Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic and epigenomic mechanisms of mammalian circadian transcription

Abstract

The mammalian molecular clock comprises a complex network of transcriptional programs that integrates environmental signals with physiological pathways in a tissue-specific manner. Emerging technologies are extending knowledge of basic clock features by uncovering their underlying molecular mechanisms, thus setting the stage for a 'systems' view of the molecular clock. Here we discuss how recent data from genome-wide genetic and epigenetic studies have informed the understanding of clock function. In addition to its importance in human physiology and disease, the clock mechanism provides an ideal model to assess general principles of dynamic transcription regulation in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Nr1d1 gene locus.
Figure 2: Mechanisms regulating genomic binding of circadian TFs.
Figure 3: Rev-erbα and RORα coordinate rhythmic gene expression at RORE and DR2 elements.
Figure 4: Temporal view of chromatin and clock factors surrounding rhythmic E boxes.

Similar content being viewed by others

References

  1. Bedrosian, T.A., Fonken, L.K. & Nelson, R.J. Endocrine effects of circadian disruption. Annu. Rev. Physiol. 78, 109–131 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Konopka, R.J. & Benzer, S. Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 68, 2112–2116 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Price, J.L. et al. Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94, 83–95 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Hardin, P.E., Hall, J.C. & Rosbash, M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343, 536–540 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. King, D.P. et al. Positional cloning of the mouse circadian clock gene. Cell 89, 641–653 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Preitner, N. et al. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251–260 (2002)This study characterized the BMAL1–CLOCK and Rev-erbα transcriptional negative feedback loop.

    Article  CAS  PubMed  Google Scholar 

  7. Kim, J.Y., Kwak, P.B., Gebert, M., Duong, H.A. & Weitz, C.J. Purification and analysis of PERIOD protein complexes of the mammalian circadian clock. Methods Enzymol. 551, 197–210 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Koike, N. et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338, 349–354 (2012). This work mapped the circadian cistromes of many clock factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lande-Diner, L., Boyault, C., Kim, J.Y. & Weitz, C.J. A positive feedback loop links circadian clock factor CLOCK-BMAL1 to the basic transcriptional machinery. Proc. Natl. Acad. Sci. USA 110, 16021–16026 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Le Martelot, G. et al. Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. PLoS Biol. 10, e1001442 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fang, B. et al. Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo. Cell 159, 1140–1152 (2014).This study used GRO-seq to identify circadian enhancers marking functional clock TF-binding sites at different phases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Balsalobre, A., Marcacci, L. & Schibler, U. Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Curr. Biol. 10, 1291–1294 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Yagita, K. & Okamura, H. Forskolin induces circadian gene expression of rPer1, rPer2 and dbp in mammalian rat-1 fibroblasts. FEBS Lett. 465, 79–82 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Brown, S.A. Circadian metabolism: from mechanisms to metabolomics and medicine. Trends Endocrinol. Metab. 27, 415–426 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. O'Neill, J.S. & Reddy, A.B. The essential role of cAMP/Ca2+ signalling in mammalian circadian timekeeping. Biochem. Soc. Trans. 40, 44–50 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Whitfield, T.W. et al. Functional analysis of transcription factor binding sites in human promoters. Genome Biol. 13, R50 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Vollmers, C. et al. Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome. Cell Metab. 16, 833–845 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gordân, R. et al. Genomic regions flanking E-box binding sites influence DNA binding specificity of bHLH transcription factors through DNA shape. Cell Rep. 3, 1093–1104 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hao, H., Allen, D.L. & Hardin, P.E. A circadian enhancer mediates PER-dependent mRNA cycling in Drosophila melanogaster. Mol. Cell. Biol. 17, 3687–3693 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hogenesch, J.B., Gu, Y.Z., Jain, S. & Bradfield, C.A. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc. Natl. Acad. Sci. USA 95, 5474–5479 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rey, G. et al. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol. 9, e1000595 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee, C., Etchegaray, J.P., Cagampang, F.R.A., Loudon, A.S.I. & Reppert, S.M. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107, 855–867 (2001). This study characterized numerous mechanisms associated with the PER–CRY negative feedback loop.

