Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Galectin-3 regulates MUC1 and EGFR cellular distribution and EGFR downstream pathways in pancreatic cancer cells

Abstract

MUC1 is a transmembrane glycoprotein which is typically expressed at the apical membrane of normal epithelial cells. In cancer cells, the over-expression of MUC1 and its aberrant localization around the cell membrane and in the cytoplasm favours its interaction with different protein partners such as epidermal growth factor receptor (EGFR) and can promote tumour proliferation through the activation of oncogenic signalling pathways. Our aims were to study the mechanisms inducing MUC1 cytoplasmic localization in pancreatic cancer cells, and to decipher their impact on EGFR cellular localization and activation. Our results showed that galectin-3, an endogenous lectin, is co-expressed with MUC1 in human pancreatic ductal adenocarcinoma, and that it favours the endocytosis of MUC1 and EGFR. Depletion of galectin-3 by RNA interference increased the interaction between MUC1 and EGFR, EGFR and ERK-1,2 phosphorylation, and translocation of EGFR to the nucleus. On the contrary, silencing of galectin-3 led to a decrease of cyclin-D1 levels and of cell proliferation. The galectin-3-dependent regulation of MUC1/EGFR functions may represent an interesting mechanism modulating the EGFR-stimulated cell growth of pancreatic cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Altschuler Y, Kinlough CL, Poland PA, Bruns JB, Apodaca G, Weisz OA et al. (2000). Clathrin-mediated endocytosis of MUC1 is modulated by its glycosylation state. Mol Biol Cell 11: 819–831.

    Article  CAS  Google Scholar 

  • André S, Pei Z, Siebert HC, Ramstrom O, Gabius H-J . (2006). Glycosyldisulfides from dynamic combinatorial libraries as O-glycoside mimetics for plant and endogenous lectins: their reactivities in solid-phase and cell assays and conformational analysis by molecular dynamics simulations. Bioorg Med Chem 14: 6314–6326.

    Article  Google Scholar 

  • Berberat PO, Friess H, Wang L, Zhu Z, Bley T, Frigeri L et al. (2001). Comparative analysis of galectins in primary tumors and tumor metastasis in human pancreatic cancer. J Histochem Cytochem 49: 539–549.

    Article  CAS  Google Scholar 

  • Bitler BG, Goverdhan A, Schroeder JA . (2010). MUC1 regulates nuclear localization and function of the EGFR. J Cell Sci 123: 1716–1723.

    Article  CAS  Google Scholar 

  • Davidson PJ, Li SY, Lohse AG, Vandergaast R, Verde E, Pearson A et al. (2006). Transport of galectin-3 between the nucleus and cytoplasm. I. Conditions and signals for nuclear import. Glycobiology 16: 602–611.

    Article  CAS  Google Scholar 

  • Delacour D, Greb C, Koch A, Salomonsson E, Leffler H, Le Bivic A et al. (2007). Apical sorting by galectin-3-dependent glycoprotein clustering. Traffic 8: 379–388.

    Article  CAS  Google Scholar 

  • Dignam JD, Lebovitz RM, Roeder RG . (1983). Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11: 1475–1489.

    Article  CAS  Google Scholar 

  • Dumic J, Sabelic S, Flogel M . (2006). Galectin-3: an open-ended story. Biochem Biophys Acta 1760: 616–635.

    Article  CAS  Google Scholar 

  • Elad-Sfadia G, Haklai R, Balan E, Kloog Y . (2004). Galectin-3 augments K-ras activation and triggers a Ras signal that attenuates ERK but not PI3K activity. J Biol Chem 279: 34922–34930.

    Article  CAS  Google Scholar 

  • Emlet DR, Moscatello DK, Ludlow LB, Wong AJ . (1997). Subsets of EGFR during activation and endocytosis. J Biol Chem 272: 4079–4086.

    Article  CAS  Google Scholar 

  • Furtak V, Hatcher F, Ochieng J . (2001). Galectin-3 mediates the endocytosis of beta-1 integrins by breast carcinoma cells. Biochem Biophys Res Comm 289: 845–850.

    Article  CAS  Google Scholar 

  • Hattrup CL, Gendler SJ . (2008). Structure and function of the cell surface (tethered) mucins. Ann Rev Physiol 70: 431–457.

    Article  CAS  Google Scholar 

  • Henderson NC, Mackinnon AC, Farnworth SL, Poirier F, Russo FP, Iredale JP et al. (2006). Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci USA 103: 5060–5065.

    Article  CAS  Google Scholar 

  • Hollingsworth MA, Swanson BJ . (2004). Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 4: 45–60.

    Article  CAS  Google Scholar 

  • Hsu SC, Hung MC . (2007). Characterization of a novel tripartite nuclear localization sequence in the EGFR family. J Biol Chem 282: 10432–10440.

    Article  CAS  Google Scholar 

  • Huang L, Ren J, Chen D, Li Y, Kharbanda S, Kufe D . (2003). MUC1 cytoplasmic domain coactivates Wnt target gene transcription and confers transformation. Cancer Biol Therap 2: 1–5.

    Article  Google Scholar 

  • Hughes RC . (1999). Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim Biophys Acta 1473: 172–185.

    Article  CAS  Google Scholar 

  • Jonckheere N, Fauquette V, Stechly L, Saint-Laurent N, Aubert S, Susini C et al. (2009). Tumour growth and resistance to gemcitabine of pancreatic cancer cells are decreased by AP-2α overexpression. Br J Cancer 101: 637–644.

    Article  CAS  Google Scholar 

  • Lahm H, Hoeflich A, Andre S, Sordat B, Kaltner H, Wolf E et al. (2000). Gene expression of galectin-9/ecalectin, a potent eosinophil chemoattractant, and/or the insertional isoform in human colorectal carcinoma cell lines and detection of frame-shift mutations for protein sequence truncations in the second functional lectin domain. Int J Oncol 17: 519–524.

    CAS  PubMed  Google Scholar 

  • Langbein S, Brade J, Badawi JK, Hatzinger M, Kaltner H, Lensch M et al. (2007). Gene expression signature of adhesion/growth regulatory tissue lectins (galectins) in transitional cell cancer and its prognosis relevance. Histopathology 51: 681–690.

    Article  CAS  Google Scholar 

  • Leroy X, Gouyer V, Ballereau C, Zerimech F, Huet G, Copin MC et al. (2003). Quantitative RT-PCR assay for MUC3 and VEGF mRNA in renal clear cell carcinoma: relationship with nuclear grade and prognosis. Urology 62: 771–775.

    Article  Google Scholar 

  • Leroy X, Zericmech F, Zini L, Copin MC, Buisine MP, Gosselin B et al. (2002). MUC1 expression is correlated with nuclear grade and tumor progression in pT1 renal clear cell carcinoma. Am J Clin Pathol 118: 47–51.

    Article  CAS  Google Scholar 

  • Li Y, Ren J, Yu WH, Li Q, Kuwahara H, Yin L et al. (2001). The EGFR regulates interaction of the human DF3/MUC1 carcinoma antigen with c-Src and beta-catenin. J Biol Chem 276: 35239–35243.

    Article  CAS  Google Scholar 

  • Ligtenberg MJ, Kruijshaar L, Buijs F, van Meijer M, Litvinov SV, Hilkens J . (1992). Cell-associated episialin is a complex containing 2 proteins derived from a common precursor. J Biol Chem 267: 6171–6177.

    CAS  PubMed  Google Scholar 

  • Lin SY, Makino K, Xia W, Matin A, Wen Y, Kwong KY et al. (2001). Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol 3: 802–808.

    Article  CAS  Google Scholar 

  • Litvinov SV, Hilkens J . (1993). The epithelial sialomucin, episialin, is sialylated during recycling. J Biol Chem 268: 21364–23371.

    CAS  PubMed  Google Scholar 

  • Lo HW, Ali-Seyed M, Wu Y, Bartholomeusz G, Hsu SC, Hung MC . (2006). Nuclear-cytoplasmic transport of EGFR involves receptor endocytosis, importin β1 and CRM1. J Cell Biochem 98: 1570–1583.

    Article  CAS  Google Scholar 

  • Loukopoulos P, Kanetaka K, Takamura M, Shibata T, Sakamoto M, Hirohashi S . (2004). Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas 29: 193–203.

    Article  CAS  Google Scholar 

  • Maitra A, Adsay NV, Argani P, Iacobuzio-Donahue C, De Marzo A, Cameron JL et al. (2003). Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod Pathol 16: 902–912.

    Article  Google Scholar 

  • Monges GM, Mathoulin-Portier MP, Acres B, Houvenaeghel GF, Giovannini MF, Seitz JF et al. (1999). Differential MUC1 expression in normal and neoplastic human pancreatic tissue. An immunohistochemical study of 60 samples. Am J Clin Pathol 112: 635–640.

    Article  CAS  Google Scholar 

  • Nakahara S, Hogan V, Inohara H, Raz A . (2006). Importin-mediated nuclear translocation of galectin-3. J Biol Chem 281: 39649–39659.

    Article  CAS  Google Scholar 

  • Nassar H, Pansare V, Zhang H, Che M, Sakr W, Ali-Fehmi R et al. (2004). Pathogenesis of invasive micropapillary carcinoma: role of MUC1 glycoprotein. Mod Pathol 17: 1045–1050.

    Article  CAS  Google Scholar 

  • Ozaki N, Ohmuraya M, Hirota M, Ida S, Wang J, Takamori H et al. (2009). Serine protease inhibito kazal type 1 promotes proliferation of pancreatic cancer cells through the EGFR. Mol Cancer Res 7: 1572–1581.

    Article  CAS  Google Scholar 

  • Partridge EA, Le Roy C, Di Guglielmo GM, Pawling J, Cheung P, Granovsky M et al. (2004). Regulation of cytokine receptors by golgi N-glycan processing and endocytosis. Science 306: 120–124.

    Article  CAS  Google Scholar 

  • Peng W, Wang HY, Miyahara Y, Peng G, Wang RF . (2008). Tumor-associated galectin-3 modulates the function of tumor-reactive T cells. Cancer Res 68: 7228–7236.

    Article  CAS  Google Scholar 

  • Perrais M, Pigny P, Ducourouble MP, Petitprez D, Porchet N, Aubert JP et al. (2001). Characterization of human mucin gene MUC4 promoter. J Biol Chem 276: 30923–30933.

    Article  CAS  Google Scholar 

  • Pochampalli MR, El Bejjani RM, Schroeder JA . (2007). MUC1 is a novel regulator of ErbB1 receptor trafficking. Oncogene 26: 1693–1701.

    Article  CAS  Google Scholar 

  • Ramasamy S, Duraisamy S, Barbashov S, Kawano T, Kharbanda S, Kufe D . (2007). The MUC1 and galectin-3 oncoproteins function in a microRNA-dependent regulatory loop. Mol Cell 27: 992–1004.

    Article  CAS  Google Scholar 

  • Reddish MA, Suresh MR, Koganty RR, Fortier S, Baronic L, Berg A et al. (1998). Analysis of the role of type 1 core-O glycans in the binding of anti-MUC1 antibodies by cytofluorometry and synthetic peptide/glycopeptides binding inhibition studies. Tumour Biol 19S1: 57–66.

    Article  Google Scholar 

  • Reis CA, Hassan H, Bennett EP, Clausen H . (1998). Characterization of a panel of monoclonal antibodies using GalNAc glycosylated peptides and recombinant MUC1. Tumour Biol 19S1: 127–133.

    Article  Google Scholar 

  • Resat H, Ewald JA, Dixon DA, Wiley HS . (2003). An integrated model of EGFR trafficking and signal transduction. Biophys J 85: 730–743.

    Article  CAS  Google Scholar 

  • Schroeder JA, Thompson MC, Mockensturm Gardner M, Gendler SJ . (2001). Transgenic MUC1 interacts with EGFR and correlates with MAPK activation in the mouse mammary gland. J Biol Chem 276: 13057–13064.

    Article  CAS  Google Scholar 

  • Singh PK, Hollingsworth MA . (2006). Cell surface-associated mucins in signal transduction. Trends Cell Biol 16: 467–476.

    Article  CAS  Google Scholar 

  • Song S, Mazurek N, Liu C, Sun Y, Ding QQ, Liu K et al. (2009). Galectin-3 mediates nuclear β-catenin accumulation and Wnt signalling in human colon cancer cells by regulation of GSK3β activity. Cancer Res 69: 1343–1349.

    Article  CAS  Google Scholar 

  • Sorkin A, Goh LK . (2009). Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res 315: 683–696.

    Article  CAS  Google Scholar 

  • Stechly L, Morelle W, Dessein A-F, André S, Grard G, Trinel D et al. (2009). Galectin-4 regulated delivery of glycoproteins to the brush border membrane of enterocyte like cells. Traffic 10: 1–13.

    Article  Google Scholar 

  • Van Seuningen I, Ostrowski J, Bustelo XR, Sleath PR, Bomsztyk K . (1995). The K protein domain recruits the interleukin 1-responsive K protein kinase lies adjacent to a cluster of c-Src and Vav SH3-binding sites. Implications that K protein acts as a docking platform. J Biol Chem 270: 26976–26985.

    Article  CAS  Google Scholar 

  • Wang Y, Gao J, Li Z, Jin Z, Gong Y, Man X . (2007). Diagnostic value of mucins (MUC1, MUC2 and MUC5AC) expression profile in endoscopic ultrasound-guided fine-needle aspiration specimens of the pancreas. Int J Cancer 121: 2716–2722.

    Article  CAS  Google Scholar 

  • Wang YN, Yamaguchi H, Hsu JM, Hung MC . (2010). Nuclear trafficking of the EGFR family membrane proteins. Oncogene 29: 3997–4006.

    Article  CAS  Google Scholar 

  • Wei X, Xu H, Kufe D . (2005). Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancer Cell 7: 167–178.

    Article  CAS  Google Scholar 

  • Wen Y, Caffrey TC, Wheelock MJ, Johnson KR, Hollingsworth MA . (2003). Nuclear association of the cytoplasmic tail of MUC1 and beta-catenin. J Biol Chem 278: 38029–38039.

    Article  CAS  Google Scholar 

  • Yu LG, Andrews N, Zhao Q, McKean D, Williams JF, Connor LJ et al. (2007). Galectin-3 interaction with TF disaccharide on cancer-associated MUC1 causes increased cancer cell endothelial adhesion. J Biol Chem 282: 773–781.

    Article  CAS  Google Scholar 

  • Zhao Q, Barclay M, Hilkens J, Guo X, Barrow H, Rhodes JM et al. (2010). Interaction between circulating galectin-3 and cancer-associated MUC1 enhances tumour cell homotypic aggregation and prevents anoikis. Mol Cancer 9: 154.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge expert support provided by D Trinel, N Jouy and M Figeac. We thank Professor N Porchet and MP Ducourouble for their constant support; G Grard, E Crème, MH Gevaert, R Siminsky, M Samyn and V Dumetz for their technical assistance. J Merlin is a recipient of a PhD fellowship from the Université de Lille 2 and Région Nord-Pas de Calais. This work was supported by a grant from the Comité du Nord de la Ligue Nationale contre le Cancer (to PP). This work was supported by a grant from the french Ligue Nationale contre le Cancer (comité du Nord).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Pigny.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merlin, J., Stechly, L., de Beaucé, S. et al. Galectin-3 regulates MUC1 and EGFR cellular distribution and EGFR downstream pathways in pancreatic cancer cells. Oncogene 30, 2514–2525 (2011). https://doi.org/10.1038/onc.2010.631

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.631

Keywords

This article is cited by

Search

Quick links