Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

GLI3-dependent repression of DR4 mediates hedgehog antagonism of TRAIL-induced apoptosis

Abstract

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis through its cognate receptors death receptor 4 (DR4) and death receptor 5 (DR5), preferentially in malignant cells. However, many malignant cells remain resistant to TRAIL cytotoxicity by poorly characterized mechanisms. Here, using cholangiocarcinoma cells, as a model for TRAIL resistance, we identified a role for the oncogenic Hedgehog (Hh)-GLI pathway in the regulation of TRAIL cytotoxicity. Blockade of Hh using pharmacological and genetic tools sensitizes the cells to TRAIL cytotoxicity. Restoration of apoptosis sensitivity coincided with upregulation of DR4 expression, while expression of other death effector proteins remained unaltered. Knockdown of DR4 mimics Hh-mediated resistance to TRAIL cytotoxicity. Hh regulates the expression of DR4 by modulating the activity of its promoter. Luciferase, chromatin immunoprecipitation and expression assays show that the transcription factor GLI3 binds to the DR4 promoter and Hh requires an intact GLI3-repression activity to silence DR4 expression. Finally, small interfering RNA (siRNA)-targeted knockdown of GLI3, but not GLI1 or GLI2, restores DR4 expression and TRAIL sensitivity, indicating that the Hh effect is exclusively mediated by this transcription factor. In conclusion, these data provide evidence of a regulatory mechanism, which modulates TRAIL signaling in cancer cells and suggest new therapeutic approaches for TRAIL-resistant neoplasms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Akazawa Y, Mott JL, Bronk SF, Werneburg NW, Kahraman A, Guicciardi ME et al. (2009). Death receptor 5 internalization is required for lysosomal permeabilization by TRAIL in malignant liver cell lines. Gastroenterology 136: 2365–2376 e2361-2367.

    Article  PubMed  Google Scholar 

  • Ashkenazi A, Dixit VM . (1999). Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 11: 255–260.

    Article  CAS  PubMed  Google Scholar 

  • Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K et al. (2003). Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425: 846–851.

    Article  CAS  PubMed  Google Scholar 

  • Bigelow RL, Chari NS, Unden AB, Spurgers KB, Lee S, Roop DR et al. (2004). Transcriptional regulation of bcl-2 mediated by the sonic hedgehog signaling pathway through gli-1. J Biol Chem 279: 1197–1205.

    Article  CAS  PubMed  Google Scholar 

  • Chen JK, Taipale J, Cooper MK, Beachy PA . (2002). Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 16: 2743–2748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen MH, Wilson CW, Li YJ, Law KK, Lu CS, Gacayan R et al. (2009). Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved. Genes Dev 23: 1910–1928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel PT, Wieder T, Sturm I, Schulze-Osthoff K . (2001). The kiss of death: promises and failures of death receptors and ligands in cancer therapy. Leukemia 15: 1022–1032.

    Article  CAS  PubMed  Google Scholar 

  • Eggert A, Grotzer MA, Zuzak TJ, Wiewrodt BR, Ho R, Ikegaki N et al. (2001). Resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in neuroblastoma cells correlates with a loss of caspase-8 expression. Cancer Res 61: 1314–1319.

    CAS  PubMed  Google Scholar 

  • Falschlehner C, Emmerich CH, Gerlach B, Walczak H . (2007). TRAIL signalling: decisions between life and death. Int J Biochem Cell Biol 39: 1462–1475.

    Article  CAS  PubMed  Google Scholar 

  • Guan B, Yue P, Clayman GL, Sun SY . (2001). Evidence that the death receptor DR4 is a DNA damage-inducible, p53-regulated gene. J Cell Physiol 188: 98–105.

    Article  CAS  PubMed  Google Scholar 

  • Guan B, Yue P, Lotan R, Sun SY . (2002). Evidence that the human death receptor 4 is regulated by activator protein 1. Oncogene 21: 3121–3129.

    Article  CAS  PubMed  Google Scholar 

  • Higuchi H, Bronk SF, Takikawa Y, Werneburg N, Takimoto R, El-Deiry W et al. (2001). The bile acid glycochenodeoxycholate induces trail-receptor 2/DR5 expression and apoptosis. J Biol Chem 276: 38610–38618.

    Article  CAS  PubMed  Google Scholar 

  • Ishimura N, Isomoto H, Bronk SF, Gores GJ . (2006). Trail induces cell migration and invasion in apoptosis-resistant cholangiocarcinoma cells. Am J Physiol Gastrointest Liver Physiol 290: G129–G136.

    Article  CAS  PubMed  Google Scholar 

  • Isomoto H, Mott JL, Kobayashi S, Werneburg NW, Bronk SF, Haan S et al. (2007). Sustained IL-6/STAT-3 signaling in cholangiocarcinoma cells due to SOCS-3 epigenetic silencing. Gastroenterology 132: 384–396.

    Article  CAS  PubMed  Google Scholar 

  • Johnstone RW, Frew AJ, Smyth MJ . (2008). The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 8: 782–798.

    Article  CAS  PubMed  Google Scholar 

  • Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH et al. (1995). Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14: 5579–5588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD . (1997). The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275: 1132–1136.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Werneburg NW, Bronk SF, Kaufmann SH, Gores GJ . (2005). Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocarcinoma cells. Gastroenterology 128: 2054–2065.

    Article  CAS  PubMed  Google Scholar 

  • Kump E, Ji J, Wernli M, Hausermann P, Erb P . (2008). Gli2 upregulates cFlip and renders basal cell carcinoma cells resistant to death ligand-mediated apoptosis. Oncogene 27: 3856–3864.

    Article  CAS  PubMed  Google Scholar 

  • Lees C, Howie S, Sartor RB, Satsangi J . (2005). The hedgehog signalling pathway in the gastrointestinal tract: implications for development, homeostasis, and disease. Gastroenterology 129: 1696–1710.

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Kim CN, Yang J, Jemmerson R, Wang X . (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86: 147–157.

    Article  CAS  PubMed  Google Scholar 

  • Mendoza FJ, Ishdorj G, Hu X, Gibson SB . (2008). Death receptor-4 (DR4) expression is regulated by transcription factor NF-kappaB in response to etoposide treatment. Apoptosis 13: 756–770.

    Article  CAS  PubMed  Google Scholar 

  • Mott JL, Kobayashi S, Bronk SF, Gores GJ . (2007). mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26: 6133–6140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkin CA, Ingham PW . (2008). The adventures of Sonic Hedgehog in development and repair. I. Hedgehog signaling in gastrointestinal development and disease. Am J Physiol Gastrointest Liver Physiol 294: G363–G367.

    Article  CAS  PubMed  Google Scholar 

  • Regl G, Kasper M, Schnidar H, Eichberger T, Neill GW, Philpott MP et al. (2004). Activation of the BCL2 promoter in response to Hedgehog/GLI signal transduction is predominantly mediated by GLI2. Cancer Res 64: 7724–7731.

    Article  CAS  PubMed  Google Scholar 

  • Rubin LL, de Sauvage FJ . (2006). Targeting the Hedgehog pathway in cancer. Nat Rev Drug Discov 5: 1026–1033.

    Article  CAS  PubMed  Google Scholar 

  • Rudin CM, Hann CL, Laterra J, Yauch RL, Callahan CA, Fu L et al. (2009). Treatment of Medulloblastoma with Hedgehog Pathway Inhibitor GDC-0449. N Engl J Med 361: 1173–1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki H, Hui C, Nakafuku M, Kondoh H . (1997). A binding site for Gli proteins is essential for HNF-3beta floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development 124: 1313–1322.

    CAS  PubMed  Google Scholar 

  • Taipale J, Chen JK, Cooper MK, Wang B, Mann RK, Milenkovic L et al. (2000). Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406: 1005–1009.

    Article  CAS  PubMed  Google Scholar 

  • Taniai M, Grambihler A, Higuchi H, Werneburg N, Bronk SF, Farrugia DJ et al. (2004). Mcl-1 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in human cholangiocarcinoma cells. Cancer Res 64: 3517–3524.

    Article  CAS  PubMed  Google Scholar 

  • Wagner KW, Punnoose EA, Januario T, Lawrence DA, Pitti RM, Lancaster K et al. (2007). Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat Med 13: 1070–1077.

    Article  CAS  PubMed  Google Scholar 

  • Wehbe H, Henson R, Lang M, Meng F, Patel T . (2006). Pifithrin-alpha enhances chemosensitivity by a p38 mitogen-activated protein kinase-dependent modulation of the eukaryotic initiation factor 4E in malignant cholangiocytes. J Pharmacol Exp Ther 319: 1153–1161.

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Murone M, Luoh SM, Ryan A, Gu Q, Zhang C et al. (1998). Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391: 90–92.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Erin Nystuen-Bungum for her excellent secretarial assistance. This work was supported by NIH R01 Grants DK59427 (GJG), CA136526, (MEF-Z), CA100882 (LRR), the Clinical and Optical Microscopy Cores for P30 DK 84567, Mayo Clinic Pancreatic SPORE P50 CA102701 (MEF-Z), and the Mayo Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G J Gores.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurita, S., Mott, J., Almada, L. et al. GLI3-dependent repression of DR4 mediates hedgehog antagonism of TRAIL-induced apoptosis. Oncogene 29, 4848–4858 (2010). https://doi.org/10.1038/onc.2010.235

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.235

Keywords

This article is cited by

Search

Quick links