Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Sirtuins in stress response: guardians of the genome

Abstract

Sirtuins, a family of NAD+-dependent deacetylases, help organisms to respond to metabolic and genotoxic stress through diverse pathways, including metabolic homeostasis, cell survival pathways and cell-cycle control. Evidence accumulated over the past decade, including recent descriptions of mouse knockout models for each of the seven mammalian Sirtuins, suggests that protection of genome stability is among the most important roles of Sirtuins during stress response. Our current knowledge suggests that Sirtuins promote genome integrity through a variety of mechanisms, the majority of which involve a direct role in chromatin-related functions. Here, we review these mechanisms and discuss their implications for cell physiology and tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Sieber OM, Heinimann K, Tomlinson IP . Genomic instability—the engine of tumorigenesis? Nat Rev Cancer 2003; 3: 701–708.

    Article  CAS  Google Scholar 

  2. Raptis S, Bapat B . Genetic instability in human tumors. EXS 2006; 96: 303–320.

    CAS  Google Scholar 

  3. Heng HH, Bremer SW, Stevens JB, Horne SD, Liu G, Abdallah BY et al. Chromosomal instability (CIN): what it is and why it is crucial to cancer evolution. Cancer Metastasis Rev (e-pub ahead of print 19 April 2013).

  4. Saunders LR, Verdin E . Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 2007; 26: 5489–5504.

    Article  CAS  Google Scholar 

  5. Sebastian C, Satterstrom FK, Haigis MC, Mostoslavsky R . From sirtuin biology to human diseases: an update. J Biol Chem 2012; 287: 42444–42452.

    CAS  Google Scholar 

  6. Rine J, Strathern JN, Hicks JB, Herskowitz I . A suppressor of mating-type locus mutations in Saccharomyces cerevisiae: evidence for and identification of cryptic mating-type loci. Genetics 1979; 93: 877–901.

    CAS  Google Scholar 

  7. Martinez-Redondo P, Vaquero A . The diversity of histone versus nonhistone sirtuin substrates. Genes Cancer (e-pub ahead of print 9 April 2013; doi:10.1177 1947601913483767).

  8. Frye RA . Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 2000; 273: 793–798.

    CAS  Google Scholar 

  9. Houtkooper RH, Pirinen E, Auwerx J . Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 2012; 13: 225–238.

    CAS  Google Scholar 

  10. Du J, Zhou Y, Su X, Yu JJ, Khan S, Jiang H et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 2011; 334: 806–809.

    CAS  Google Scholar 

  11. Jiang H, Khan S, Wang Y, Charron G, He B, Sebastian C et al. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature 2013; 496: 110–113.

    CAS  Google Scholar 

  12. Vaquero A . The conserved role of sirtuins in chromatin regulation. Int J Dev Biol 2009; 53: 303–322.

    CAS  Google Scholar 

  13. Vaquero A, Sternglanz R, Reinberg D . NAD+-dependent deacetylation of H4 lysine 16 by class III HDACs. Oncogene 2007; 26: 5505–5520.

    CAS  Google Scholar 

  14. Bosch-Presegue L, Vaquero A . The dual role of sirtuins in cancer. Genes Cancer 2011; 2: 648–662.

    CAS  Google Scholar 

  15. Wang RH, Sengupta K, Li C, Kim HS, Cao L, Xiao C et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 2008; 14: 312–323.

    CAS  Google Scholar 

  16. Kim HS, Vassilopoulos A, Wang RH, Lahusen T, Xiao Z, Xu X et al. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell 2011; 20: 487–499.

    CAS  Google Scholar 

  17. Serrano L, Martinez-Redondo P, Marazuela-Duque A, Vazquez BN, Dooley SJ, Voigt P et al. The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation. Genes Dev 2013; 27: 639–653.

    CAS  Google Scholar 

  18. Kim HS, Patel K, Muldoon-Jacobs K, Bisht KS, Aykin-Burns N, Pennington JD et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 2010; 17: 41–52.

    CAS  Google Scholar 

  19. Jeong SM, Xiao C, Finley LW, Lahusen T, Souza AL, Pierce K et al. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 2013; 23: 450–463.

    CAS  Google Scholar 

  20. Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 2006; 124: 315–329.

    CAS  Google Scholar 

  21. Lombard DB, Schwer B, Alt FW, Mostoslavsky R . SIRT6 in DNA repair, metabolism and ageing. J Intern Med 2008; 263: 128–141.

    CAS  Google Scholar 

  22. Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 2008; 452: 492–496.

