Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of monocarboxylate transporter-4 depletes stem-like glioblastoma cells and inhibits HIF transcriptional response in a lactate-independent manner

Abstract

Hypoxic regions are frequent in glioblastoma (GBM), the most common type of malignant adult brain tumor, and increased levels of tumor hypoxia have been associated with worse clinical outcomes. To unmask genes important in hypoxia, we treated GBM neurospheres in hypoxia and identified monocarboxylate transporter-4 (MCT4) as one of the most upregulated genes. To investigate the clinical importance of MCT4 in GBM, we examined clinical outcomes and found that MCT4 overexpression is associated with shorter patient survival. Consistent with this, MCT4 upregulation correlated with the aggressive mesenchymal subset of GBM, and MCT4 downregulation correlated with the less aggressive G-CIMP (Glioma CpG Methylator Phenotype) subset of GBM. Immunohistochemical analysis of tissue microarrays confirmed that MCT4 protein levels were increased in high-grade as compared with lower-grade astrocytomas, further suggesting that MCT4 is a clinically relevant target. To test the requirement for MCT4 in vitro, we transduced neurospheres with lentiviruses encoding short-hairpin RNAs (shRNAs) against MCT4, resulting in growth inhibition of 50–80% under hypoxia in two lines. MCT4 knockdown was associated with a decreased percentage of cells expressing the stem-cell marker CD133 and increased apoptotic fraction. We also found that flow-sorted CD133-positive cells had almost sixfold higher MCT4 levels than CD133-negative cells, suggesting that the stem-like population might have a greater requirement for MCT4. Most importantly, MCT4 silencing also slowed GBM intracranial xenograft growth in vivo. Interestingly, whereas MCT4 is a well-characterized lactate exporter, we found that both intracellular and extracellular lactate levels did not change following MCT4 silencing, suggesting a novel lactate export-independent mechanism for growth inhibition in GBMs. To identify this potential mechanism, we performed microarray analysis on control and shMCT4-expressing neurospheres and found a dramatic reduction in the expression of multiple Hypoxia-Inducible Factor (HIF)-regulated genes following MCT4 knockdown. The overall reduction in HIF transcriptional response was further validated using a hypoxia response element (HRE)-dependent green-fluorescent protein (GFP) reporter line.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Zhou Y, Shingu T, Feng L, Chen Z, Ogasawara M, Keating MJ et al. Metabolic alterations in highly tumorigenic glioblastoma cells: preference for hypoxia and high dependency on glycolysis. J Biol Chem 2011; 286: 32843–32853.

    Article  CAS  Google Scholar 

  2. Bar EE, Chaudhry A, Lin A, Fan X, Schreck K, Matsui W et al. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 2007; 25: 2524–2533.

    Article  CAS  Google Scholar 

  3. Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A . HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 2007; 17: 165–172.

    Article  CAS  Google Scholar 

  4. Ehtesham M, Sarangi A, Valadez JG, Chanthaphaychith S, Becher MW, Abel TW et al. Ligand-dependent activation of the hedgehog pathway in glioma progenitor cells. Oncogene 2007; 26: 5752–5761.

    Article  CAS  Google Scholar 

  5. Hu YY, Zheng MH, Cheng G, Li L, Liang L, Gao F et al. Notch signaling contributes to the maintenance of both normal neural stem cells and patient-derived glioma stem cells. BMC Cancer 2011; 11: 82.

    Article  CAS  Google Scholar 

  6. Zhang XP, Zheng G, Zou L, Liu HL, Hou LH, Zhou P et al. Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells. Mol Cell Biochem 2008; 307: 101–108.

    Article  CAS  Google Scholar 

  7. Purow BW, Haque RM, Noel MW, Su Q, Burdick MJ, Lee J et al. Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res 2005; 65: 2353–2363.

    Article  CAS  Google Scholar 

  8. Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N et al. NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 2010; 28: 5–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gong A, Huang S . FoxM1and Wnt/beta-catenin signaling in glioma stem cells. Cancer Res 2012; 72: 5658–5662.

    Article  CAS  Google Scholar 

  10. Zhang K, Zhang J, Han L, Pu P, Kang C . Wnt/beta-catenin signaling in glioma. J Neuroimmune Pharmacol 2012; 7: 740–749.

    Article  Google Scholar 

  11. Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN . The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 2009; 8: 3274–3284.

    Article  CAS  Google Scholar 

  12. Bar EE, Lin A, Mahairaki V, Matsui W, Eberhart CG . Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. Am J Pathol 2010; 177: 1491–1502.

    Article  CAS  Google Scholar 

  13. Pistollato F, Chen HL, Rood BR, Zhang HZ, D'Avella D, Denaro L et al. Hypoxia and HIF1α repress the differentiative effects of BMPs in high-grade glioma. Stem Cells 2009; 27: 7–17.