    Article  CAS  PubMed  Google Scholar 

  23. Xiong, W., Li, J., Zhang, E. & Huang, H. BMAL1 regulates transcription initiation and activates circadian clock gene expression in mammals. Biochem. Biophys. Res. Commun. 473, 1019–1025 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Altman, B.J. et al. MYC disrupts the circadian clock and metabolism in cancer cells. Cell Metab. 22, 1009–1019 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shimomura, K. et al. Usf1, a suppressor of the circadian Clock mutant, reveals the nature of the DNA-binding of the CLOCK:BMAL1 complex in mice. eLife 2, e00426 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ferré-D'Amaré, A.R., Pognonec, P., Roeder, R.G. & Burley, S.K. Structure and function of the b/HLH/Z domain of USF. EMBO J. 13, 180–189 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Giguère, V. et al. Isoform-specific amino-terminal domains dictate DNA-binding properties of RORα, a novel family of orphan hormone nuclear receptors. Genes Dev. 8, 538–553 (1994).

    Article  PubMed  Google Scholar 

  28. Giguère, V., McBroom, L.D. & Flock, G. Determinants of target gene specificity for RORα1: monomeric DNA binding by an orphan nuclear receptor. Mol. Cell. Biol. 15, 2517–2526 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Takeda, Y., Jothi, R., Birault, V. & Jetten, A.M. RORγ directly regulates the circadian expression of clock genes and downstream targets in vivo. Nucleic Acids Res. 40, 8519–8535 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dumas, B. et al. A new orphan member of the nuclear hormone receptor superfamily closely related to Rev-Erb. Mol. Endocrinol. 8, 996–1005 (1994).

    CAS  PubMed  Google Scholar 

  31. Harding, H.P. & Lazar, M.A. The orphan receptor Rev-ErbA alpha activates transcription via a novel response element. Mol. Cell. Biol. 13, 3113–3121 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Forman, B.M. et al. Cross-talk among ROR alpha 1 and the Rev-erb family of orphan nuclear receptors. Mol. Endocrinol. 8, 1253–1261 (1994).

    CAS  PubMed  Google Scholar 

  33. Harding, H.P. & Lazar, M.A. The monomer-binding orphan receptor Rev-Erb represses transcription as a dimer on a novel direct repeat. Mol. Cell. Biol. 15, 4791–4802 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Akashi, M. & Takumi, T. The orphan nuclear receptor RORα regulates circadian transcription of the mammalian core-clock Bmal1. Nat. Struct. Mol. Biol. 12, 441–448 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Sato, T.K. et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43, 527–537 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Woldt, E. et al. Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat. Med. 19, 1039–1046 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cho, H. et al. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485, 123–127 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bugge, A. et al. Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev. 26, 657–667 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, Y. et al. Gene regulation: discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock. Science 348, 1488–1492 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gachon, F. et al. The loss of circadian PAR bZip transcription factors results in epilepsy. Genes Dev. 18, 1397–1412 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stashi, E. et al. SRC-2 is an essential coactivator for orchestrating metabolism and circadian rhythm. Cell Rep. 6, 633–645 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Honma, S. et al. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419, 841–844 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Mitsui, S., Yamaguchi, S., Matsuo, T., Ishida, Y. & Okamura, H. Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev. 15, 995–1006 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ueshima, T. et al. Identification of a new clock-related element EL-box involved in circadian regulation by BMAL1/CLOCK and HES1. Gene 510, 118–125 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Sahar, S. & Sassone-Corsi, P. Metabolism and cancer: the circadian clock connection. Nat. Rev. Cancer 9, 886–896 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Menet, J.S., Pescatore, S. & Rosbash, M. CLOCK:BMAL1 is a pioneer-like transcription factor. Genes Dev. 28, 8–13 (2014). This study showed that BMAL1 and CLOCK function similarly to pioneer factors by binding to chromatin and evicting nucleosomes near E-boxes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhu, B. et al. Coactivator-dependent oscillation of chromatin accessibility dictates circadian gene amplitude via REV-ERB loading. Mol. Cell 60, 769–783 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shalev, M. et al. The PXDLS linear motif regulates circadian rhythmicity through protein-protein interactions. Nucleic Acids Res. 42, 11879–11890 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Soshnev, A.A., Josefowicz, S.Z. & Allis, C.D. Greater than the sum of parts: complexity of the dynamic epigenome. Mol. Cell 62, 681–694 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brown, S.A. Circadian rhythms: a new histone code for clocks? Science 333, 1833–1834 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Taverna, S.D., Li, H., Ruthenburg, A.J., Allis, C.D. & Patel, D.J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14, 1025–1040 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Etchegaray, J.P., Lee, C., Wade, P.A. & Reppert, S.M. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421, 177–182 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Ripperger, J.A. & Schibler, U. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat. Genet. 38, 369–374 (2006). References 52 and 53 describe the numerous epigenomic modifications in vivo as a result of BMAL1–CLOCK binding.