    CAS  Google Scholar 

  23. Craig JM . Heterochromatin–many flavours, common themes. Bioessays 2005; 27: 17–28.

    CAS  Google Scholar 

  24. Jenuwein T, Allis CD . Translating the histone code. Science 2001; 293: 1074–1080.

    Article  CAS  Google Scholar 

  25. Sims RJ 3rd, Nishioka K, Reinberg D . Histone lysine methylation: a signature for chromatin function. Trends Genet 2003; 19: 629–639.

    CAS  Google Scholar 

  26. Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 2001; 107: 137–148.

    Article  CAS  Google Scholar 

  27. Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001; 107: 149–159.

    CAS  Google Scholar 

  28. Muth V, Nadaud S, Grummt I, Voit R . Acetylation of TAF(I)68, a subunit of TIF-IB/SL1, activates RNA polymerase I transcription. EMBO J 2001; 20: 1353–1362.

    CAS  Google Scholar 

  29. Fulco M, Schiltz RL, Iezzi S, King MT, Zhao P, Kashiwaya Y et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell 2003; 12: 51–62.

    CAS  Google Scholar 

  30. Senawong T, Peterson VJ, Avram D, Shepherd DM, Frye RA, Minucci S et al. Involvement of the histone deacetylase SIRT1 in chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting protein 2-mediated transcriptional repression. J Biol Chem 2003; 278: 43041–43050.

    CAS  Google Scholar 

  31. Takata T, Ishikawa F . Human Sir2-related protein SIRT1 associates with the bHLH repressors HES1 and HEY2 and is involved in HES1- and HEY2-mediated transcriptional repression. Biochem Biophys Res Commun 2003; 301: 250–257.

    CAS  Google Scholar 

  32. Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D . Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 2004; 16: 93–105.

    CAS  Google Scholar 

  33. Kuzmichev A, Jenuwein T, Tempst P, Reinberg D . Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol Cell 2004; 14: 183–193.

    CAS  Google Scholar 

  34. Vaquero A, Scher M, Erdjument-Bromage H, Tempst P, Serrano L, Reinberg D . SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature 2007; 450: 440–444.

    CAS  Google Scholar 

  35. Grummt I, Pikaard CS . Epigenetic silencing of RNA polymerase I transcription. Nat Rev Mol Cell Biol 2003; 4: 641–649.

    CAS  Google Scholar 

  36. Moss T, Langlois F, Gagnon-Kugler T, Stefanovsky V . A housekeeper with power of attorney: the rRNA genes in ribosome biogenesis. Cell Mol Life Sci 2007; 64: 29–49.

    CAS  Google Scholar 

  37. Murayama A, Ohmori K, Fujimura A, Minami H, Yasuzawa-Tanaka K, Kuroda T et al. Epigenetic control of rDNA loci in response to intracellular energy status. Cell 2008; 133: 627–639.

    CAS  Google Scholar 

  38. Imai S, Armstrong CM, Kaeberlein M, Guarente L . Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000; 403: 795–800.

    CAS  Google Scholar 

  39. Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L . Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev 2006; 20: 1075–1080.

    CAS  Google Scholar 

  40. Grob A, Roussel P, Wright JE, McStay B, Hernandez-Verdun D, Sirri V . Involvement of SIRT7 in resumption of rDNA transcription at the exit from mitosis. J Cell Sci 2009; 122: 489–498.

    CAS  Google Scholar 

  41. Barber MF, Michishita-Kioi E, Xi Y, Tasselli L, Kioi M, Moqtaderi Z et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 2012; 487: 114–118.

    CAS  Google Scholar 

  42. Kuzmichev A, Margueron R, Vaquero A, Preissner TS, Scher M, Kirmizis A et al. Composition and histone substrates of polycomb repressive group complexes change during cellular differentiation. Proc Natl Acad Sci USA 2005; 102: 1859–1864.

    CAS  Google Scholar 

  43. Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D . Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev 2002; 16: 2893–2905.

    CAS  Google Scholar 

  44. Chang CJ, Hung MC . The role of EZH2 in tumour progression. Br J Cancer 2012; 106: 243–247.

    CAS  Google Scholar 

  45. Mulligan P, Yang F, Di Stefano L, Ji JY, Ouyang J, Nishikawa JL et al. A SIRT1-LSD1 corepressor complex regulates Notch target gene expression and development. Mol Cell 2011; 42: 689–699.

    CAS  Google Scholar 

  46. Aster JC, Pear WS, Blacklow SC . Notch signaling in leukemia. Annu Rev Pathol 2008; 3: 587–613.

    CAS  Google Scholar 

  47. Dotto GP . Notch tumor suppressor function. Oncogene 2008; 27: 5115–5123.

    CAS  Google Scholar 

  48. Kawahara TL, Michishita E, Adler AS, Damian M, Berber E, Lin M et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 2009; 136: 62–74.

