Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Genome-wide mapping of Arabidopsis thaliana origins of DNA replication and their associated epigenetic marks

Abstract

Genome integrity requires faithful chromosome duplication. Origins of replication, the genomic sites at which DNA replication initiates, are scattered throughout the genome. Their mapping at a genomic scale in multicellular organisms has been challenging. In this study we profiled origins in Arabidopsis thaliana by high-throughput sequencing of newly synthesized DNA and identified ~1,500 putative origins genome-wide. This was supported by chromatin immunoprecipitation and microarray (ChIP-chip) experiments to identify ORC1- and CDC6-binding sites. We validated origin activity independently by measuring the abundance of nascent DNA strands. The midpoints of most A. thaliana origin regions are preferentially located within the 5′ half of genes, enriched in G+C, histone H2A.Z, H3K4me2, H3K4me3 and H4K5ac, and depleted in H3K4me1 and H3K9me2. Our data help clarify the epigenetic specification of DNA replication origins in A. thaliana and have implications for other eukaryotes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of DNA replication origins in the A. thaliana genome.
Figure 2: DNA replication origin activity determined by nascent DNA strand abundance.
Figure 3: Genomic location of A. thaliana replication origins.
Figure 4: Relationship of A. thaliana replication origins to CG methylation and histone H2A.Z.
Figure 5: Histone modification landscape around replication origins.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Huberman, J.A. & Riggs, A.D. On the mechanism of DNA replication in mammalian chromosomes. J. Mol. Biol. 32, 327–341 (1968).

    Article  CAS  Google Scholar 

  2. DePamphilis, M.L. et al. Regulating the licensing of DNA replication origins in metazoa. Curr. Opin. Cell Biol. 18, 231–239 (2006).

    Article  CAS  Google Scholar 

  3. Aladjem, M.I. Replication in context: dynamic regulation of DNA replication patterns in metazoans. Nat. Rev. Genet. 8, 588–600 (2007).

    Article  CAS  Google Scholar 

  4. Bell, S.P. & Stillman, B. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357, 128–134 (1992).

    Article  CAS  Google Scholar 

  5. Wyrick, J.J. et al. Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins. Science 294, 2357–2360 (2001).

    Article  CAS  Google Scholar 

  6. Antequera, F. Genomic specification and epigenetic regulation of eukaryotic DNA replication origins. EMBO J. 23, 4365–4370 (2004).

    Article  CAS  Google Scholar 

  7. Hayashi, M. et al. Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast. EMBO J. 26, 1327–1339 (2007).

    Article  CAS  Google Scholar 

  8. Gilbert, D.M. In search of the holy replicator. Nat. Rev. Mol. Cell Biol. 5, 848–855 (2004).

    Article  CAS  Google Scholar 

  9. Costa, S. & Blow, J.J. The elusive determinants of replication origins. EMBO Rep. 8, 332–334 (2007).

    Article  CAS  Google Scholar 

  10. Schepers, A. & Papior, P. Why are we where we are? Understanding replication origins and initiation sites in eukaryotes using ChIP-approaches. Chromosome Res. 18, 63–77 (2010).

    Article  CAS  Google Scholar 

  11. Danis, E. et al. Specification of a DNA replication origin by a transcription complex. Nat. Cell Biol. 6, 721–730 (2004).

    Article  CAS  Google Scholar 

  12. MacAlpine, D.M., Rodriguez, H.K. & Bell, S.P. Coordination of replication and transcription along a Drosophila chromosome. Genes Dev. 18, 3094–3105 (2004).

    Article  CAS  Google Scholar 

  13. Lee, T.J. et al. Arabidopsis thaliana chromosome 4 replicates in two phases that correlate with chromatin state. PLoS Genet. 6, e1000982 (2010).

    Article  Google Scholar 

  14. Lucas, I. et al. High-throughput mapping of origins of replication in human cells. EMBO Rep. 8, 770–777 (2007).

    Article  CAS  Google Scholar 

  15. Cadoret, J.C. et al. Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc. Natl. Acad. Sci. USA 105, 15837–15842 (2008).

    Article  CAS  Google Scholar 

  16. Sequeira-Mendes, J. et al. Transcription initiation activity sets replication origin efficiency in mammalian cells. PLoS Genet. 5, e1000446 (2009).

    Article  Google Scholar 

  17. Karnani, N., Taylor, C.M., Malhotra, A. & Dutta, A. Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection. Mol. Biol. Cell 21, 393–404 (2010).

    Article  CAS  Google Scholar 

  18. Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

  19. Cokus, S.J. et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215–219 (2008).

    Article  CAS  Google Scholar 

  20. Bernatavichute, Y.V., Zhang, X., Cokus, S., Pellegrini, M. & Jacobsen, S.E. Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana. PLoS ONE 3, e3156 (2008).

    Article  Google Scholar 

  21. Zhang, X., Bernatavichute, Y.V., Cokus, S., Pellegrini, M. & Jacobsen, S.E. Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol. 10, R62 (2009).