    Article  CAS  Google Scholar 

  14. Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 2009; 15: 501–513.

    Article  CAS  Google Scholar 

  15. Seidel S, Garvalov BK, Wirta V, von Stechow L, Schanzer A, Meletis K et al. A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain 2010; 133 (Pt 4): 983–995.

    Article  Google Scholar 

  16. Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, McKay RD et al. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1α. Oncogene 2009; 28: 3949–3959.

    Article  CAS  Google Scholar 

  17. Bar EE . Glioblastoma, cancer stem cells and hypoxia. Brain Pathol 2011; 21: 119–129.

    Article  Google Scholar 

  18. Heddleston JM, Li Z, Lathia JD, Bao S, Hjelmeland AB, Rich JN . Hypoxia inducible factors in cancer stem cells. Br J Cancer 2010; 102: 789–795.

    Article  CAS  Google Scholar 

  19. Le Floch R, Chiche J, Marchiq I, Naiken T, Ilk K, Murray CM et al. CD147 subunit of lactate/H+ symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors. Proc Natl Acad Sci USA 2011; 108: 16663–16668.

    Article  CAS  Google Scholar 

  20. Estrada JC, Albo C, Benguria A, Dopazo A, Lopez-Romero P, Carrera-Quintanar L et al. Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis. Cell Death Differ 2012; 19: 743–755.

    Article  CAS  Google Scholar 

  21. Zhu LL, Zhao T, huang X, Liu ZH, Wu LY, Wu KW et al. Gene expression profiles and metabolic changes in embryonic neural progenitor cells under low oxygen. Cell Reprogram 2011; 13: 113–120.

    Article  CAS  Google Scholar 

  22. Westfall SD, Sachdev S, Das P, Hearne LB, Hannink M, Roberts RM et al. Identification of oxygen-sensitive transcriptional programs in human embryonic stem cells. Stem Cells Dev 2008; 17: 869–881.

    Article  CAS  Google Scholar 

  23. Lin Q, Kim Y, Alarcon RM, Yun Z . Oxygen and cell fate decisions. Gene Regul Syst Bio 2008; 2: 43–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Collins PC, Nielsen LK, Patel SD, Papoutsakis ET, Miller WM . Characterization of hematopoietic cell expansion, oxygen uptake, and glycolysis in a controlled, stirred-tank bioreactor system. Biotechnol Prog 1998; 14: 466–472.

    Article  CAS  Google Scholar 

  25. Pistollato F, Chen HL, Schwartz PH, Basso G, Panchision DM . Oxygen tension controls the expansion of human CNS precursors and the generation of astrocytes and oligodendrocytes. Mol Cell Neurosci 2007; 35: 424–435.

    Article  CAS  Google Scholar 

  26. Cheng C, Edin NF, Lauritzen KH, Aspmodal I, Christoffersen S, Jian L et al. Alterations of monocarboxylate transporter densities during hypoxia in brain and breast tumour cells. Cell Oncol (Dordr) 2012; 35: 217–227.

    Article  CAS  Google Scholar 

  27. Mathupala SP, Parajuli P, Sloan AE . Silencing of monocarboxylate transporters via small interfering ribonucleic acid inhibits glycolysis and induces cell death in malignant glioma: an in vitro study. Neurosurgery 2004; 55: 1410–1419 discussion 9.

    Article  Google Scholar 

  28. Miranda-Goncalves V, Honavar M, Pinheiro C, Martinho O, Pires MM, Cordeiro M et al. Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets. Neuro Oncol 2012; 15: 172–188.

    Article  Google Scholar 

  29. Colen CB, Shen Y, Ghoddoussi F, Yu P, Francis TB, Koch BJ et al. Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study. Neoplasia 2011; 13: 620–632.

    Article  CAS  Google Scholar 

  30. Fang J, Quinones QJ, Holman TL, Morowitz MJ, Wang Q, Zhao H et al. The H+-linked monocarboxylate transporter (MCT1/SLC16A1): a potential therapeutic target for high-risk neuroblastoma. Mol Pharmacol 2006; 70: 2108–2115.

    Article  CAS  Google Scholar 

  31. Li KK, Pang JC, Ching AK, Wong CK, Kong X, Wang Y et al. miR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1. Hum Pathol 2009; 40: 1234–1243.

    Article  CAS  Google Scholar 

  32. Froberg MK, Gerhart DZ, Enerson BE, Manivel C, Guzman-Paz M, Seacotte N et al. Expression of monocarboxylate transporter MCT1 in normal and neoplastic human CNS tissues. Neuroreport 2001; 12: 761–765.

    Article  CAS  Google Scholar 

  33. Ullah MS, Davies AJ, Halestrap AP . The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1α-dependent mechanism. J Biol Chem 2006; 281: 9030–9037.

    Article  CAS  Google Scholar 

  34. Szeto MD, Chakraborty G, Hadley J, Rockne R, Muzi M, Alvord EC Jr. et al. Quantitative metrics of net proliferation and invasion link biological aggressiveness assessed by MRI with hypoxia assessed by FMISO-PET in newly diagnosed glioblastomas. Cancer Res 2009; 69: 4502–4509.

    Article  CAS  Google Scholar 

  35. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010; 17: 98–110.

    Article  CAS  Google Scholar 

  36. Kirk P, Wilson MC, Heddle C, Brown MH, Barclay AN, Halestrap AP . CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J 2000; 19: 3896–3904.

    Article  CAS  Google Scholar 

  37. Wang Q, Li LH, Gao GD, Wang G, Qu L, Li JG et al. HIF-1α up-regulates NDRG1 expression through binding to NDRG1 promoter, leading to proliferation of lung cancer A549 cells. Mol Biol Rep 2013; 40: 3723–3729.

    Article  CAS  Google Scholar 

  38. Kita Y, Mimori K, Iwatsuki M, Yokobori T, Ieta K, Tanaka F et al. STC2: a predictive marker for lymph node metastasis in esophageal squamous-cell carcinoma. Ann Surg Oncol 2011; 18: 261–272.

    Article  Google Scholar 

  39. Grabmaier K, AdW MC, Verhaegh GW, Schalken JA, Oosterwijk E . Strict regulation of CAIX(G250/MN) by HIF-1α in clear cell renal cell carcinoma. Oncogene 2004; 23: 5624–5631.

    Article  CAS  Google Scholar 

  40. Schietke R, Warnecke C, Wacker I, Schodel J, Mole DR, Campean V et al. The lysyl oxidases LOX and LOXL2 are necessary and sufficient to repress E-cadherin in hypoxia: insights into cellular transformation processes mediated by HIF-1. J Biol Chem 2010; 285: 6658–6669.

    Article  CAS  Google Scholar 

  41. Stiehl DP, Bordoli MR, Abreu-Rodriguez I, Wollenick K, Schraml P, Gradin K et al. Non-canonical HIF-2α function drives autonomous breast cancer cell growth via an AREG-EGFR/ErbB4 autocrine loop. Oncogene 2012; 31: 2283–2297.

    Article  CAS  Google Scholar 

  42. Fan X, Matsui W, Khaki L, Stearns D, Chun J, Li YM et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 2006; 66: 7445–7452.

    Article  CAS  Google Scholar 

  43. Manning Fox JE, Meredith D, Halestrap AP . Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. J Physiol 2000; 529 (Pt 2): 285–293.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dimmer KS, Friedrich B, Lang F, Deitmer JW, Broer S . The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem J 2000; 350 (Pt 1): 219–227.

    Article  CAS  Google Scholar 

  45. Chiche J, Le Fur Y, Vilmen C, Frassineti F, Daniel L, Halestrap AP et al. In vivo pH in metabolic-defective Ras-transformed fibroblast tumors: key role of the monocarboxylate transporter, MCT4, for inducing an alkaline intracellular pH. Int J Cancer 2012; 130: 1511–1520.

    Article  CAS  Google Scholar 

  46. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 2004; 64: 7011−–70121.

    Article  Google Scholar 

  47. Westerman KA, Ao Z, Cohen EA, Leboulch P . Design of a trans protease lentiviral packaging system that produces high titer virus. Retrovirology 2007; 4: 96.

    Article  Google Scholar 

  48. Kobayashi M, Fujita I, Itagaki S, Hirano T, Iseki K . Transport mechanism for L-lactic acid in human myocytes using human prototypic embryonal rhabdomyosarcoma cell line (RD cells). Biol Pharm Bull 2005; 28: 1197–1201.

    Article  CAS  Google Scholar 

  49. Vordermark D, Shibata T, Brown JM . Green fluorescent protein is a suitable reporter of tumor hypoxia despite an oxygen requirement for chromophore formation. Neoplasia 2001 Nov -Dec; 3: 527–534.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brain Tumor Funders Collaborative and R01 NS55089.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E E Bar.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, K., Lim, K., Price, A. et al. Inhibition of monocarboxylate transporter-4 depletes stem-like glioblastoma cells and inhibits HIF transcriptional response in a lactate-independent manner. Oncogene 33, 4433–4441 (2014). https://doi.org/10.1038/onc.2013.390

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.390

Keywords

This article is cited by

Search

Quick links