    CAS  Google Scholar 

  49. Zhong L, D'Urso A, Toiber D, Sebastian C, Henry RE, Vadysirisack DD et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 2010; 140: 280–293.

    CAS  Google Scholar 

  50. Sebastian C, Zwaans BM, Silberman DM, Gymrek M, Goren A, Zhong L et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 2012; 151: 1185–1199.

    CAS  Google Scholar 

  51. Min L, Ji Y, Bakiri L, Qiu Z, Cen J, Chen X et al. Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin. Nat Cell Biol 2013; 14: 1203–1211.

    Google Scholar 

  52. Iwahara T, Bonasio R, Narendra V, Reinberg D . SIRT3 functions in the nucleus in the control of stress-related gene expression. Mol Cell Biol 2012; 32: 5022–5034.

    CAS  Google Scholar 

  53. Scher MB, Vaquero A, Reinberg D . SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev 2007; 21: 920–928.

    CAS  Google Scholar 

  54. Peters AH, O'Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 2001; 107: 323–337.

    CAS  Google Scholar 

  55. Garcia-Cao M, O'Sullivan R, Peters AH, Jenuwein T, Blasco MA . Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet 2004; 36: 94–99.

    CAS  Google Scholar 

  56. Bosch-Presegue L, Raurell-Vila H, Marazuela-Duque A, Kane-Goldsmith N, Valle A, Oliver J et al. Stabilization of Suv39H1 by SirT1 is part of oxidative stress response and ensures genome protection. Mol Cell 2011; 42: 210–223.

    CAS  Google Scholar 

  57. Harley CB, Futcher AB, Greider CW . Telomeres shorten during ageing of human fibroblasts. Nature 1990; 345: 458–460.

    CAS  Google Scholar 

  58. Greider CW, Blackburn EH . Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 1985; 43: 405–413.

    CAS  Google Scholar 

  59. Morin GB . The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 1989; 59: 521–529.

    CAS  Google Scholar 

  60. Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 1997; 91: 25–34.

    CAS  Google Scholar 

  61. Lee HW, Blasco MA, Gottlieb GJ, Horner JW 2nd, Greider CW, DePinho RA . Essential role of mouse telomerase in highly proliferative organs. Nature 1998; 392: 569–574.

    CAS  Google Scholar 

  62. Harrington L, Zhou W, McPhail T, Oulton R, Yeung DS, Mar V et al. Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes Dev 1997; 11: 3109–3115.

    CAS  Google Scholar 

  63. Meyerson M, Counter CM, Eaton EN, Ellisen LW, Steiner P, Caddle SD et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 1997; 90: 785–795.

    CAS  Google Scholar 

  64. Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 1997; 277: 955–959.

    CAS  Google Scholar 

  65. Feng J, Funk WD, Wang SS, Weinrich SL, Avilion AA, Chiu CP et al. The RNA component of human telomerase. Science 1995; 269: 1236–1241.

    CAS  Google Scholar 

  66. van Steensel B, de Lange T . Control of telomere length by the human telomeric protein TRF1. Nature 1997; 385: 740–743.

    CAS  Google Scholar 

  67. Moretti P, Freeman K, Coodly L, Shore D . Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev 1994; 8: 2257–2269.

    CAS  Google Scholar 

  68. McAinsh AD, Scott-Drew S, Murray JA, Jackson SP . DNA damage triggers disruption of telomeric silencing and Mec1p-dependent relocation of Sir3p. Curr Biol 1999; 9: 963–966.

    CAS  Google Scholar 

  69. Mills KD, Sinclair DA, Guarente L . MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell 1999; 97: 609–620.

    CAS  Google Scholar 

  70. Narala SR, Allsopp RC, Wells TB, Zhang G, Prasad P, Coussens MJ et al. SIRT1 acts as a nutrient-sensitive growth suppressor and its loss is associated with increased AMPK and telomerase activity. Mol Biol Cell 2008; 19: 1210–1219.

    CAS  Google Scholar 

  71. El Ramy R, Magroun N, Messadecq N, Gauthier LR, Boussin FD, Kolthur-Seetharam U et al. Functional interplay between Parp-1 and SirT1 in genome integrity and chromatin-based processes. Cell Mol Life Sci 2009; 66: 3219–3234.

    CAS  Google Scholar 

  72. Chen J, Zhang B, Wong N, Lo AW, To KF, Chan AW et al. Sirtuin 1 is upregulated in a subset of hepatocellular carcinomas where it is essential for telomere maintenance and tumor cell growth. Cancer Res 2012; 71: 4138–4149.

    Google Scholar 

  73. Rusin M, Zajkowicz A, Butkiewicz D . Resveratrol induces senescence-like growth inhibition of U-2 OS cells associated with the instability of telomeric DNA and upregulation of BRCA1. Mech Ageing Dev 2009; 130: 528–537.

    CAS  Google Scholar 

  74. Palacios JA, Herranz D, De Bonis ML, Velasco S, Serrano M, Blasco MA . SIRT1 contributes to telomere maintenance and augments global homologous recombination. J Cell Biol 2010; 191: 1299–1313.

    CAS  Google Scholar 

  75. Herranz D, Iglesias G, Munoz-Martin M, Serrano M . Limited role of Sirt1 in cancer protection by dietary restriction. Cell Cycle 2011; 10: 2215–2217.

    CAS  Google Scholar 

  76. Michishita E, McCord RA, Boxer LD, Barber MF, Hong T, Gozani O et al. Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle 2009; 8: 2664–2666.

    CAS  Google Scholar 

  77. Yang B, Zwaans BM, Eckersdorff M, Lombard DB . The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability. Cell Cycle 2009; 8: 2662–2663.

    CAS  Google Scholar 

  78. Das C, Lucia MS, Hansen KC, Tyler JK . CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 2009; 459: 113–117.

    CAS  Google Scholar 

  79. Tennen RI, Bua DJ, Wright WE, Chua KF . SIRT6 is required for maintenance of telomere position effect in human cells. Nat Commun 2011; 2: 433.

    Google Scholar 

  80. Wilson JM, Le VQ, Zimmerman C, Marmorstein R, Pillus L . Nuclear export modulates the cytoplasmic Sir2 homologue Hst2. EMBO Rep 2006; 7: 1247–1251.

    CAS  Google Scholar 

  81. North BJ, Verdin E . Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis. PLoS One 2007; 2: e784.

    Google Scholar 

  82. Vaquero A, Scher MB, Lee DH, Sutton A, Cheng HL, Alt FW et al. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev 2006; 20: 1256–1261.

    CAS  Google Scholar 

  83. Borra MT, O'Neill FJ, Jackson MD, Marshall B, Verdin E, Foltz KR et al. Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+-dependent deacetylases. J Biol Chem 2002; 277: 12632–12641.

    CAS  Google Scholar 

  84. Dryden SC, Nahhas FA, Nowak JE, Goustin AS, Tainsky MA . Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol 2003; 23: 3173–3185.

    CAS  Google Scholar 

  85. Bae NS, Swanson MJ, Vassilev A, Howard BH . Human histone deacetylase SIRT2 interacts with the homeobox transcription factor HOXA10. J Biochem 2004; 135: 695–700.

    CAS  Google Scholar 

  86. Sanders SL, Portoso M, Mata J, Bahler J, Allshire RC, Kouzarides T . Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 2004; 119: 603–614.

    CAS  Google Scholar 

  87. Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G et al. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 2004; 18: 1251–1262.

    CAS  Google Scholar 

  88. Schotta G, Sengupta R, Kubicek S, Malin S, Kauer M, Callen E et al. A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse. Genes Dev 2008; 22: 2048–2061.

    CAS  Google Scholar 

  89. Karachentsev D, Sarma K, Reinberg D, Steward R . PR-Set7-dependent methylation of histone H4 Lys 20 functions in repression of gene expression and is essential for mitosis. Genes Dev 2005; 19: 431–435.

    CAS  Google Scholar 

  90. Oda H, Okamoto I, Murphy N, Chu J, Price SM, Shen MM et al. Monomethylation of histone H4-lysine 20 is involved in chromosome structure and stability and is essential for mouse development. Mol Cell Biol 2009; 29: 2278–2295.

    CAS  Google Scholar 

  91. North BJ, Verdin E . Mitotic regulation of SIRT2 by cyclin-dependent kinase 1-dependent phosphorylation. J Biol Chem 2007; 282: 19546–19555.

    CAS  Google Scholar 

  92. Wu S, Wang W, Kong X, Congdon LM, Yokomori K, Kirschner MW et al. Dynamic regulation of the PR-Set7 histone methyltransferase is required for normal cell cycle progression. Genes Dev 2010; 24: 2531–2542.

    CAS  Google Scholar 

  93. Cimini D, Mattiuzzo M, Torosantucci L, Degrassi F . Histone hyperacetylation in mitosis prevents sister chromatid separation and produces chromosome segregation defects. Mol Biol Cell 2003; 14: 3821–3833.

    CAS  Google Scholar 

  94. Magnaghi-Jaulin L, Jaulin C . Histone deacetylase activity is necessary for chromosome condensation during meiotic maturation in Xenopus laevis. Chromosome Res 2006; 14: 319–332.

    CAS  Google Scholar 

  95. Yang XJ, Seto E . Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell 2008; 31: 449–461.

    CAS  Google Scholar 

  96. Inoue T, Hiratsuka M, Osaki M, Yamada H, Kishimoto I, Yamaguchi S et al. SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress. Oncogene 2007; 26: 945–957.

    CAS  Google Scholar 

  97. Inoue T, Hiratsuka M, Osaki M, Oshimura M . The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation. Cell Cycle 2007; 6: 1011–1018.

    CAS  Google Scholar 

  98. North BJ, Marshall BL, Borra MT, Denu JM, Verdin E . The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 2003; 11: 437–444.

    CAS  Google Scholar 

  99. Sasaki T, Maier B, Bartke A, Scrable H . Progressive loss of SIRT1 with cell cycle withdrawal. Aging Cell 2006; 5: 413–422.

    CAS  Google Scholar 

  100. Fatoba ST, Okorokov AL . Human SIRT1 associates with mitotic chromatin and contributes to chromosomal condensation. Cell Cycle 2011; 10: 2317–2322.

    CAS  Google Scholar 

  101. Wong S, Weber JD . Deacetylation of the retinoblastoma tumour suppressor protein by SIRT1. Biochem J 2007; 407: 451–460.

    CAS  Google Scholar 

  102. Vaute O, Nicolas E, Vandel L, Trouche D . Functional and physical interaction between the histone methyl transferase Suv39H1 and histone deacetylases. Nucleic Acids Res 2002; 30: 475–481.

    CAS  Google Scholar 

  103. Wang C, Chen L, Hou X, Li Z, Kabra N, Ma Y et al. Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol 2006; 8: 1025–1031.

    CAS  Google Scholar 

  104. Binda O, Nassif C, Branton PE . SIRT1 negatively regulates HDAC1-dependent transcriptional repression by the RBP1 family of proteins. Oncogene 2008; 27: 3384–3392.

    CAS  Google Scholar 

  105. Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J 2002; 21: 2383–2396.

    CAS  Google Scholar 

  106. Matsushita N, Takami Y, Kimura M, Tachiiri S, Ishiai M, Nakayama T et al. Role of NAD-dependent deacetylases SIRT1 and SIRT2 in radiation and cisplatin-induced cell death in vertebrate cells. Genes Cells 2005; 10: 321–332.

    CAS  Google Scholar 

  107. Li Y, Matsumori H, Nakayama Y, Osaki M, Kojima H, Kurimasa A et al. SIRT2 down-regulation in HeLa can induce p53 accumulation via p38 MAPK activation-dependent p300 decrease, eventually leading to apoptosis. Genes Cells 2011; 16: 34–45.

    CAS  Google Scholar 

  108. Greer EL, Brunet A . FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 2005; 24: 7410–7425.

    CAS  Google Scholar 

  109. Furukawa-Hibi Y, Kobayashi Y, Chen C, Motoyama N . FOXO transcription factors in cell-cycle regulation and the response to oxidative stress. Antioxid Redox Signal 2005; 7: 752–760.

    CAS  Google Scholar 

  110. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 2004; 431: 461–466.

    CAS  Google Scholar 

  111. Shen Z . Genomic instability and cancer: an introduction. J Mol Cell Biol 2011; 3: 1–3.

    CAS  Google Scholar 

  112. Chua KF, Mostoslavsky R, Lombard DB, Pang WW, Saito S, Franco S et al. Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress. Cell Metab 2005; 2: 67–76.

    CAS  Google Scholar 

  113. Allison SJ, Milner J . SIRT3 is pro-apoptotic and participates in distinct basal apoptotic pathways. Cell Cycle 2007; 6: 2669–2677.

    CAS  Google Scholar 

  114. Wang F, Nguyen M, Qin FX, Tong Q . SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 2007; 6: 505–514.

    CAS  Google Scholar 

  115. Han MK, Song EK, Guo Y, Ou X, Mantel C, Broxmeyer HE . SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell 2008; 2: 241–251.

    CAS  Google Scholar 

  116. Lee CW, Wong LL, Tse EY, Liu HF, Leong VY, Lee JM et al. AMPK promotes p53 acetylation via phosphorylation and inactivation of SIRT1 in liver cancer cells. Cancer Res 2012; 72: 4394–4404.

    CAS  Google Scholar 

  117. Polo SE, Jackson SP . Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 2011; 25: 409–433.

    CAS  Google Scholar 

  118. Fan W, Luo J . SIRT1 regulates UV-induced DNA repair through deacetylating XPA. Mol Cell 2010; 39: 247–258.

    CAS  Google Scholar 

  119. Ming M, Shea CR, Guo X, Li X, Soltani K, Han W et al. Regulation of global genome nucleotide excision repair by SIRT1 through xeroderma pigmentosum C. Proc Natl Acad Sci USA 2010; 107: 22623–22628.

    CAS  Google Scholar 

  120. Yuan Z, Seto E . A functional link between SIRT1 deacetylase and NBS1 in DNA damage response. Cell Cycle 2007; 6: 2869–2871.

    CAS  Google Scholar 

  121. Yuan Z, Zhang X, Sengupta N, Lane WS, Seto E . SIRT1 regulates the function of the Nijmegen breakage syndrome protein. Mol Cell 2007; 27: 149–162.

    CAS  Google Scholar 

  122. Kastan MB, Lim DS . The many substrates and functions of ATM. Nat Rev Mol Cell Biol 2000; 1: 179–186.

    CAS  Google Scholar 

  123. Lim DS, Kim ST, Xu B, Maser RS, Lin J, Petrini JH et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 2000; 404: 613–617.

    CAS  Google Scholar 

  124. Oberdoerffer P, Michan S, McVay M, Mostoslavsky R, Vann J, Park SK et al. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 2008; 135: 907–918.

    CAS  Google Scholar 

  125. Peng L, Ling H, Yuan Z, Fang B, Bloom G, Fukasawa K et al. SIRT1 negatively regulates the activities, functions, and protein levels of hMOF and TIP60. Mol Cell Biol 2012; 32: 2823–2836.

    CAS  Google Scholar 

  126. Gupta A, Guerin-Peyrou TG, Sharma GG, Park C, Agarwal M, Ganju RK et al. The mammalian ortholog of Drosophila MOF that acetylates histone H4 lysine 16 is essential for embryogenesis and oncogenesis. Mol Cell Biol 2008; 28: 397–409.

    CAS  Google Scholar 

  127. Rea S, Xouri G, Akhtar A . Males absent on the first (MOF): from flies to humans. Oncogene 2007; 26: 5385–5394.

    CAS  Google Scholar 

  128. Ikura T, Ogryzko VV, Grigoriev M, Groisman R, Wang J, Horikoshi M et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 2000; 102: 463–473.

    CAS  Google Scholar 

  129. Sun Y, Jiang X, Chen S, Fernandes N, Price BD . A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci USA 2005; 102: 13182–13187.

    CAS  Google Scholar 

  130. Sun Y, Jiang X, Xu Y, Ayrapetov MK, Moreau LA, Whetstine JR et al. Histone H3 methylation links DNA damage detection to activation of the tumour suppressor Tip60. Nat Cell Biol 2009; 11: 1376–1382.

    CAS  Google Scholar 

  131. Vaitiekunaite R, Butkiewicz D, Krzesniak M, Przybylek M, Gryc A, Snietura M et al. Expression and localization of Werner syndrome protein is modulated by SIRT1 and PML. Mech Ageing Dev 2007; 128: 650–661.

    CAS  Google Scholar 

  132. Kahyo T, Mostoslavsky R, Goto M, Setou M . Sirtuin-mediated deacetylation pathway stabilizes Werner syndrome protein. FEBS Lett 2008; 582: 2479–2483.

    CAS  Google Scholar 

  133. Li K, Casta A, Wang R, Lozada E, Fan W, Kane S et al. Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation. J Biol Chem 2008; 283: 7590–7598.

    CAS  Google Scholar 

  134. Law IK, Liu L, Xu A, Lam KS, Vanhoutte PM, Che CM et al. Identification and characterization of proteins interacting with SIRT1 and SIRT3: implications in the anti-aging and metabolic effects of sirtuins. Proteomics 2009; 9: 2444–2456.

    CAS  Google Scholar 

  135. Uhl M, Csernok A, Aydin S, Kreienberg R, Wiesmuller L, Gatz SA . Role of SIRT1 in homologous recombination. DNA Repair (Amst) 2010; 9: 383–393.

    CAS  Google Scholar 

  136. Jeong J, Juhn K, Lee H, Kim SH, Min BH, Lee KM et al. SIRT1 promotes DNA repair activity and deacetylation of Ku70. Exp Mol Med 2007; 39: 8–13.

    CAS  Google Scholar 

  137. Sawada M, Sun W, Hayes P, Leskov K, Boothman DA, Matsuyama S . Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nat Cell Biol 2003; 5: 320–329.

    CAS  Google Scholar 

  138. Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 2004; 305: 390–392.

    CAS  Google Scholar 

  139. Jia G, Su L, Singhal S, Liu X . Emerging roles of SIRT6 on telomere maintenance, DNA repair, metabolism and mammalian aging. Mol Cell Biochem 2012; 364: 345–350.

    CAS  Google Scholar 

  140. Mao Z, Hine C, Tian X, Van Meter M, Au M, Vaidya A et al. SIRT6 promotes DNA repair under stress by activating PARP1. Science 2011; 332: 1443–1446.

    CAS  Google Scholar 

  141. Mao Z, Tian X, Van Meter M, Ke Z, Gorbunova V, Seluanov A . Sirtuin 6 (SIRT6) rescues the decline of homologous recombination repair during replicative senescence. Proc Natl Acad Sci USA 2012; 109: 11800–11805.

    CAS  Google Scholar 

  142. Hassa PO, Haenni SS, Elser M, Hottiger MO . Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 2006; 70: 789–829.

    CAS  Google Scholar 

  143. Burkle A . Poly(ADP-ribosyl)ation: a posttranslational protein modification linked with genome protection and mammalian longevity. Biogerontology 2000; 1: 41–46.

    CAS  Google Scholar 

  144. Hochegger H, Dejsuphong D, Fukushima T, Morrison C, Sonoda E, Schreiber V et al. Parp-1 protects homologous recombination from interference by Ku and Ligase IV in vertebrate cells. EMBO J 2006; 25: 1305–1314.

    CAS  Google Scholar 

  145. Paddock MN, Buelow BD, Takeda S, Scharenberg AM . The BRCT domain of PARP-1 is required for immunoglobulin gene conversion. PLoS Biol 2010; 8: e1000428.

    Google Scholar 

  146. Jeggo PA . DNA repair: PARP—another guardian angel? Curr Biol 1998; 8: R49–R51.

    CAS  Google Scholar 

  147. d'Adda di Fagagna F, Hande MP, Tong WM, Lansdorp PM, Wang ZQ, Jackson SP . Functions of poly(ADP-ribose) polymerase in controlling telomere length and chromosomal stability. Nat Genet 1999; 23: 76–80.

    CAS  Google Scholar 

  148. Kaidi A, Weinert BT, Choudhary C, Jackson SP . Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 2010; 329: 1348–1353.

    CAS  Google Scholar 

  149. McCord RA, Michishita E, Hong T, Berber E, Boxer LD, Kusumoto R et al. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging (Albany, NY) 2009; 1: 109–121.

    CAS  Google Scholar 

  150. Yuan J, Pu M, Zhang Z, Lou Z . Histone H3-K56 acetylation is important for genomic stability in mammals. Cell Cycle 2009; 8: 1747–1753.

    CAS  Google Scholar 

  151. Celic I, Masumoto H, Griffith WP, Meluh P, Cotter RJ, Boeke JD et al. The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation. Curr Biol 2006; 16: 1280–1289.

    CAS  Google Scholar 

  152. Sundaresan NR, Samant SA, Pillai VB, Rajamohan SB, Gupta MP . SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol 2008; 28: 6384–6401.

    CAS  Google Scholar 

  153. Singh KK . Mitochondria damage checkpoint, aging, and cancer. Ann NY Acad Sci 2006; 1067: 182–190.

    CAS  Google Scholar 

  154. Hsu PP, Sabatini DM . Cancer cell metabolism: Warburg and beyond. Cell 2008; 134: 703–707.

    CAS  Google Scholar 

  155. Aykin-Burns N, Ahmad IM, Zhu Y, Oberley LW, Spitz DR . Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochem J 2009; 418: 29–37.

    CAS  Google Scholar 

  156. Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, Mostoslavsky R et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol 2007; 27: 8807–8814.

    CAS  Google Scholar 

  157. Onyango P, Celic I, McCaffery JM, Boeke JD, Feinberg AP . SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci USA 2002; 99: 13653–13658.

    CAS  Google Scholar 

  158. Schwer B, North BJ, Frye RA, Ott M, Verdin E . The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol 2002; 158: 647–657.

    CAS  Google Scholar 

  159. Spitz DR, Oberley LW . An assay for superoxide dismutase activity in mammalian tissue homogenates. Anal Biochem 1989; 179: 8–18.