    Article  Google Scholar 

  22. Fuchs, J., Demidov, D., Houben, A. & Schubert, I. Chromosomal histone modification patterns—from conservation to diversity. Trends Plant Sci. 11, 199–208 (2006).

    Article  CAS  Google Scholar 

  23. Sanchez, M.L., Caro, E., Desvoyes, B., Ramirez-Parra, E. & Gutierrez, C. Chromatin dynamics during the plant cell cycle. Semin. Cell Dev. Biol. 19, 537–546 (2008).

    Article  Google Scholar 

  24. Menges, M. & Murray, J.A. Synchronous Arabidopsis suspension cultures for analysis of cell-cycle gene activity. Plant J. 30, 203–212 (2002).

    Article  CAS  Google Scholar 

  25. Menges, M. & Murray, J.A. Synchronization, transformation, and cryopreservation of suspension-cultured cells. Methods Mol. Biol. 323, 45–61 (2006).

    PubMed  Google Scholar 

  26. de la Paz Sanchez, M.P. & Gutierrez, C. Arabidopsis ORC1 is a PHD-containing H3K4me3 effector that regulates transcription. Proc. Natl. Acad. Sci. USA 106, 2065–2070 (2009).

    Article  CAS  Google Scholar 

  27. Castellano, M.M., del Pozo, J.C., Ramirez-Parra, E., Brown, S. & Gutierrez, C. Expression and stability of Arabidopsis CDC6 are associated with endoreplication. Plant Cell 13, 2671–2686 (2001).

    Article  CAS  Google Scholar 

  28. Prioleau, M.N., Gendron, M.C. & Hyrien, O. Replication of the chicken beta-globin locus: early-firing origins at the 5′ HS4 insulator and the rho- and betaA-globin genes show opposite epigenetic modifications. Mol. Cell. Biol. 23, 3536–3549 (2003).

    Article  CAS  Google Scholar 

  29. Gómez, M. & Antequera, F. Overreplication of short DNA regions during S phase in human cells. Genes Dev. 22, 375–385 (2008).

    Article  Google Scholar 

  30. Menges, M., Hennig, L., Gruissem, W. & Murray, J.A. Genome-wide gene expression in an Arabidopsis cell suspension. Plant Mol. Biol. 53, 423–442 (2003).

    Article  CAS  Google Scholar 

  31. Zhang, X. et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126, 1189–1201 (2006).

    Article  CAS  Google Scholar 

  32. Zilberman, D., Coleman-Derr, D., Ballinger, T. & Henikoff, S. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456, 125–129 (2008).

    Article  CAS  Google Scholar 

  33. Aggarwal, B.D. & Calvi, B.R. Chromatin regulates origin activity in Drosophila follicle cells. Nature 430, 372–376 (2004).

    Article  CAS  Google Scholar 

  34. Hartl, T., Boswell, C., Orr-Weaver, T.L. & Bosco, G. Developmentally regulated histone modifications in Drosophila follicle cells: initiation of gene amplification is associated with histone H3 and H4 hyperacetylation and H1 phosphorylation. Chromosoma 116, 197–214 (2007).

    Article  CAS  Google Scholar 

  35. Schwaiger, M. et al. Chromatin state marks cell-type- and gender-specific replication of the Drosophila genome. Genes Dev. 23, 589–601 (2009).

    Article  CAS  Google Scholar 

  36. Miotto, B. & Struhl, K. HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by geminin. Mol. Cell 37, 57–66 (2010).

    Article  CAS  Google Scholar 

  37. MacAlpine, H.K., Gordan, R., Powell, S.K., Hartemink, A.J. & Macalpine, D.M. Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading. Genome Res. 20, 201–211 (2010).

    Article  CAS  Google Scholar 

  38. Pak, D.T. et al. Association of the origin recognition complex with heterochromatin and HP1 in higher eukaryotes. Cell 91, 311–323 (1997).

    Article  CAS  Google Scholar 

  39. Rusche, L.N., Kirchmaier, A.L. & Rine, J. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu. Rev. Biochem. 72, 481–516 (2003).

    Article  CAS  Google Scholar 

  40. Takahashi, T.S., Yiu, P., Chou, M.F., Gygi, S. & Walter, J.C. Recruitment of Xenopus Scc2 and cohesin to chromatin requires the pre-replication complex. Nat. Cell Biol. 6, 991–996 (2004).

    Article  CAS  Google Scholar 

  41. Kim, J. & Kipreos, E.T. Control of the Cdc6 replication licensing factor in metazoa: the role of nuclear export and the CUL4 ubiquitin ligase. Cell Cycle 7, 146–150 (2008).

    Article  CAS  Google Scholar 

  42. Cadoret, J.C. & Prioleau, M.N. Genome-wide approaches to determining origin distribution. Chromosome Res. 18, 79–89 (2010).

    Article  CAS  Google Scholar 

  43. Van′t Hof, J., Kuniyuki, A. & Bjerknes, C.A. The size and number of replicon families of chromosomal DNA of Arabidopsis thaliana. Chromosoma 68, 269–285 (1978).

    Article  Google Scholar 

  44. Jin, C. et al. H3.3/H2A.Z double variant-containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions. Nat. Genet. 41, 941–945 (2009).

    Article  CAS  Google Scholar 

  45. Earley, K.W., Shook, M.S., Brower-Toland, B., Hicks, L. & Pikaard, C.S. In vitro specificities of Arabidopsis co-activator histone acetyltransferases: implications for histone hyperacetylation in gene activation. Plant J. 52, 615–626 (2007).

    Article  CAS  Google Scholar 

  46. Caro, E., Castellano, M.M. & Gutierrez, C. A chromatin link that couples cell division to root epidermis patterning in Arabidopsis. Nature 447, 213–217 (2007).

    Article  CAS  Google Scholar 

  47. Caro, E. & Gutierrez, C. A green GEM: intriguing analogies with animal geminin. Trends Cell Biol. 17, 580–585 (2007).

    Article  CAS  Google Scholar 

  48. Zhou, J. et al. Cell cycle regulation of chromatin at an origin of DNA replication. EMBO J. 24, 1406–1417 (2005).

    Article  CAS  Google Scholar 

  49. Karnani, N., Taylor, C., Malhotra, A. & Dutta, A. Pan-S replication patterns and chromosomal domains defined by genome-tiling arrays of ENCODE genomic areas. Genome Res. 17, 865–876 (2007).

    Article  CAS  Google Scholar 

  50. Zhang, X. et al. Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol. 5, e129 (2007).

    Article  Google Scholar 

  51. Zhang, X. et al. The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation. Nat. Struct. Mol. Biol. 14, 869–871 (2007).

    Article  CAS  Google Scholar 

  52. Menges, M., Hennig, L., Gruissem, W. & Murray, J.A. Cell cycle-regulated gene expression in Arabidopsis. J. Biol. Chem. 277, 41987–42002 (2002).

    Article  CAS  Google Scholar 

  53. Soni, R., Carmichael, J.P., Shah, Z.H. & Murray, J.A. A family of cyclin D homologs from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif. Plant Cell 7, 85–103 (1995).

    Article  CAS  Google Scholar 

  54. Jiang, H. & Wong, W.H. SeqMap: mapping massive amount of oligonucleotides to the genome. Bioinformatics 24, 2395–2396 (2008).

    Article  CAS  Google Scholar 

  55. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  Google Scholar 

  56. Grégoire, D., Brodolin, K. & Mechali, M. HoxB domain induction silences DNA replication origins in the locus and specifies a single origin at its boundary. EMBO Rep. 7, 812–816 (2006).

    PubMed  PubMed Central  Google Scholar 

  57. Ji, H. & Wong, W.H. TileMap: create chromosomal map of tiling array hybridizations. Bioinformatics 21, 3629–3636 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Martinez-Salas, J.A. Tercero and E. Caro for comments and discussions, S. Diaz-Triviño and P. Hernandez for initial efforts in origin mapping, and M. Gomez and J. Sequeira-Mendes for advice with the purification and analysis of nascent DNA strands. The technical help of V. Mora-Gil is deeply acknowledged. M.P.S. and C.C. are recipients of JAE-Doc contracts from CSIC. S.F. is a Howard Hughes Medical Institute Fellow of the Life Sciences Research Foundation. This research has been supported by grants BFU2006-5662, BFU2009-9783 and CSD2007-00057-B (Spain Ministry of Science and Education) and P2006/GEN0191 (Comunidad de Madrid) to C.G., by an institutional grant from Fundación Ramón Areces to C.B.M., by grant GM60398 (US National Institutes of Health) to S.E.J., by grant 0960425 (US National Science Foundation) to X.Z. and by grants BIO2004-02502, BIO2007-66935, GEN2003-20218-C02-02 and CSD2007-00057-B (Spain Ministry of Science and Innovation) and GR/SAL/0674/2004 (Comunidad de Madrid) to R.S. S.E.J. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

C.C., M.P.S., Y.Y., S.F., A.B. and I.L.-V. carried out experiments. H.S., J.C.O., C.C., M.P.S., X.Z. and R.S. analyzed data. C.G. and S.E.J. prepared the manuscript.

Corresponding authors

Correspondence to Steven E Jacobsen or Crisanto Gutierrez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 2 (PDF 752 kb)

Supplementary Table 1

Putative Arabidopsis DNA replication origins (originome) (TXT 428 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costas, C., de la Paz Sanchez, M., Stroud, H. et al. Genome-wide mapping of Arabidopsis thaliana origins of DNA replication and their associated epigenetic marks. Nat Struct Mol Biol 18, 395–400 (2011). https://doi.org/10.1038/nsmb.1988

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1988

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing