DNA and RNA articles within Nature Chemistry

Featured

  • Article |

    The physicochemical driving forces of protein-free, RNA-driven phase transitions were previously unclear, but it is now shown that RNAs undergo entropically driven liquid–liquid phase separation upon heating in the presence of magnesium ions. In the condensed phase, RNAs can undergo an enthalpically favourable percolation transition that leads to arrested condensates.

    • Gable M. Wadsworth
    • , Walter J. Zahurancik
    •  & Priya R. Banerjee
  • Article
    | Open Access

    Cytoskeletons are essential components of cells that perform a variety of tasks, and artificial cytoskeletons that perform these functions are required for the bottom-up assembly of synthetic cells. Now, a multi-functional cytoskeleton mimic has been engineered from DNA, consisting of confined DNA filaments that are capable of reversible self-assembly and transport of gold nanoparticles and vesicular cargo.

    • Pengfei Zhan
    • , Kevin Jahnke
    •  & Kerstin Göpfrich
  • Article |

    Coacervate microdroplets formed from pH- and redox-responsive peptides and self-assembled by liquid–liquid phase separation have been shown to quickly recruit macromolecular therapeutics—such as peptides, large proteins and mRNAs—and directly enter the cytosol of cells via a non-endocytic pathway. The subsequent release of therapeutic cargo is mediated by endogenic glutathione.

    • Yue Sun
    • , Sze Yi Lau
    •  & Ali Miserez
  • Article |

    Stimuli-responsive control of drug activation can mitigate issues caused by poor drug selectivity. Now, it has been shown that mechanical force—induced by ultrasound—can be used to activate drugs in three different systems. This approach has enabled the activation of antibiotics or a cytotoxic anticancer agent from synthetic polymers, polyaptamers and nanoparticle assemblies.

    • Shuaidong Huo
    • , Pengkun Zhao
    •  & Andreas Herrmann
  • Article |

    A six-helix bundle DNA structure called meta-DNA has now been assembled and shown to possess some structural properties similar to those of single-stranded DNA. Two meta-DNAs containing complementary ‘meta-base pairs’ are shown to form double helices. Meta-DNA building blocks are also used to construct a series of DNA architectures and to perform a hierarchical strand-displacement reaction.

    • Guangbao Yao
    • , Fei Zhang
    •  & Hao Yan
  • News & Views |

    In biological systems, order typically emerges from out-of-equilibrium molecular processes that control both static patterns and dynamic changes. Now, the self-regulating assembly and disassembly of a synthetic system has been achieved on the micrometre scale, by coupling the growth of a DNA nanotube to a biochemical oscillator.

    • Tim Liedl
  • Article |

    Nucleic acid nanotechnology offers a promising route towards the design and synthesis of reconfigurable biomolecular materials. Now, the combination of dynamic and structural DNA nanotechnology has enabled the dynamic control of the assembly and disassembly of DNA nanotubes. The process involves minimal synthetic gene systems, including an autonomous molecular oscillator.

    • Leopold N. Green
    • , Hari K. K. Subramanian
    •  & Elisa Franco
  • Article |

    A DNA-based reaction network has now been developed that creates a French flag pattern with immobile and sharp borders from a shallow initial concentration gradient. The output pattern can be used to control the macroscopic organization of DNA-decorated particles thereby inducing a French flag pattern of colloidal aggregation.

    • Anton S. Zadorin
    • , Yannick Rondelez
    •  & André Estevez-Torres