    CAS  Google Scholar 

  160. Tao R, Coleman MC, Pennington JD, Ozden O, Park SH, Jiang H et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell 2010; 40: 893–904.

    CAS  Google Scholar 

  161. Someya S, Yu W, Hallows WC, Xu J, Vann JM, Leeuwenburgh C et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 2010; 143: 802–812.

    CAS  Google Scholar 

  162. McBurney MW, Yang X, Jardine K, Hixon M, Boekelheide K, Webb JR et al. The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol Cell Biol 2003; 23: 38–54.

    CAS  Google Scholar 

  163. Boily G, Seifert EL, Bevilacqua L, He XH, Sabourin G, Estey C et al. SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One 2008; 3: e1759.

    Google Scholar 

  164. Bordone L, Motta MC, Picard F, Robinson A, Jhala US, Apfeld J et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 2006; 4: e31.

    Google Scholar 

  165. Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA 2003; 100: 10794–10799.

    CAS  Google Scholar 

  166. Planavila A, Dominguez E, Navarro M, Vinciguerra M, Iglesias R, Giralt M et al. Dilated cardiomyopathy and mitochondrial dysfunction in Sirt1-deficient mice: a role for Sirt1-Mef2 in adult heart. J Mol Cell Cardiol 2012; 53: 521–531.

    CAS  Google Scholar 

  167. Ou X, Chae HD, Wang RH, Shelley WC, Cooper S, Taylor T et al. SIRT1 deficiency compromises mouse embryonic stem cell hematopoietic differentiation, and embryonic and adult hematopoiesis in the mouse. Blood 2011; 117: 440–450.

    CAS  Google Scholar 

  168. Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010; 464: 121–125.

    CAS  Google Scholar 

  169. Shimazu T, Hirschey MD, Hua L, Dittenhafer-Reed KE, Schwer B, Lombard DB et al. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab 2010; 12: 654–661.

    CAS  Google Scholar 

  170. Jing E, Emanuelli B, Hirschey MD, Boucher J, Lee KY, Lombard D et al. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci USA 2011; 108: 14608–14613.

    CAS  Google Scholar 

  171. Qiu X, Brown K, Hirschey MD, Verdin E, Chen D . Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 2010; 12: 662–667.

    CAS  Google Scholar 

  172. Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP . Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 2009; 119: 2758–2771.

    CAS  Google Scholar 

  173. Hirschey MD, Shimazu T, Jing E, Grueter CA, Collins AM, Aouizerat B et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell 2011; 44: 177–190.

    CAS  Google Scholar 

  174. Ahn BH, Kim HS, Song S, Lee IH, Liu J, Vassilopoulos A et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA 2008; 105: 14447–14452.

    CAS  Google Scholar 

  175. Hallows WC, Yu W, Smith BC, Devries MK, Ellinger JJ, Someya S et al. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol Cell 2011; 41: 139–149.

    CAS  Google Scholar 

  176. Palacios OM, Carmona JJ, Michan S, Chen KY, Manabe Y, Ward JL 3rd et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging (Albany, NY) 2009; 1: 771–783.

    CAS  Google Scholar 

  177. Yang Y, Cimen H, Han MJ, Shi T, Deng JH, Koc H et al. NAD+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10. J Biol Chem 2009; 285: 7417–7429.

    Google Scholar 

  178. Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 2006; 126: 941–954.

    CAS  Google Scholar 

  179. Nakagawa T, Lomb DJ, Haigis MC, Guarente L . SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 2009; 137: 560–570.

    CAS  Google Scholar 

  180. Peng C, Lu Z, Xie Z, Cheng Z, Chen Y, Tan M et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics 2011; 10: M111.012658.

    Google Scholar 

  181. Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T, Kubin T et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res 2008; 102: 703–710.

    CAS  Google Scholar 

Download references

Acknowledgements

We wish to apologize to many colleagues whose work could not be cited in this review due to space limitations. We thank members of the Vaquero group for fruitful discussions. The Chromatin Biology group is supported by the Spanish Ministry of Science and Innovation (MICINN) grant SAF2011-25860, the Catalonian Government Agency AGAUR grant 2009SGR914 and a grant from the Association Française Ataxie de Friedreich (AFAF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Vaquero.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosch-Presegué, L., Vaquero, A. Sirtuins in stress response: guardians of the genome. Oncogene 33, 3764–3775 (2014). https://doi.org/10.1038/onc.2013.344

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.344

Keywords

This article is cited by

Search

Quick links