now, an unprecedented mechanism has been discovered by which salinomycin and derivatives can sequester iron in lysosomes leading to cytoplasmic iron depletion and the subsequent production of reactive oxygen species that are lethal to the cell. This discovery of the importance of iron in cancer stem cell maintenance provides an opportunity for developing new therapeutics.

    • Trang Thi Mai
    • , Ahmed Hamaï
    •  & Raphaël Rodriguez
  • Article |

    Anti-proliferative compounds that display enhanced toxicity in a low-oxygen (hypoxic) environment may be used to eradicate aggressive and therapy-resistant cancer cells. Now, a promising lead structure has been identified in the BE-43547-class of depsipeptide natural products.

    • Nikolaj L. Villadsen
    • , Kristian M. Jacobsen
    •  & Thomas B. Poulsen
  • Article |

    The natural product thiostrepton is known to have anticancer properties but its mechanism of action is not known. Here, it is shown that thiostrepton binds to the protein FOXM1, preventing its interaction with several gene promoters and inhibits their expression. This illustrates the druggability of transcription factors, and provides a molecular basis for targeting FOXM1.

    • Nagaratna S. Hegde
    • , Deborah A. Sanders
    •  & Shankar Balasubramanian
  • News & Views |

    The plant-derived sesquiterpene englerin A is a potent inhibitor of several renal cancer cell lines. Two recent total syntheses have utilized cationic gold(I)-complexes to coax readily available open-chain precursors into englerin's challenging oxotricyclic core with enzyme-like precision.

    • Matthieu Willot
    •  & Mathias Christmann
  • Research Highlights |

    Contrast agents for highly sensitive imaging applications can be rapidly delivered to tumours by assembling them with nanoparticles at the tumour site.

    • Anne Pichon