    Article  CAS  PubMed  Google Scholar 

  54. Stratmann, M., Suter, D.M., Molina, N., Naef, F. & Schibler, U. Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with E boxes and requires the proteasome. Mol. Cell 48, 277–287 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Menet, J.S., Rodriguez, J., Abruzzi, K.C. & Rosbash, M. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. eLife 1, e00011 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Ukai-Tadenuma, M. et al. Delay in feedback repression by cryptochrome 1 is required for circadian clock function. Cell 144, 268–281 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Feng, D. et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331, 1315–1319 (2011). This study demonstrated that a clock factor recruits epigenomic machinery and consequently modifies local chromatin structure and regulates metabolic gene expression in the liver.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee, Y. et al. Coactivation of the CLOCK-BMAL1 complex by CBP mediates resetting of the circadian clock. J. Cell Sci. 123, 3547–3557 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Doi, M., Hirayama, J. & Sassone-Corsi, P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125, 497–508 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Curtis, A.M. et al. Histone acetyltransferase-dependent chromatin remodeling and the vascular clock. J. Biol. Chem. 279, 7091–7097 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Naruse, Y. et al. Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol. Cell. Biol. 24, 6278–6287 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Oberoi, J. et al. Structural basis for the assembly of the SMRT/NCoR core transcriptional repression machinery. Nat. Struct. Mol. Biol. 18, 177–184 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Duong, H.A., Robles, M.S., Knutti, D. & Weitz, C.J. A molecular mechanism for circadian clock negative feedback. Science 332, 1436–1439 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Kim, J.Y., Kwak, P.B. & Weitz, C.J. Specificity in circadian clock feedback from targeted reconstitution of the NuRD corepressor. Mol. Cell 56, 738–748 (2014). This study identified several epigenomic factors critical to the negative feedback mechanism of PER–CRY.

    Article  CAS  PubMed  Google Scholar 

  65. Asher, G. & Sassone-Corsi, P. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell 161, 84–92 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Asher, G. et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134, 317–328 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Nakahata, Y. et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329–340 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Duong, H.A. & Weitz, C.J. Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes. Nat. Struct. Mol. Biol. 21, 126–132 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Young, N.L. et al. High throughput characterization of combinatorial histone codes. Mol. Cell. Proteomics 8, 2266–2284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Malapeira, J., Khaitova, L.C. & Mas, P. Ordered changes in histone modifications at the core of the Arabidopsis circadian clock. Proc. Natl. Acad. Sci. USA 109, 21540–21545 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Valekunja, U.K. et al. Histone methyltransferase MLL3 contributes to genome-scale circadian transcription. Proc. Natl. Acad. Sci. USA 110, 1554–1559 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Katada, S. & Sassone-Corsi, P. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat. Struct. Mol. Biol. 17, 1414–1421 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim, D.H. et al. Crucial roles of mixed-lineage leukemia 3 and 4 as epigenetic switches of the hepatic circadian clock controlling bile acid homeostasis in mice. Hepatology 61, 1012–1023 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. DiTacchio, L. et al. Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science 333, 1881–1885 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Reischl, S. & Kramer, A. Fbxl11 is a novel negative element of the mammalian circadian clock. J. Biol. Rhythms 30, 291–301 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Jones, M.A. et al. Jumonji domain protein JMJD5 functions in both the plant and human circadian systems. Proc. Natl. Acad. Sci. USA 107, 21623–21628 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nam, H.J. et al. Phosphorylation of LSD1 by PKCα is crucial for circadian rhythmicity and phase resetting. Mol. Cell 53, 791–805 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Wang, B., Kettenbach, A.N., Gerber, S.A., Loros, J.J. & Dunlap, J.C. Neurospora WC-1 recruits SWI/SNF to remodel frequency and initiate a circadian cycle. PLoS Genet. 10, e1004599 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Lee, H.G., Lee, K., Jang, K. & Seo, P.J. Circadian expression profiles of chromatin remodeling factor genes in Arabidopsis. J. Plant Res. 128, 187–199 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Etchegaray, J.P. et al. The polycomb group protein EZH2 is required for mammalian circadian clock function. J. Biol. Chem. 281, 21209–21215 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Tamayo, A.G., Duong, H.A., Robles, M.S., Mann, M. & Weitz, C.J. Histone monoubiquitination by Clock–Bmal1 complex marks Per1 and Per2 genes for circadian feedback. Nat. Struct. Mol. Biol. 22, 759–766 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Himanen, K. et al. Histone H2B monoubiquitination is required to reach maximal transcript levels of circadian clock genes in Arabidopsis. Plant J. 72, 249–260 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Fuchs, G. & Oren, M. Writing and reading H2B monoubiquitylation. Biochim. Biophys. Acta. 1839, 694–701 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Azzi, A. et al. Circadian behavior is light-reprogrammed by plastic DNA methylation. Nat. Neurosci. 17, 377–382 (2014). This study showed that DNA methylation is important in shaping clock-gene expression in the suprachiasmatic nucleus.

    Article  CAS  PubMed  Google Scholar 

  85. Lim, A.S.P. et al. 24-hour rhythms of DNA methylation and their relation with rhythms of RNA expression in the human dorsolateral prefrontal cortex. PLoS Genet. 10, e1004792 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Maekawa, F. et al. Diurnal expression of Dnmt3b mRNA in mouse liver is regulated by feeding and hepatic clockwork. Epigenetics 7, 1046–1056 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xia, L. et al. Daily variation in global and local DNA methylation in mouse livers. PLoS One 10, e0118101 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Lyst, M.J. et al. Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat. Neurosci. 16, 898–902 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Hu, S. et al. DNA methylation presents distinct binding sites for human transcription factors. eLife 2, e00726 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bickmore, W.A. & van Steensel, B. Genome architecture: domain organization of interphase chromosomes. Cell 152, 1270–1284 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Aguilar-Arnal, L. et al. Cycles in spatial and temporal chromosomal organization driven by the circadian clock. Nat. Struct. Mol. Biol. 20, 1206–1213 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lin, S.T. et al. Nuclear envelope protein MAN1 regulates clock through BMAL1. eLife 3, e02981 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zhao, H. et al. PARP1- and CTCF-mediated interactions between active and repressed chromatin at the lamina promote oscillating transcription. Mol. Cell 59, 984–997 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Xu, Y. et al. Long-range chromosome interactions mediated by cohesin shape circadian gene expression. PLoS Genet. 12, e1005992 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Lehmann, R. et al. Assembly of a comprehensive regulatory network for the mammalian circadian clock: a bioinformatics approach. PLoS One 10, e0126283 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Towbin, B.D. et al. Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell 150, 934–947 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Edgar, R.S. et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature 485, 459–464 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Korge, S., Grudziecki, A. & Kramer, A. Highly efficient genome editing via CRISPR/Cas9 to create clock gene knockout cells. J. Biol. Rhythms 30, 389–395 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Hu, Y. et al. GWAS of 89,283 individuals identifies genetic variants associated with self-reporting of being a morning person. Nat. Commun. 7, 10448 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Qian, J. & Scheer, F.A. Circadian system and glucose metabolism: implications for physiology and disease. Trends Endocrinol. Metab. 27, 282–293 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the laboratory of M.A.L. for helpful discussions. Work on circadian rhythms in the lab of M.A.L. is supported by NIH R01 DK45586 and the JBP foundation, and R.P. is supported by NIH F32 DK108555.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuxiang Zhang or Mitchell A Lazar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papazyan, R., Zhang, Y. & Lazar, M. Genetic and epigenomic mechanisms of mammalian circadian transcription. Nat Struct Mol Biol 23, 1045–1052 (2016). https://doi.org/10.1038/nsmb.3324

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3324

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing