Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Oncolytic virotherapy for urological cancers

Key Points

  • Oncolytic virotherapy is a cancer treatment that employs replication-competent viruses, which specifically infect, replicate in and lyse malignant tumour cells, while minimizing harm to normal cells

  • Several oncolytic agents have been investigated in clinical trials in patients with urological cancers, demonstrating a number of challenges to their effectiveness and a need to improve their safety

  • Innate and adaptive virus-targeted immune responses, loss of viruses in tumour- associated tissues and suboptimal virus replication hamper the effectiveness of virotherapy

  • Current developments take into account distinctive features of urological tumours, for example by exploiting genetic alterations, such as changed expression levels of oncogenes, tumour suppressor genes and receptors

  • The strategies employed to improve oncolytic effectiveness and safety include alteration of virus tropism, regulating viral gene expression, arming viruses with immunostimulatory factors and combination with chemotherapy and radiotherapy

Abstract

Oncolytic virotherapy is a cancer treatment in which replication-competent viruses are used that specifically infect, replicate in and lyse malignant tumour cells, while minimizing harm to normal cells. Anecdotal evidence of the effectiveness of this strategy has existed since the late nineteenth century, but advances and innovations in biotechnological methods in the 1980s and 1990s led to a renewed interest in this type of therapy. Multiple clinical trials investigating the use of agents constructed from a wide range of viruses have since been performed, and several of these enrolled patients with urological malignancies. Data from these clinical trials and from preclinical studies revealed a number of challenges to the effectiveness of oncolytic virotherapy that have prompted the development of further sophisticated strategies. Urological cancers have a range of distinctive features, such as specific genetic mutations and cell surface markers, which enable improving both effectiveness and safety of oncolytic virus treatments. The strategies employed in creating advanced oncolytic agents include alteration of the virus tropism, regulating transcription and translation of viral genes, combination with chemotherapy, radiotherapy or gene therapy, arming viruses with factors that stimulate the immune response against tumour cells and delivery technologies to ensure that the viral agent reaches its target tissue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kelly, E. & Russell, S. J. History of oncolytic viruses: genesis to genetic engineering. Mol. Ther. 15, 651–659 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Dock, G. The influence of complicating diseases upon leukemia. Am. J. Med. Sci. 127, 563–592 (1904).

    Article  Google Scholar 

  3. De Pace, N. G. Sulla scomparsa di un enorme cancro vegetante del callo dell'utero senza cura chirurgica [Italian]. Ginecologia 9, 82–88 (1912).

    Google Scholar 

  4. Bierman, H. R. et al. Remissions in leukemia of childhood following acute infectious disease: staphylococcus and streptococcus, varicella, and feline panleukopenia. Cancer 6, 591–605 (1953).

    Article  CAS  PubMed  Google Scholar 

  5. Hoster, H. A., Zanes, R. P. Jr & Von Haam, E. Studies in Hodgkin's syndrome; the association of viral hepatitis and Hodgkin's disease; a preliminary report. Cancer Res. 9, 473–480 (1949).

    CAS  PubMed  Google Scholar 

  6. Alemany, R. Viruses in cancer treatment. Clin. Transl. Oncol. 15, 182–188 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Benencia, F. & Coukos, G. Biological therapy with oncolytic herpesvirus. Adv. Exp. Med. Biol. 622, 221–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Alain, T. et al. The oncolytic effect in vivo of reovirus on tumour cells that have survived reovirus cell killing in vitro. Br. J. Cancer 95, 1020–1027 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Breitbach, C. J. et al. Targeted inflammation during oncolytic virus therapy severely compromises tumour blood flow. Mol. Ther. 15, 1686–1693 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Aghi, M. K., Liu, T. C., Rabkin, S. & Martuza, R. L. Hypoxia enhances the replication of oncolytic herpes simplex virus. Mol. Ther. 17, 51–56 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Hotte, S. J. et al. An optimized clinical regimen for the oncolytic virus PV701. Clin. Cancer Res. 13, 977–985 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Allen, C. et al. Interleukin-13 displaying retargeted oncolytic measles virus strains have significant activity against gliomas with improved specificity. Mol. Ther. 16, 1556–1564 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Smith, B. F. et al. Administration of a conditionally replicative oncolytic canine adenovirus in normal dogs. Cancer Biother. Radiopharm. 21, 601–606 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Alonso, M. M. et al. Combination of the oncolytic adenovirus ICOVIR-5 with chemotherapy provides enhanced anti-glioma effect in vivo. Cancer Gene Ther. 14, 756–761 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Carpenter, A. et al. Effects of ammonium tetrathiomolybdate, an oncolytic/angiolytic drug on the viability and proliferation of endothelial and tumour cells. Inflamm. Res. 56, 515–519 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Wodarz, D. Use of oncolytic viruses for the eradication of drug-resistant cancer cells. J. R. Soc. Interface 6, 179–186 (2009).

    Article  PubMed  Google Scholar 

  17. Cripe, T. P., Wang, P. Y., Marcato, P., Mahller, Y. Y. & Lee, P. W. Targeting cancer-initiating cells with oncolytic viruses. Mol. Ther. 17, 1677–1682 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Norman, K. L., Farassati, F. & Lee, P. W. Oncolytic viruses and cancer therapy. Cytokine Growth Factor Rev. 12, 271–282 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Lilley, C. E., Carson, C. T., Muotri, A. R., Gage, F. H. & Weitzman, M. D. DNA repair proteins affect the lifecycle of herpes simplex virus 1. Proc. Natl Acad. Sci. USA 102, 5844–5849 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morton, E. R. & Blaho, J. A. Herpes simplex virus blocks Fas-mediated apoptosis independent of viral activation of NF-κB in human epithelial HEp-2 cells. J. Interferon Cytokine Res. 27, 365–376 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Esfandiarei, M. et al. Protein kinase B/Akt regulates coxsackievirus B3 replication through a mechanism which is not caspase dependent. J. Virol. 78, 4289–4298 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gregory, D., Hargett, D., Holmes, D., Money, E. & Bachenheimer, S. L. Efficient replication by herpes simplex virus type 1 involves activation of the IκB kinase–IκB–p65 pathway. J. Virol. 78, 13582–13590 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Breitbach, C. J. et al. Oncolytic vaccinia virus disrupts tumour-associated vasculature in humans. Cancer Res. 73, 1265–1275 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Kottke, T. et al. Precise scheduling of chemotherapy primes VEGF-producing tumours for successful systemic oncolytic virotherapy. Mol. Ther. 19, 1802–1812 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Benencia, F., Courreges, M. C., Fraser, N. W. & Coukos, G. Herpes virus oncolytic therapy reverses tumour immune dysfunction and facilitates tumour antigen presentation. Cancer Biol. Ther. 7, 1194–1205 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Schulz, O. et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433, 887–892 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. International Bladder Cancer Nomogram Consortium, Bochner, B. H., Kattan, M. W. & Vora, K. C. Postoperative nomogram predicting risk of recurrence after radical cystectomy for bladder cancer. J. Clin. Oncol. 24, 3967–3972 (2006).

    Article  PubMed  Google Scholar 

  28. Cohen, H. T. & McGovern, F. J. Renal-cell carcinoma. N. Engl. J. Med. 353, 2477–2490 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Katsogiannou, M. et al. The hallmarks of castration-resistant prostate cancers. 41, 588–597 (2015).

  30. Russell, S. J., Peng, K. W. & Bell, J. C. Oncolytic virotherapy. Nat. Biotechnol. 30, 658–670 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Altomonte, J. & Ebert, O. Sorting out Pandora's box: discerning the dynamic roles of liver microenvironment in oncolytic virus therapy for hepatocellular carcinoma. Front. Oncol. 4, 85 (2014).

  32. Fukuhara, H., Homma, Y. & Todo, T. Oncolytic virus therapy for prostate cancer. Int. J. Urol. 17, 20–30 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Potts, K. G., Hitt, M. M. & Moore, R. B. Oncolytic viruses in the treatment of bladder cancer. Adv. Urol. 2012, 404581 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lawson, K. A. & Morris, D. G. Oncolytic virotherapy for renal cell carcinoma: a novel treatment paradigm? Expert Opin. Biol. Ther. 12, 891–903 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Megison, M. L. et al. Preclinical evaluation of engineered oncolytic herpes simplex virus for the treatment of pediatric solid tumours. PLoS ONE 9, e86843 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ch'ng, W. C., Stanbridge, E. J., Yusoff, K. & Shafee, N. The oncolytic activity of Newcastle disease virus in clear cell renal carcinoma cells in normoxic and hypoxic conditions: the interplay between von Hippel–Lindau and interferon-β signaling. J. Interferon Cytokine Res. 33, 346–354 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Buijs, P. R., Verhagen, J. H., van Eijck, C. H. & van den Hoogen, B. G. Oncolytic viruses: from bench to bedside with a focus on safety. Hum. Vaccin. Immunother. 11, 1573–1584 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pol, J. et al. Trial watch: oncolytic viruses for cancer therapy. Oncoimmunology 3, e28694 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Johnson, D. B., Puzanov, I. & Kelley, M. C. Talimogene laherparepvec (T-VEC) for the treatment of advanced melanoma. Immunotherapy 7, 611–619 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Burke, J. M. et al. A first in human phase 1 study of CG0070, a GM-CSF expressing oncolytic adenovirus, for the treatment of nonmuscle invasive bladder cancer. J. Urol. 188, 2391–2397 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Vidal, L. et al. A phase I study of intravenous oncolytic reovirus type 3 Dearing in patients with advanced cancer. Clin. Cancer Res. 14, 7127–7137 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Black, A. J. & Morris, D. G. Clinical trials involving the oncolytic virus, reovirus: ready for prime time? Expert Rev. Clin. Pharmacol. 5, 517–520 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Stoeckel, J. & Hay, J. G. Drug evaluation: reolysin — wild-type reovirus as a cancer therapeutic. Curr. Opin. Mol. Ther. 8, 249–260 (2006).

    CAS  PubMed  Google Scholar 

  44. Gomella, L. G. et al. Phase I study of intravesical vaccinia virus as a vector for gene therapy of bladder cancer. J. Urol. 166, 1291–1295 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Burke, J. Virus therapy for bladder cancer. Cytokine Growth Factor Rev. 21, 99–102 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Shi, Y. et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: what we do and don't know. Cell Res. 16, 126–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Mach, N. & Dranoff, G. Cytokine-secreting tumour cell vaccines. Curr. Opin. Immunol. 12, 571–575 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Bradley, S. et al. Applications of coxsackievirus A21 in oncology. Oncolytic Virother. 3, 47–55 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. US National Library of Science. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02316171 (2016).

  50. US National Library of Science. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02043665 (2016).

  51. Johansson, E. S., Xing, L., Cheng, R. H. & Shafren, D. R. Enhanced cellular receptor usage by a bioselected variant of coxsackievirus A21. J. Virol. 78, 12603–12612 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shafren, D. R., Dorahy, D. J., Ingham, R. A., Burns, G. F. & Barry, R. D. Coxsackievirus A21 binds to decay-accelerating factor but requires intercellular adhesion molecule 1 for cell entry. J. Virol. 71, 4736–4743 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Pandha, H. et al. Oncolytic immunotherapy for the treatment of non-muscle invasive bladder cancer using intravesical Coxsackievirus A21: Phase I/II CANON study. Presented at the 9th International conference on oncolytic virus therapeutics 2015, P-5 (2015).

  54. DeWeese, T. L. et al. A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res. 61, 7464–7472 (2001).

    CAS  PubMed  Google Scholar 

  55. Small, E. J. et al. A phase I trial of intravenous CG7870, a replication-selective, prostate-specific antigen-targeted oncolytic adenovirus, for the treatment of hormone-refractory, metastatic prostate cancer. Mol. Ther. 14, 107–117 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Freytag, S. O. et al. Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res. 62, 4968–4976 (2002).

    CAS  PubMed  Google Scholar 

  57. Freytag, S. O. et al. Prospective randomized phase 2 trial of intensity modulated radiation therapy with or without oncolytic adenovirus-mediated cytotoxic gene therapy in intermediate-risk prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 89, 268–276 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Comins, C. et al. REO-10: a phase I study of intravenous reovirus and docetaxel in patients with advanced cancer. Clin. Cancer Res. 16, 5564–5572 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Heinemann, L. et al. Synergistic effects of oncolytic reovirus and docetaxel chemotherapy in prostate cancer. BMC Cancer 11, 221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. US National Library of Science. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT01619813 (2016).

  61. US National Library of Science. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT00636558 (2012).

  62. Pandha, H. et al. Phase I/II storm study: Intravenous delivery of a novel oncolytic immunotherapy agent, Coxsackievirus A21, in advanced cancer patients. J. Immunother. Cancer 3 (Suppl. 2), 341 (2015).

    Article  Google Scholar 

  63. Li, J. et al. A phase I trial of intratumoural administration of recombinant oncolytic adenovirus overexpressing HSP70 in advanced solid tumour patients. Gene Ther. 16, 376–382 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Calderwood, S. K., Stevenson, M. A. & Murshid, A. Heat shock proteins, autoimmunity, and cancer treatment. Autoimmune Dis. 2012, 486069 (2012).

    PubMed  PubMed Central  Google Scholar 

  65. Böttger, E., Multhoff, G., Kun, J. F. & Esen, M. Plasmodium falciparum-infected erythrocytes induce granzyme B by NK cells through expression of host-Hsp70. PLoS ONE 7, e33774 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. US National Library of Science. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT00625456 (2015).

  67. US National Library of Science. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT01169584 (2016).

  68. US National Library of Science. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02053220(2016).

  69. US National Library of Science. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT00931931 (2015).

  70. Ramesh, N. et al. CG0070, a conditionally replicating granulocyte macrophage colony-stimulating factor-armed oncolytic adenovirus for the treatment of bladder cancer. Clin. Cancer Res. 12, 305–313 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Castleton, A. et al. Human mesenchymal stromal cells deliver systemic oncolytic measles virus to treat acute lymphoblastic leukemia in the presence of humoral immunity. Blood 123, 1327–1335 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Galanis, E. et al. Phase II trial of intravenous administration of Reolysin® (Reovirus Serotype-3-dearing Strain) in patients with metastatic melanoma. Mol. Ther. 20, 1998–2003 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rudin, C. M. et al. Phase I clinical study of Seneca Valley Virus (SVV-001), a replication-competent picornavirus, in advanced solid tumours with neuroendocrine features. Clin. Cancer Res. 17, 888–895 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Msaouel, P., Opyrchal, M., Domingo Musibay, E. & Galanis, E. Oncolytic measles virus strains as novel anticancer agents. Expert Opin. Biol. Ther. 13, 483–502 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Msaouel, P., Iankov, I. D., Dispenzieri, A. & Galanis, E. Attenuated oncolytic measles virus strains as cancer therapeutics. Curr. Pharm. Biotechnol. 13, 1732–1741 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fulci, G. et al. Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses. Proc. Natl Acad. Sci. USA 103, 12873–12878 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Waldhauer, I. & Steinle, A. NK cells and cancer immunosurveillance. Oncogene 27, 5932–5943 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Prestwich, R. J. et al. The case of oncolytic viruses versus the immune system: waiting on the judgment of Solomon. Hum. Gene Ther. 20, 1119–1132 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shafren, D. et al. Combination of a novel oncolytic immunotherapeutic agent, CAVATAK (coxsackievirus A21) and immune-checkpoint blockade significantly reduces tumour growth and improves survival in an immune competent mouse melanoma model. J. Immunother. Cancer 2, 125 (2014).

    Article  Google Scholar 

  80. de Gruijl, T. D., Janssen, A. B. & van Beusechem, V. W. Arming oncolytic viruses to leverage antitumour immunity. Expert Opin. Biol. Ther. 15, 959–971 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Woller, N., Gurlevik, E., Ureche, C. I., Schumacher, A. & Kuhnel, F. Oncolytic viruses as anticancer vaccines. Front. Oncol. 4, 188 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zamarin, D. et al. Localized oncolytic virotherapy overcomes systemic tumour resistance to immune checkpoint blockade immunotherapy. Sci. Transl. Med. 6, 226ra32 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jiang, H. et al. Delta-24-RGD oncolytic adenovirus elicits anti-glioma immunity in an immunocompetent mouse model. PLoS ONE 9, e97407 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Thirukkumaran, C. M. et al. Oncolytic viral therapy for prostate cancer: efficacy of reovirus as a biological therapeutic. Cancer Res. 70, 2435–2444 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Hodge, J. W. et al. A recombinant vaccinia virus expressing human prostate-specific antigen (PSA): safety and immunogenicity in a non-human primate. Int. J. Cancer 63, 231–237 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Singh, P., Pal, S. K., Alex, A. & Agarwal, N. Development of PROSTVAC immunotherapy in prostate cancer. Future Oncol. 11, 2137–2148 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Kantoff, P. W. et al. Overall survival analysis of a phase II randomized controlled trial of a poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J. Clin. Oncol. 28, 1099–1105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Campbell, C. T. et al. Humoral response to a viral glycan correlates with survival on PROSTVAC-VF. Proc. Natl Acad. Sci. USA 111, E1749–E1758 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Campbell, C. T. et al. Serum antibodies to blood group A predict survival on PROSTVAC-VF. Clin. Cancer Res. 19, 1290–1299 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Reid, T., Warren, R. & Kirn, D. Intravascular adenoviral agents in cancer patients: lessons from clinical trials. Cancer Gene Ther. 9, 979–986 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Doronin, K., Shashkova, E. V., May, S. M., Hofherr, S. E. & Barry, M. A. Chemical modification with high molecular weight polyethylene glycol reduces transduction of hepatocytes and increases efficacy of intravenously delivered oncolytic adenovirus. Hum. Gene Ther. 20, 975–988 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Green, N. K. et al. Tropism ablation and stealthing of oncolytic adenovirus enhances systemic delivery to tumours and improves virotherapy of cancer. Nanomedicine (Lond.) 7, 1683–1695 (2012).

    Article  CAS  Google Scholar 

  93. Shashkova, E. V., Doronin, K., Senac, J. S. & Barry, M. A. Macrophage depletion combined with anticoagulant therapy increases therapeutic window of systemic treatment with oncolytic adenovirus. Cancer Res. 68, 5896–5904 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Tesfay, M. Z. et al. PEGylation of vesicular stomatitis virus extends virus persistence in blood circulation of passively immunized mice. J. Virol. 87, 3752–3759 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Delwar, Z., Wong, J. W. J. & Jia, W. W. Potency of oncolytic herpes virotherapy is hindered by microglia barrier in glioblastoma multiforme in-vitro [poster 65]. Presented at the 7th International Oncolytic Viruses Meeting (2013).

  96. Dinney, C. P. et al. Phase I trial of intravesical recombinant adenovirus mediated interferon-α2b formulated in Syn3 for Bacillus Calmette–Guérin failures in nonmuscle invasive bladder cancer. J. Urol. 190, 850–856 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shayakhmetov, D. M., Li, Z. Y., Ni, S. & Lieber, A. Analysis of adenovirus sequestration in the liver, transduction of hepatic cells, and innate toxicity after injection of fiber-modified vectors. J. Virol. 78, 5368–5381 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Advani, S. J. et al. Preferential replication of systemically delivered oncolytic vaccinia virus in focally irradiated glioma xenografts. Clin. Cancer Res. 18, 2579–2590 (2012).

    Article  PubMed  Google Scholar 

  99. Bolyard, C. et al. Doxorubicin synergizes with 34.5ENVE to enhance antitumour efficacy against metastatic ovarian cancer. Clin. Cancer Res. 20, 6479–6494 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ottolino-Perry, K., Diallo, J.-S., Lichty, B. D., Bell, J. C. & McCart, J. A. Intelligent design: combination therapy with oncolytic viruses. Mol. Ther. 18, 251–263 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Aghi, M., Rabkin, S. & Martuza, R. L. Effect of chemotherapy-induced DNA repair on oncolytic herpes simplex viral replication. J. Natl Cancer Inst. 98, 38–50 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Kolb, E. A. et al. A phase I trial and viral clearance study of reovirus (Reolysin) in children with relapsed or refractory extra-cranial solid tumours: a Children's Oncology Group Phase I Consortium report. Pediatr. Blood Cancer 62, 751–758 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Barbieri, C. E. et al. The mutational landscape of prostate cancer. Eur. Urol. 64, 567–576 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Grasso, C. S. et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 487, 239–243 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Trotman, L. C. et al. Pten dose dictates cancer progression in the prostate. PLoS Biol. 1, E59 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Barbieri, C. E. Evolution of novel biomarkers for detection of prostate cancer. J. Urol. 6, 1970–1971 (2013).

    Article  Google Scholar 

  108. Sun, X. et al. Genetic alterations in the PI3K pathway in prostate cancer. Anticancer Res. 29, 1739–1743 (2009).

    CAS  PubMed  Google Scholar 

  109. Barbieri, C. E. et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat. Genet. 44, 685–689 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chen, M. et al. Identification of PHLPP as a tumour suppressor reveals the role of pathway feedback compensation in PTEN-mutant prostate cancer progression. Cancer Res. 71, 2405–2405 (2011).

    Article  Google Scholar 

  111. Taylor, B. S. et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 18, 11–22 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen, W. et al. Enhanced antitumour efficacy of a novel fiber chimeric oncolytic adenovirus expressing p53 on hepatocellular carcinoma. Cancer Lett. 307, 93–103 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Kompier, L. C. et al. FGFR3, HRAS, KRAS, NRAS and PIK3CA mutations in bladder cancer and their potential as biomarkers for surveillance and therapy. PLoS ONE 5, e13821 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mitra, A. P. et al. The use of genetic programming in the analysis of quantitative gene expression profiles for identification of nodal status in bladder cancer. BMC Cancer 6, 159 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mitra, A. P., Lin, H., Datar, R. H. & Cote, R. J. Molecular biology of bladder cancer: prognostic and clinical implications. Clin. Genitourin. Cancer 5, 67–77 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Sanchez-Carbayo, M. et al. Molecular profiling of bladder cancer using cDNA microarrays defining histogenesis and biological phenotypes. Cancer Res. 62, 6973–6980 (2002).

    CAS  PubMed  Google Scholar 

  118. Miyamoto, H. et al. Expression of androgen and oestrogen receptors and its prognostic significance in urothelial neoplasm of the urinary bladder. BJU Int. 109, 1716–1726 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Netto, G. J. Molecular genetics and genomics progress in urothelial bladder cancer. Semin. Diagn. Pathol. 30, 313–320 (2013).

    Article  PubMed  Google Scholar 

  120. Netto, G. J. Molecular biomarkers in urothelial carcinoma of the bladder: are we there yet? Nat. Rev. Urol. 9, 41–51 (2012).

    Article  CAS  Google Scholar 

  121. Hann, B. & Balmain, A. Replication of an E1B 55-kilodalton protein-deficient adenovirus (ONYX-015) is restored by gain-of-function rather than loss-of- function p53 mutants. J. Virol. 77, 11588–11595 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. McCormick, F. Interactions between adenovirus proteins and the p53 pathway: the development of ONYX-015. Semin. Cancer Biol. 10, 453–459 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. O'Shea, C. C. et al. Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumour selectivity. Cancer Cell 6, 611–623 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Yew, P. R. & Berk, A. J. Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. Nature 357, 82–85 (1992).

    Article  CAS  PubMed  Google Scholar 

  125. Cherubini, G. et al. The oncolytic adenovirus AdΔΔ enhances selective cancer cell killing in combination with DNA-damaging drugs in pancreatic cancer models. Gene Ther. 18, 1157–1165 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Liu, T. C. et al. An E1B-19 kDa gene deletion mutant adenovirus demonstrates tumour necrosis factor-enhanced cancer selectivity and enhanced oncolytic potency. Mol. Ther. 9, 786–803 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Nemunaitis, J. et al. Intravenous infusion of a replication-selective adenovirus (ONYX-015) in cancer patients: safety, feasibility and biological activity. Gene Ther. 8, 746–759 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Nemunaitis, J. et al. Selective replication and oncolysis in p53 mutant tumours with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res. 60, 6359–6366 (2000).

    CAS  PubMed  Google Scholar 

  129. Sze, D. Y. et al. Dr. Gary J. Becker Young Investigator Award: intraarterial adenovirus for metastatic gastrointestinal cancer: activity, radiographic response, and survival. J. Vasc. Interv. Radiol. 14, 279–290 (2003).

    Article  PubMed  Google Scholar 

  130. Bischoff, J. R. et al. An adenovirus mutant that replicates selectively in p53-deficient human tumour cells. Science 274, 373–376 (1996).

    Article  CAS  PubMed  Google Scholar 

  131. Edwards, S. J. et al. Evidence that replication of the antitumour adenovirus ONYX-015 is not controlled by the p53 and p14ARF tumour suppressor genes. J. Virol. 76, 12483–12490 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Makower, D. et al. Phase II clinical trial of intralesional administration of the oncolytic adenovirus ONYX-015 in patients with hepatobiliary tumours with correlative p53 studies. Clin. Cancer Res. 9, 693–702 (2003).

    PubMed  Google Scholar 

  133. Egan, C., Bayley, S. T. & Branton, P. E. Binding of the Rb1 protein to E1A products is required for adenovirus transformation. Oncogene 4, 383–388 (1989).

    CAS  PubMed  Google Scholar 

  134. Grand, R. J. et al. Human cells arrest in S phase in response to adenovirus 12 E1A. Virology 244, 330–342 (1998).

    Article  CAS  PubMed  Google Scholar 

  135. Grand, R. J. et al. The expression of the retinoblastoma gene product Rb1 in primary and adenovirus-transformed human cells. Oncogene 4, 1291–1298 (1989).

    CAS  PubMed  Google Scholar 

  136. Ding, M. et al. Prostate cancer-specific and potent antitumour effect of a DD3-controlled oncolytic virus harboring the PTEN gene. PLoS ONE 7, e35153 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ji, W.-T. & Liu, H. J. PI3K–Akt signaling and viral infection. Recent Pat. Biotechnol. 2, 218–226 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Dunn, E. F. & Connor, J. H. HijAkt: the PI3K/Akt pathway in virus replication and pathogenesis. Prog. Mol. Biol. Transl. Sci. 106, 223 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Brown, M. C., Dobrikov, M. I. & Gromeier, M. Mitogen-activated protein kinase-interacting kinase regulates mTOR/AKT signaling and controls the serine/arginine-rich protein kinase-responsive type 1 internal ribosome entry site-mediated translation and viral oncolysis. J. Virol. 88, 13149–13160 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kanai, R., Wakimoto, H., Martuza, R. L. & Rabkin, S. D. A novel oncolytic herpes simplex virus that synergizes with phosphoinositide 3-kinase/Akt pathway inhibitors to target glioblastoma stem cells. Clin. Cancer Res. 17, 3686–3696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Luo, C. et al. Replication-competent, oncolytic herpes simplex virus type 1 mutants induce a bystander effect following ganciclovir treatment. J. Gene Med. 9, 875–883 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Veerapong, J. et al. Systemic delivery of γ134.5-deleted herpes simplex virus-1 selectively targets and treats distant human xenograft tumours that express high MEK activity. Cancer Res. 67, 8301–8306 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Gholami, S. et al. Role of MAPK in oncolytic herpes viral therapy in triple-negative breast cancer. Cancer Gene Ther. 21, 283–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Carver, B. S. Strategies for targeting the androgen receptor axis in prostate cancer. Drug Discov. Today 19, 1493–1497 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Miyamoto, H. et al. Promotion of bladder cancer development and progression by androgen receptor signals. J. Natl Cancer Inst. 99, 558–568 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Hu, R. et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res. 69, 16–22 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Koivisto, P. et al. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res. 57, 314–319 (1997).

    CAS  PubMed  Google Scholar 

  148. Linja, M. J. & Visakorpi, T. Alterations of androgen receptor in prostate cancer. J. Steroid Biochem. Mol. Biol. 92, 255–264 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Mehra, R. et al. Comprehensive assessment of TMPRSS2 and ETS family gene aberrations in clinically localized prostate cancer. Mod. Pathol. 20, 538–544 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Tomlins, S. A. et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 448, 595–599 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. King, J. C. et al. Cooperativity of TMPRSS2ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat. Genet. 41, 524–526 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Klezovitch, O. et al. A causal role for ERG in neoplastic transformation of prostate epithelium. Proc. Natl Acad. Sci. USA 105, 2105–2110 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Boorjian, S. et al. Androgen receptor expression is inversely correlated with pathologic tumour stage in bladder cancer. Urology 64, 383–388 (2004).

    Article  PubMed  Google Scholar 

  154. Jing, Y. et al. Activated androgen receptor promotes bladder cancer metastasis via Slug mediated epithelial–mesenchymal transition. Cancer Lett. 348, 135–145 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. Mhawech-Fauceglia, P. et al. Prostate-specific membrane antigen (PSMA) protein expression in normal and neoplastic tissues and its sensitivity and specificity in prostate adenocarcinoma: an immunohistochemical study using mutiple tumour tissue microarray technique. Histopathology 50, 472–483 (2007).

    Article  CAS  PubMed  Google Scholar 

  156. Reiter, R. E. et al. Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc. Natl Acad. Sci. USA 95, 1735–1740 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wu, X. et al. Genetic variation in the prostate stem cell antigen gene PSCA confers susceptibility to urinary bladder cancer. Nat. Genet. 41, 991–995 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Amara, N. et al. Prostate stem cell antigen is overexpressed in human transitional cell carcinoma. Cancer Res. 61, 4660–4665 (2001).

    CAS  PubMed  Google Scholar 

  159. Bera, T. K. et al. NGEP, a gene encoding a membrane protein detected only in prostate cancer and normal prostate. Proc. Natl Acad. Sci. USA 101, 3059–3064 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Conrad, F. et al. Human antibodies targeting cell surface antigens overexpressed by the hormone refractory metastatic prostate cancer cells: ICAM-1 is a tumour antigen that mediates prostate cancer cell invasion. J. Mol. Med. 87, 507–514 (2009).

    Article  CAS  PubMed  Google Scholar 

  161. Poovassery, J. S., Kang, J. C., Kim, D., Ober, R. J. & Ward, E. S. Antibody targeting of HER2/HER3 signaling overcomes heregulin-induced resistance to PI3K inhibition in prostate cancer. Int. J. Cancer 137, 267–277 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. Brenner, P. C. et al. TAG-72 expression in primary, metastatic and hormonally treated prostate cancer as defined by monoclonal antibody CC49. J. Urol. 153, 1575–1579 (1995).

    Article  CAS  PubMed  Google Scholar 

  163. Waehler, R., Russell, S. J. & Curiel, D. T. Engineering targeted viral vectors for gene therapy. Nat. Rev. Genet. 8, 573–587 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Tang, K. et al. Early outcomes of thulium laser versus transurethral resection of the prostate for managing benign prostatic hyperplasia: a systematic review and meta-analysis of comparative studies. J. Endourol. 28, 65–72 (2014).

    Article  PubMed  Google Scholar 

  165. Logan, C., Brown, M. & Hayne, D. Intravesical therapies for bladder cancer — indications and limitations. BJU Int. 110 (Suppl. 4), 12–21 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Herr, H. W. & Morales, A. History of bacillus Calmette–Guérin and bladder cancer: an immunotherapy success story. J. Urol. 179, 53–56 (2008).

    Article  PubMed  Google Scholar 

  167. Choi, I. K. & Yun, C. O. Recent developments in oncolytic adenovirus-based immunotherapeutic agents for use against metastatic cancers. Cancer Gene Ther. 20, 70–76 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. Gujar, S. A., Pan, D. A., Marcato, P., Garant, K. A. & Lee, P. W. Oncolytic virus-initiated protective immunity against prostate cancer. Mol. Ther. 19, 797–804 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hersey, P. & Gallagher, S. Intralesional immunotherapy for melanoma. J. Surg. Oncol. 109, 320–326 (2014).

    Article  CAS  PubMed  Google Scholar 

  170. Stojdl, D. F. et al. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 4, 263–275 (2003).

    Article  CAS  PubMed  Google Scholar 

  171. Moussavi, M. et al. Oncolysis of prostate cancers induced by vesicular stomatitis virus in PTEN knockout mice. Cancer Res. 70, 1367–1376 (2010).

    Article  CAS  PubMed  Google Scholar 

  172. Moussavi, M. et al. Targeting and killing of metastatic cells in the transgenic adenocarcinoma of mouse prostate model with vesicular stomatitis virus. Mol. Ther. 21, 842–848 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zhang, K. X. et al. Down-regulation of type I interferon receptor sensitizes bladder cancer cells to vesicular stomatitis virus-induced cell death. Int. J. Cancer 127, 830–838 (2010).

    CAS  PubMed  Google Scholar 

  174. Ayala-Breton, C., Barber, G. N., Russell, S. J. & Peng, K. W. Retargeting vesicular stomatitis virus using measles virus envelope glycoproteins. Hum. Gene Ther. 23, 484–491 (2012).

    Article  CAS  PubMed  Google Scholar 

  175. Zhigang, Z. & Wenlu, S. Prostate stem cell antigen (PSCA) mRNA expression in prostatic intraepithelial neoplasia: implications for the development of prostate cancer. Prostate 67, 1143–1151 (2007).

    Article  CAS  PubMed  Google Scholar 

  176. Wen, Y. et al. HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway. Cancer Res. 60, 6841–6845 (2000).

    CAS  PubMed  Google Scholar 

  177. Zhang, K. X. et al. Lentiviruses with trastuzumab bound to their envelopes can target and kill prostate cancer cells. Cancer Gene Ther. 16, 820–831 (2009).

    Article  CAS  PubMed  Google Scholar 

  178. Conner, J., Braidwood, L. & Brown, S. M. A strategy for systemic delivery of the oncolytic herpes virus HSV1716: redirected tropism by antibody-binding sites incorporated on the virion surface as a glycoprotein D fusion protein. Gene Ther. 15, 1579–1592 (2008).

    Article  CAS  PubMed  Google Scholar 

  179. Anderson, B. D., Nakamura, T., Russell, S. J. & Peng, K. W. High CD46 receptor density determines preferential killing of tumour cells by oncolytic measles virus. Cancer Res. 64, 4919–4926 (2004).

    Article  CAS  PubMed  Google Scholar 

  180. Sugiyama, T. et al. Measles virus selectively blind to signaling lymphocyte activation molecule as a novel oncolytic virus for breast cancer treatment. Gene Ther. 20, 338–347 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. Noyce, R. S. et al. Tumour cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. PLoS Pathog. 7, e1002240 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Msaouel, P., Iankov, I. D., Allen, C., Russell, S. J. & Galanis, E. Oncolytic measles virus retargeting by ligand display. Methods Mol. Biol. 797, 141–162 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Jing, Y. et al. Tumour and vascular targeting of a novel oncolytic measles virus retargeted against the urokinase receptor. Cancer Res. 69, 1459–1468 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Kamiyama, H., Zhou, G. & Roizman, B. Herpes simplex virus 1 recombinant virions exhibiting the amino terminal fragment of urokinase-type plasminogen activator can enter cells via the cognate receptor. Gene Ther. 13, 621–629 (2006).

    Article  CAS  PubMed  Google Scholar 

  185. Kinoh, H. et al. Generation of optimized and urokinase-targeted oncolytic Sendai virus vectors applicable for various human malignancies. Gene Ther. 16, 392–403 (2009).

    Article  CAS  PubMed  Google Scholar 

  186. Dohn, L. H. et al. Urokinase-type plasminogen activator receptor (uPAR) expression is associated with T-stage and survival in urothelial carcinoma of the bladder. Urol. Oncol. 33, 165.e15–165.e24 (2015).

    Article  CAS  Google Scholar 

  187. Lippert, S. et al. Copenhagen uPAR prostate cancer (CuPCa) database: protocol and early results. Biomark. Med. 10, 209–216 (2016).

    Article  CAS  PubMed  Google Scholar 

  188. Li, Y. & Cozzi, P. J. Targeting uPA/uPAR in prostate cancer. Cancer Treat. Rev. 33, 521–527 (2007).

    Article  CAS  PubMed  Google Scholar 

  189. Fuessel, S. et al. Prognostic impact of urokinase-type plasminogen activator system components in clear cell renal cell carcinoma patients without distant metastasis. BMC Cancer 14, 974 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Suzuki, K. et al. A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency. Clin. Cancer Res. 7, 120–126 (2001).

    CAS  PubMed  Google Scholar 

  191. Koizumi, N. et al. Fiber-modified adenovirus vectors decrease liver toxicity through reduced IL-6 production. J. Immunol. 178, 1767–1773 (2007).

    Article  CAS  PubMed  Google Scholar 

  192. Hemminki, O. et al. Ad3-hTERT-E1A, a fully serotype 3 oncolytic adenovirus, in patients with chemotherapy refractory cancer. Mol. Ther. 20, 1821–1830 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Hemminki, O. et al. Oncolytic adenovirus based on serotype 3. Cancer Gene Ther. 18, 288–296 (2011).

    Article  CAS  PubMed  Google Scholar 

  194. Strauss, R. et al. Epithelial phenotype confers resistance of ovarian cancer cells to oncolytic adenoviruses. Cancer Res. 69, 5115–5125 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kuhn, I. et al. Directed evolution generates a novel oncolytic virus for the treatment of colon cancer. PLoS ONE 3, e2409 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Shobana, R., Samal, S. K. & Elankumaran, S. Prostate-specific antigen-retargeted recombinant newcastle disease virus for prostate cancer virotherapy. J. Virol. 87, 3792–3800 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Choi, J. W. et al. pH-sensitive oncolytic adenovirus hybrid targeting acidic tumour microenvironment and angiogenesis. J. Control. Release 205, 134–143 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Lee, C. Y., Bu, L. X., Rennie, P. S. & Jia, W. W. An HSV-1 amplicon system for prostate-specific expression of ICP4 to complement oncolytic viral replication for in vitro and in vivo treatment of prostate cancer cells. Cancer Gene Ther. 14, 652–660 (2007).

    Article  CAS  PubMed  Google Scholar 

  199. Zhai, Z. et al. Antitumour effects of bladder cancer-specific adenovirus carrying E1A-androgen receptor in bladder cancer. Gene Ther. 19, 1065–1074 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Fan, J. K. et al. Targeting Gene-ViroTherapy for prostate cancer by DD3-driven oncolytic virus-harboring interleukin-24 gene. Int. J. Cancer 127, 707–717 (2010).

    Article  CAS  PubMed  Google Scholar 

  201. Lai, J. et al. PSA/KLK3 AREI promoter polymorphism alters androgen receptor binding and is associated with prostate cancer susceptibility. Carcinogenesis 28, 1032–1039 (2007).

    Article  CAS  PubMed  Google Scholar 

  202. Watt, F. et al. A tissue-specific enhancer of the prostate-specific membrane antigen gene, FOLH1. Genomics 73, 243–254 (2001).

    Article  CAS  PubMed  Google Scholar 

  203. Wolfgang, C. D., Essand, M., Lee, B. & Pastan, I. T-cell receptor γ chain alternate reading frame protein (TARP) expression in prostate cancer cells leads to an increased growth rate and induction of caveolins and amphiregulin. Cancer Res. 61, 8122–8126 (2001).

    CAS  PubMed  Google Scholar 

  204. Yang, C. T. et al. Herpes simplex virus type-1 infection upregulates cellular promoters and telomerase activity in both tumour and nontumour human cells. Gene Ther. 10, 1494–1502 (2003).

    Article  CAS  PubMed  Google Scholar 

  205. Fan, S. et al. Phosphorylated eukaryotic translation initiation factor 4 (eIF4E) is elevated in human cancer tissues. Cancer Biol. Ther. 8, 1463–1469 (2009).

    Article  PubMed  Google Scholar 

  206. Lee, C. Y. et al. Transcriptional and translational dual-regulated oncolytic herpes simplex virus type 1 for targeting prostate tumours. Mol. Ther. 18, 929–935 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Yan, Y. et al. Large fragment of the probasin promoter targets high levels of transgene expression to the prostate of transgenic mice. Prostate 32, 129–139 (1997).

    Article  CAS  PubMed  Google Scholar 

  208. Zhang, J., Thomas, T. Z., Kasper, S. & Matusik, R. J. A small composite probasin promoter confers high levels of prostate-specific gene expression through regulation by androgens and glucocorticoids in vitro and in vivo. Endocrinology 141, 4698–4710 (2000).

    Article  CAS  PubMed  Google Scholar 

  209. Lee, C. Y., Rennie, P. S. & Jia, W. W. MicroRNA regulation of oncolytic herpes simplex virus-1 for selective killing of prostate cancer cells. Clin. Cancer Res. 15, 5126–5135 (2009).

    Article  CAS  PubMed  Google Scholar 

  210. Li, J. M. et al. MicroRNA-145 regulates oncolytic herpes simplex virus-1 for selective killing of human non-small cell lung cancer cells. Virol. J. 10, 241 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Zhang, Z., Zhang, X., Newman, K., Liu, X. & Seth, P. MicroRNA regulation of oncolytic adenovirus 6 for selective treatment of castration-resistant prostate cancer. Mol. Cancer Ther. 11, 2410–2418 (2012).

    Article  CAS  PubMed  Google Scholar 

  212. Ylosmaki, E. et al. MicroRNA-mediated suppression of oncolytic adenovirus replication in human liver. PLoS ONE 8, e54506 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Callegari, E. et al. Anti-tumour activity of a miR-199-dependent oncolytic adenovirus. PLoS ONE 8, e73964 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Leber, M. F. et al. MicroRNA-sensitive oncolytic measles viruses for cancer-specific vector tropism. Mol. Ther. 19, 1097–1106 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Hikichi, M. et al. MicroRNA regulation of glycoprotein B5R in oncolytic vaccinia virus reduces viral pathogenicity without impairing its antitumour efficacy. Mol. Ther. 19, 1107–1115 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Bell, J. C. & Kirn, D. MicroRNAs fine-tune oncolytic viruses. Nat. Biotechnol. 26, 1346–1348 (2008).

    Article  CAS  PubMed  Google Scholar 

  217. Kueberuwa, G., Cawood, R., Tedcastle, A. & Seymour, L. W. Tissue-specific attenuation of oncolytic sindbis virus without compromised genetic stability. Hum. Gene Ther. Methods 25, 154–165 (2014).

    Article  CAS  PubMed  Google Scholar 

  218. Nguyen, A., Ho, L. & Wan, Y. Chemotherapy and oncolytic virotherapy: advanced tactics in the war against cancer. Front. Oncol. 4, 145 (2014).

    PubMed  PubMed Central  Google Scholar 

  219. Muthana, M. et al. Macrophage delivery of an oncolytic virus abolishes tumour regrowth and metastasis after chemotherapy or irradiation. Cancer Res. 73, 490–495 (2013).

    Article  CAS  PubMed  Google Scholar 

  220. Kirby, M., Hirst, C. & Crawford, E. Characterising the castration-resistant prostate cancer population: a systematic review. Int. J. Clin. Pract. 65, 1180–1192 (2011).

    Article  CAS  PubMed  Google Scholar 

  221. Bressy, C. & Benihoud, K. Association of oncolytic adenoviruses with chemotherapies: an overview and future directions. Biochem. Pharmacol. 90, 97–106 (2014).

    Article  CAS  PubMed  Google Scholar 

  222. Kanai, R. & Rabkin, S. D. Combinatorial strategies for oncolytic herpes simplex virus therapy of brain tumours. CNS Oncol. 2, 129–142 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Wennier, S. T., Liu, J. & McFadden, G. Bugs and drugs: oncolytic virotherapy in combination with chemotherapy. Curr. Pharm. Biotechnol. 13, 1817–1833 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Bazan-Peregrino, M., Arvanitis, C. D., Rifai, B., Seymour, L. W. & Coussios, C. C. Ultrasound-induced cavitation enhances the delivery and therapeutic efficacy of an oncolytic virus in an in vitro model. J. Control. Release 157, 235–242 (2012).

    Article  CAS  PubMed  Google Scholar 

  225. Advani, S. J. et al. Increased oncolytic efficacy for high-grade gliomas by optimal integration of ionizing radiation into the replicative cycle of HSV-1. Gene Ther. 18, 1098–1102 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Aghi, M., Rabkin, S. & Martuza, R. L. Oncolytic herpes simplex virus mutants exhibit enhanced replication in glioma cells evading temozolomide chemotherapy through deoxyribonucleic acid repair. Clin. Neurosurg. 53, 65–76 (2006).

    PubMed  Google Scholar 

  227. Lin, S. F. et al. Synergy of a herpes oncolytic virus and paclitaxel for anaplastic thyroid cancer. Clin. Cancer Res. 14, 1519–1528 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Bennett, J. J. et al. Up-regulation of GADD34 mediates the synergistic anticancer activity of mitomycin C and a γ134.5 deleted oncolytic herpes virus (G207). FASEB J. 18, 1001–1003 (2004).

    Article  CAS  PubMed  Google Scholar 

  229. Kanai, R. et al. Effect of γ34.5 deletions on oncolytic herpes simplex virus activity in brain tumours. J. Virol. 86, 4420–4431 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Sei, S. et al. Synergistic antitumour activity of oncolytic reovirus and chemotherapeutic agents in non-small cell lung cancer cells. Mol. Cancer 8, 47 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Siurala, M. et al. Oncolytic adenovirus and doxorubicin-based chemotherapy results in synergistic antitumour activity against soft-tissue sarcoma. Int. J. Cancer 136, 945–954 (2015).

    Article  CAS  PubMed  Google Scholar 

  232. Touchefeu, Y., Vassaux, G. & Harrington, K. J. Oncolytic viruses in radiation oncology. Radiother. Oncol. 99, 262–270 (2011).

    Article  CAS  PubMed  Google Scholar 

  233. Harrington, K. J. et al. Phase I/II study of oncolytic HSV GM-CSF in combination with radiotherapy and cisplatin in untreated stage III/IV squamous cell cancer of the head and neck. Clin. Cancer Res. 16, 4005–4015 (2010).

    Article  CAS  PubMed  Google Scholar 

  234. Harrington, K. J., Melcher, A., Vassaux, G., Pandha, H. S. & Vile, R. G. Exploiting synergies between radiation and oncolytic viruses. Curr. Opin. Mol. Ther. 10, 362–370 (2008).

    PubMed  Google Scholar 

  235. Uhlman, M. A., Bing, M. T. & Lubaroff, D. M. Prostate cancer vaccines in combination with additional treatment modalities. Immunol. Res. 59, 236–242 (2014).

    Article  CAS  PubMed  Google Scholar 

  236. Roulstone, V. et al. BRAF-and MEK-targeted small molecule inhibitors exert enhanced antimelanoma effects in combination with oncolytic reovirus through ER stress. Mol. Ther. 23, 931–942 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Tikhmyanova, N., Schultz, D. C., Lee, T., Salvino, J. M. & Lieberman, P. M. Identification of a new class of small molecules that efficiently reactivate latent Epstein–Barr virus. ACS Chem. Biol. 9, 785–795 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Diallo, J.-S. et al. A high-throughput pharmacoviral approach identifies novel oncolytic virus sensitizers. Mol. Ther. 18, 1123–1129 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Otsuki, A. et al. Histone deacetylase inhibitors augment antitumour efficacy of herpes-based oncolytic viruses. Mol. Ther. 16, 1546–1555 (2008).

    Article  CAS  PubMed  Google Scholar 

  240. McKenzie, B. A. et al. In vitro screen of a small molecule inhibitor drug library identifies multiple compounds that synergize with oncolytic myxoma virus against human brain tumour-initiating cells. Neuro Oncol. 17, 1086–1094 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Law, B. K. Rapamycin: an anti-cancer immunosuppressant? Crit. Rev. Oncol. Hematol. 56, 47–60 (2005).

    Article  PubMed  Google Scholar 

  242. Stanford, M. M., Barrett, J. W., Nazarian, S. H., Werden, S. & McFadden, G. Oncolytic virotherapy synergism with signaling inhibitors: rapamycin increases myxoma virus tropism for human tumour cells. J. Virol. 81, 1251–1260 (2007).

    Article  CAS  PubMed  Google Scholar 

  243. Jimenez, J. A. et al. Antitumour activity of Ad-IU2, a prostate-specific replication-competent adenovirus encoding the apoptosis inducer, TRAIL. Cancer Gene Ther. 17, 180–191 (2010).

    Article  CAS  PubMed  Google Scholar 

  244. Abate-Daga, D. et al. Oncolytic adenoviruses armed with thymidine kinase can be traced by PET imaging and show potent antitumoural effects by ganciclovir dosing. PLoS ONE 6, e26142 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Cascante, A. et al. GCV modulates the antitumoural efficacy of a replicative adenovirus expressing the Tat8-TK as a late gene in a pancreatic tumour model. Gene Ther. 14, 1471–1480 (2007).

    Article  CAS  PubMed  Google Scholar 

  246. Kirn, D. H. The end of the beginning: oncolytic virotherapy achieves clinical proof-of-concept. Mol. Ther. 13, 237–238 (2006).

    Article  CAS  Google Scholar 

  247. Kasuya, H. et al. Selectivity of an oncolytic herpes simplex virus for cells expressing the DF3/MUC1 antigen. Cancer Res. 64, 2561–2567 (2004).

    Article  CAS  PubMed  Google Scholar 

  248. Yang, C. T. et al. Oncolytic herpesvirus with secretable angiostatic proteins in the treatment of human lung cancer cells. Anticancer Res. 25, 2049–2054 (2005).

    CAS  PubMed  Google Scholar 

  249. Zhang, G. et al. Enhanced antitumour efficacy of an oncolytic herpes simplex virus expressing an endostatin–angiostatin fusion gene in human glioblastoma stem cell xenografts. PLoS ONE 9, e95872 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Chai, L. et al. A novel conditionally replicating adenoviral vector with dual expression of IL-24 and arresten inserted in E1 and the region between E4 and fiber for improved melanoma therapy. Cancer Gene Ther. 19, 247–254 (2012).

    Article  CAS  PubMed  Google Scholar 

  251. Frentzen, A. et al. Anti-VEGF single-chain antibody GLAF-1 encoded by oncolytic vaccinia virus significantly enhances antitumour therapy. Proc. Natl Acad. Sci. USA 106, 12915–12920 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Choi, I. et al. Oncolytic adenovirus co-expressing IL-12 and IL-18 improves tumour-specific immunity via differentiation of T cells expressing IL-12Rβ2 or IL-18Rα. Gene Ther. 18, 898–909 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Jin, F., Xie, Z., Kuo, C. J., Chung, L. W. & Hsieh, C. L. Cotargeting tumour and tumour endothelium effectively inhibits the growth of human prostate cancer in adenovirus-mediated antiangiogenesis and oncolysis combination therapy. Cancer Gene Ther. 12, 257–267 (2005).

    Article  CAS  PubMed  Google Scholar 

  254. Thorne, S. H., Tam, B. Y., Kirn, D. H., Contag, C. H. & Kuo, C. J. Selective intratumoural amplification of an antiangiogenic vector by an oncolytic virus produces enhanced antivascular and anti-tumour efficacy. Mol. Ther. 13, 938–946 (2006).

    Article  CAS  PubMed  Google Scholar 

  255. Hu, Z. et al. Systemic delivery of oncolytic adenoviruses targeting transforming growth factor-β inhibits established bone metastasis in a prostate cancer mouse model. Hum. Gene Ther. 23, 871–882 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Gil, M. et al. CXCL12/CXCR4 blockade by oncolytic virotherapy inhibits ovarian cancer growth by decreasing immunosuppression and targeting cancer-initiating cells. J. Immunol. 193, 5327–5337 (2014).

    Article  CAS  PubMed  Google Scholar 

  257. Andtbacka, R. H. et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 33, 2780–2788 (2015).

    Article  CAS  PubMed  Google Scholar 

  258. Heo, J. et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat. Med. 19, 329–336 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Sprent, J. Antigen-presenting cells: professionals and amateurs. Curr. Biol. 5, 1095–1097 (1995).

    Article  CAS  PubMed  Google Scholar 

  260. Madan, R. A., Arlen, P. M., Mohebtash, M., Hodge, J. W. & Gulley, J. L. Prostvac-VF: a vector-based vaccine targeting PSA in prostate cancer. Expert Opin. Investig. Drugs 18, 1001–1011 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Vivier, E., Tomasello, E., Baratin, M., Walzer, T. & Ugolini, S. Functions of natural killer cells. Nat. Immunol. 9, 503–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  262. Pahl, J. & Cerwenka, A. Tricking the balance: NK cells in anti-cancer immunity. Immunobiology http://dx.doi.org/10.1016/j.imbio.2015.07.012 (2015).

  263. Janeway, C., Travers, P., Walport, M. & Shlomchik, M. Immunobiology: The Immune System in Health and Disease 6th edn (Garland Science, 2005).

    Google Scholar 

  264. Spurrell, E. L. & Lockley, M. Adaptive immunity in cancer immunology and therapeutics. Ecancermedicalscience 8, 441 (2014).

    PubMed  PubMed Central  Google Scholar 

  265. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Sunshine, J. & Taube, J. M. PD-1/PD-L1 inhibitors. Curr. Opin. Pharmacol. 23, 32–38 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Bracarda, S. et al. Immunologic checkpoints blockade in renal cell, prostate, and urothelial malignancies. Semin. Oncol. 42, 495–505 (2015).

    Article  PubMed  Google Scholar 

  268. Jochems, C. et al. A combination trial of vaccine plus ipilimumab in metastatic castration-resistant prostate cancer patients: immune correlates. Cancer Immunol. Immunother. 63, 407–418 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Ebelt, K. et al. Prostate cancer lesions are surrounded by FOXP3+, PD-1+ and B7-H1+ lymphocyte clusters. Eur. J. Cancer 45, 1664–1672 (2009).

    Article  CAS  PubMed  Google Scholar 

  270. Gevensleben, H. et al. The immune checkpoint regulator PD-L1 is highly expressed in aggressive primary prostate cancer. Clin. Cancer Res. 5, 1969–1977 (2016).

    Article  CAS  Google Scholar 

  271. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Taube, J. M. et al. Association of PD-1, PD-1 ligands, and other features of the tumour immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res. 20, 5064–5074 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Engeland, C. E. et al. CTLA-4 and PD-L1 checkpoint blockade enhances oncolytic measles virus therapy. Mol. Ther. 22, 1949–1959 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Rajani, K. et al. Combination therapy with reovirus and anti-PD-1 blockade controls tumour growth through innate and adaptive immune responses. Mol. Ther. 24, 166–174 (2016).

    Article  CAS  PubMed  Google Scholar 

  275. Au, G., Quah, M., Wong, Y. & Shafren, D. Combination of a novel oncolytic immunotherapeutic agent, CAVATAK (Coxsackievirus A21) and immune-checkpoint blockade significantly reduces tumour growth and improves survival in an immune competent mouse melanoma model. Presented at the 9th International conference on oncolytic virus therapeutics 2015, O-34 (2015).

  276. Saha, D., Martuza, R. L. & Rabkin, S. D. Immunovirotherapy in combination with immune checkpoint inhibitors for treating glioblastoma. Presented at the 9th International conference on oncolytic virus therapeutics 2015, P-61 (2015).

  277. Haseley, A. et al. Extracellular matrix protein CCN1 limits oncolytic efficacy in glioma. Cancer Res. 72, 1353–1362 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Wojton, J. & Kaur, B. Impact of tumour microenvironment on oncolytic viral therapy. Cytokine Growth Factor Rev. 21, 127–134 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Yaacov, B. et al. Extracellular matrix constituents interfere with Newcastle disease virus spread in solid tissue and diminish its potential oncolytic activity. J. Gen. Virol. 93, 1664–1672 (2012).

    Article  CAS  PubMed  Google Scholar 

  280. Yun, C. O. Overcoming the extracellular matrix barrier to improve intratumoural spread and therapeutic potential of oncolytic virotherapy. Curr. Opin. Mol. Ther. 10, 356–361 (2008).

    PubMed  Google Scholar 

  281. Power, A. T. & Bell, J. C. Taming the Trojan horse: optimizing dynamic carrier cell/oncolytic virus systems for cancer biotherapy. Gene Ther. 15, 772–779 (2008).

    Article  CAS  PubMed  Google Scholar 

  282. Power, A. T. et al. Carrier cell-based delivery of an oncolytic virus circumvents antiviral immunity. Mol. Ther. 15, 123–130 (2007).

    Article  CAS  PubMed  Google Scholar 

  283. Willmon, C. et al. Cell carriers for oncolytic viruses: Fed Ex for cancer therapy. Mol. Ther. 17, 1667–1676 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Ong, H., Hasegawa, K., Dietz, A., Russell, S. & Peng, K. Evaluation of T cells as carriers for systemic measles virotherapy in the presence of antiviral antibodies. Gene Ther. 14, 324–333 (2007).

    Article  CAS  PubMed  Google Scholar 

  285. Iankov, I. D. et al. Infected cell carriers: a new strategy for systemic delivery of oncolytic measles viruses in cancer virotherapy. Mol. Ther. 15, 114–122 (2007).

    Article  CAS  PubMed  Google Scholar 

  286. Ilett, E. J. et al. Dendritic cells and T cells deliver oncolytic reovirus for tumour killing despite pre-existing anti-viral immunity. Gene Ther. 16, 689–699 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Peng, K. W. et al. Tumour-associated macrophages infiltrate plasmacytomas and can serve as cell carriers for oncolytic measles virotherapy of disseminated myeloma. Am. J. Hematol. 84, 401–407 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Thorne, S. H. et al. Targeting localized immune suppression within the tumour through repeat cycles of immune cell-oncolytic virus combination therapy. Mol. Ther. 18, 1698–1705 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Adair, R. A. et al. Cell carriage, delivery, and selective replication of an oncolytic virus in tumour in patients. Sci. Transl. Med. 4, 138ra77 (2012).

    PubMed  PubMed Central  Google Scholar 

  290. Eisenstein, S. et al. Myeloid-derived suppressor cells as a vehicle for tumour-specific oncolytic viral therapy. Cancer Res. 73, 5003–5015 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Pan, Q. et al. Synergistic induction of tumour cell death by combining cisplatin with an oncolytic adenovirus carrying TRAIL. Mol. Cell. Biochem. 304, 315–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  292. Komarova, S., Kawakami, Y., Stoff-Khalili, M. A., Curiel, D. T. & Pereboeva, L. Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol. Cancer Ther. 5, 755–766 (2006).

    Article  CAS  PubMed  Google Scholar 

  293. Sonabend, A. M. et al. Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells 26, 831–841 (2008).

    Article  CAS  PubMed  Google Scholar 

  294. Jevremovic, D. et al. Use of blood outgrowth endothelial cells as virus-producing vectors for gene delivery to tumours. Am. J. Physiol. Heart Circ. Physiol. 287, H494–H500 (2004).

    Article  CAS  PubMed  Google Scholar 

  295. Muthana, M. et al. Use of macrophages to target therapeutic adenovirus to human prostate tumours. Cancer Res. 71, 1805–1815 (2011).

    Article  CAS  PubMed  Google Scholar 

  296. Muthana, M. et al. Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting. Nat. Commun. 6, 8009 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Yang, L. et al. Suppression of ovarian cancer growth via systemic administration with liposome-encapsulated adenovirus-encoding endostatin. Cancer Gene Ther. 17, 49–57 (2010).

    Article  CAS  PubMed  Google Scholar 

  298. Mendez, N. et al. Encapsulation of adenovirus serotype 5 in anionic lecithin liposomes using a bead-based immunoprecipitation technique enhances transfection efficiency. Biomaterials 35, 9554–9561 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Kwon, O. J., Kang, E., Choi, J. W., Kim, S. W. & Yun, C. O. Therapeutic targeting of chitosan–PEG–folate-complexed oncolytic adenovirus for active and systemic cancer gene therapy. J. Control. Release 169, 257–265 (2013).

    Article  CAS  PubMed  Google Scholar 

  300. Choi, J. W. et al. Tuning surface charge and PEGylation of biocompatible polymers for efficient delivery of nucleic acid or adenoviral vector. Bioconjug. Chem. 26, 1818–1829 (2015).

    Article  CAS  PubMed  Google Scholar 

  301. Kim, P. H. et al. Active targeting and safety profile of PEG-modified adenovirus conjugated with herceptin. Biomaterials 32, 2314–2326 (2011).

    Article  CAS  PubMed  Google Scholar 

  302. Vetter, A. et al. Adenoviral vectors coated with PAMAM dendrimer conjugates allow CAR independent virus uptake and targeting to the EGF receptor. Mol. Pharm. 10, 606–618 (2013).

    Article  CAS  PubMed  Google Scholar 

  303. Fisher, K. D. & Seymour, L. W. HPMA copolymers for masking and retargeting of therapeutic viruses. Adv. Drug Deliv. Rev. 62, 240–245 (2010).

    Article  CAS  PubMed  Google Scholar 

  304. Choi, J. W. et al. Hepatoma targeting peptide conjugated bio-reducible polymer complexed with oncolytic adenovirus for cancer gene therapy. J. Control. Release 220, 691–703 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Kim, J., Nam, H. Y., Choi, J. W., Yun, C. O. & Kim, S. W. Efficient lung orthotopic tumour-growth suppression of oncolytic adenovirus complexed with RGD-targeted bioreducible polymer. Gene Ther. 21, 476–483 (2014).

    Article  CAS  PubMed  Google Scholar 

  306. Carosella, E. D., Ploussard, G., LeMaoult, J. & Desgrandchamps, F. A. Systematic review of immunotherapy in urologic cancer: evolving roles for targeting of CTLA-4, PD-1/PD-L1, and HLA-G. Eur. Urol. 68, 267–279 (2015).

    Article  CAS  PubMed  Google Scholar 

  307. Dong, B., Minze, L. J., Xue, W. & Chen, W. Molecular insights into the development of T cell-based immunotherapy for prostate cancer. Expert Rev. Clin. Immunol. 10, 1547–1557 (2014).

    Article  CAS  PubMed  Google Scholar 

  308. Nemerow, G. R., Stewart, P. L. & Reddy, V. S. Structure of human adenovirus. Curr. Opin. Virol. 2, 115–121 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Uusi-Kerttula, H., Hulin-Curtis, S., Davies, J. & Parker, A. L. Oncolytic adenovirus: strategies and insights for vector design and immuno-oncolytic applications. Viruses 7, 6009–6042 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Roizman, B. & Sears, A. (eds) Herpes Simplex Viruses and their replication (New York Raven Press, 1990).

    Google Scholar 

  311. Zhang, S. X. Turning killer into cure — the story of oncolytic herpes simplex viruses. Discov. Med. 20, 303–309 (2015).

    PubMed  Google Scholar 

  312. Ning, J. & Wakimoto, H. Oncolytic herpes simplex virus-based strategies: toward a breakthrough in glioblastoma therapy. Front. Microbiol. 5, 303 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  313. Johnson, L., Gupta, A. K., Ghafoor, A., Akin, D. & Bashir, R. Characterization of vaccinia virus particles using microscale silicon cantilever resonators and atomic force microscopy. Sens. Actuators B Chem. 115, 189–197 (2006).

    Article  CAS  Google Scholar 

  314. Moss, B. Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety. Proc. Natl Acad. Sci. USA 93, 11341–11348 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Jefferson, A., Cadet, V. E. & Hielscher, A. The mechanisms of genetically modified vaccinia viruses for the treatment of cancer. Crit. Rev. Oncol. Hematol. 95, 407–416 (2015).

    Article  PubMed  Google Scholar 

  316. Kim, M. Replicating poxviruses for human cancer therapy. J. Microbiol. 53, 209–218 (2015).

    Article  CAS  PubMed  Google Scholar 

  317. Shmulevitz, M., Marcato, P. & Lee, P. W. Unshackling the links between reovirus oncolysis, Ras signaling, translational control and cancer. Oncogene 24, 7720–7728 (2005).

    Article  CAS  PubMed  Google Scholar 

  318. Coffey, M. C., Strong, J. E., Forsyth, P. A. & Lee, P. W. Reovirus therapy of tumours with activated Ras pathway. Science 282, 1332–1334 (1998).

    Article  CAS  PubMed  Google Scholar 

  319. Lichty, B. D., Power, A. T., Stojdl, D. F. & Bell, J. C. Vesicular stomatitis virus: re-inventing the bullet. Trends Mol. Med. 10, 210–216 (2004).

    Article  CAS  PubMed  Google Scholar 

  320. Balachandran, S. & Barber, G. N. Vesicular stomatitis virus (VSV) therapy of tumours. IUBMB Life 50, 135–138 (2000).

    Article  CAS  PubMed  Google Scholar 

  321. Stojdl, D. F. et al. Exploiting tumour-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat. Med. 6, 821–825 (2000).

    Article  CAS  PubMed  Google Scholar 

  322. Rodriguez, R. et al. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res. 57, 2559–2563 (1997).

    CAS  PubMed  Google Scholar 

  323. Yu, D. C., Chen, Y., Seng, M., Dilley, J. & Henderson, D. R. The addition of adenovirus type 5 region E3 enables calydon virus 787 to eliminate distant prostate tumour xenografts. Cancer Res. 59, 4200–4203 (1999).

    CAS  PubMed  Google Scholar 

  324. Rogulski, K. R. et al. Double suicide gene therapy augments the antitumour activity of a replication-competent lytic adenovirus through enhanced cytotoxicity and radiosensitization. Hum. Gene Ther. 11, 67–76 (2000).

    Article  CAS  PubMed  Google Scholar 

  325. Neuman, E., Flemington, E. K., Sellers, W. R. & Kaelin, W. G. Jr. Transcription of the E2F-1 gene is rendered cell cycle dependent by E2F DNA-binding sites within its promoter. Mol. Cell. Biol. 15, 4660 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Dranoff, G. et al. Vaccination with irradiated tumour cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumour immunity. Proc. Natl Acad. Sci. USA 90, 3539–3543 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Janetzki, S. et al. Immunization of cancer patients with autologous cancer-derived heat shock protein gp96 preparations: a pilot study. Int. J. Cancer 88, 232–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  328. Huang, X. F. et al. A broadly applicable, personalized heat shock protein-mediated oncolytic tumour vaccine. Cancer Res. 63, 7321–7329 (2003).

    CAS  PubMed  Google Scholar 

  329. Strong, J. E. & Lee, P. W. The v-erbB oncogene confers enhanced cellular susceptibility to reovirus infection. J. Virol. 70, 612–616 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  330. Gong, J. & Mita, M. M. Activated Ras signaling pathways and reovirus oncolysis: an update on the mechanism of preferential reovirus replication in cancer cells. Front. Oncol. 4, 167 (2014).

    PubMed  PubMed Central  Google Scholar 

  331. Bauzon, M., Jin, F., Kretschmer, P. & Hermiston, T. In vitro analysis of cidofovir and genetically engineered TK expression as potential approaches for the intervention of ColoAd1-based treatment of cancer. Gene Ther. 16, 1169–1174 (2009).

    Article  CAS  PubMed  Google Scholar 

  332. US National Library of Science. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02028442 (2015).

  333. US National Library of Science. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02143804 (2015).

  334. US National Library of Science. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02365818 (2016).

  335. US National Library of Science. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00109655 (2008).

  336. US National Library of Science. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01438112 (2015).

  337. Bjørge, L., Jensen, T. S. & Matre, R. Characterisation of the complement-regulatory proteins decay-accelerating factor (DAF, CD55) and membrane cofactor protein (MCP, CD46) on a human colonic adenocarcinoma cell line. Cancer Immunol. Immunother. 42, 185–192 (1996).

    Article  PubMed  Google Scholar 

  338. Regidor, P., Callies, R., Regidor, M. & Schindler, A. Expression of the cell adhesion molecules ICAM-1 and VCAM-1 in the cytosol of breast cancer tissue, benign breast tissue and corresponding sera. Eur. J. Gynaecol. Oncol. 19, 377–383 (1997).

    Google Scholar 

  339. Kageshita, T. et al. Clinical relevance of ICAM-1 expression in primary lesions and serum of patients with malignant melanoma. Cancer Res. 53, 4927–4932 (1993).

    CAS  PubMed  Google Scholar 

  340. US National Library of Science. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00005916(2015).

  341. Madan, R. A., Arlen, P. M. & Gulley, J. L. PANVAC-VF: poxviral-based vaccine therapy targeting CEA and MUC1 in carcinoma. Expert Opin. Biol. Ther. 7, 543–554 (2007).

    Article  CAS  PubMed  Google Scholar 

  342. US National Library of Science. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02015104 (2016).

  343. Parato, K. A. et al. The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers. Mol. Ther. 20, 749–758 (2012).

    Article  CAS  PubMed  Google Scholar 

  344. Tamura, Y., Peng, P., Liu, K., Daou, M. & Srivastava, P. K. Immunotherapy of tumours with autologous tumour-derived heat shock protein preparations. Science 278, 117–120 (1997).

    Article  CAS  PubMed  Google Scholar 

  345. Obuchi, M., Fernandez, M. & Barber, G. N. Development of recombinant vesicular stomatitis viruses that exploit defects in host defense to augment specific oncolytic activity. J. Virol. 77, 8843–8856 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Biron, C. A. Role of early cytokines, including alpha and beta interferons (IFN-α/β), in innate and adaptive immune responses to viral infections. Sem. Immunol. 10, 383–390 (1998).

    Article  CAS  Google Scholar 

  347. Kirn, D. H., Wang, Y., Le Boeuf, F., Bell, J. & Thorne, S. H. Targeting of interferon-beta to produce a specific, multi-mechanistic oncolytic vaccinia virus. PLoS Med. 4, e353 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Parker, J. N. et al. Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumours. Proc. Natl Acad. Sci. USA 97, 2208–2213 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Passer, B. J. et al. Combination of vinblastine and oncolytic herpes simplex virus vector expressing IL-12 therapy increases antitumour and antiangiogenic effects in prostate cancer models. Cancer Gene Ther. 20, 17–24 (2013).

    Article  CAS  PubMed  Google Scholar 

  350. Freytag, S. O., Barton, K. N. & Zhang, Y. Efficacy of oncolytic adenovirus expressing suicide genes and interleukin-12 in preclinical model of prostate cancer. Gene Ther. 20, 1131–1139 (2013).

    Article  CAS  PubMed  Google Scholar 

  351. Beaulieu, A. M., Madera, S. & Sun, J. C. Molecular programming of immunological memory in natural killer cells. Adv. Exp. Med. Biol. 850, 81–91 (2015).

    Article  CAS  PubMed  Google Scholar 

  352. Zundler, S. & Neurath, M. F. Interleukin-12: functional activities and implications for disease. Cytokine Growth Factor Rev. 26, 559–568 (2015).

    Article  CAS  PubMed  Google Scholar 

  353. Zheng, J. N. et al. Potent antitumour efficacy of interleukin-18 delivered by conditionally replicative adenovirus vector in renal cell carcinoma-bearing nude mice via inhibition of angiogenesis. Cancer Biol. Ther. 8, 599–606 (2009).

    Article  CAS  PubMed  Google Scholar 

  354. Fukuhara, H., Ino, Y., Kuroda, T., Martuza, R. L. & Todo, T. Triple gene-deleted oncolytic herpes simplex virus vector double-armed with interleukin 18 and soluble B7-1 constructed by bacterial artificial chromosome-mediated system. Cancer Res. 65, 10663–10668 (2005).

    Article  CAS  PubMed  Google Scholar 

  355. Fabbi, M., Carbotti, G. & Ferrini, S. Context- dependent role of IL-18 in cancer biology and counter-regulation by IL-18BP. J. Leukoc. Biol. 97, 665–675 (2015).

    Article  CAS  PubMed  Google Scholar 

  356. Lee, Y. S. et al. Enhanced antitumour effect of oncolytic adenovirus expressing interleukin-12 and B7-1 in an immunocompetent murine model. Clin. Cancer Res. 12, 5859–5868 (2006).

    Article  CAS  PubMed  Google Scholar 

  357. Tong, Y. et al. PI3K inhibitor LY294002 inhibits activation of the Akt/mTOR pathway induced by an oncolytic adenovirus expressing TRAIL and sensitizes multiple myeloma cells to the oncolytic virus. Oncol. Rep. 31, 1581–1588 (2014).

    Article  CAS  PubMed  Google Scholar 

  358. Lee, G. H. et al. The role of CD40 expression in dendritic cells in cancer biology; a systematic review. Curr. Cancer Drug Targets 14, 610–620 (2014).

    Article  CAS  PubMed  Google Scholar 

  359. Hassan, S. B., Sorensen, J. F., Olsen, B. N. & Pedersen, A. E. Anti-CD40-mediated cancer immunotherapy: an update of recent and ongoing clinical trials. Immunopharmacol. Immunotoxicol. 36, 96–104 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Z.D., K.Z., P.S.R. and W.J. researched data for the article and made substantial contributions to the discussion of its content. Z.D., K.Z. and W.J. wrote the article. P.S.R. and W.J. reviewed and/or edited the manuscript before submission. Z.D. and K.Z. contributed equally to the preparation of this article.

Corresponding author

Correspondence to William Jia.

Ethics declarations

Competing interests

W.J. is a founder and director of Virogin Biotech Ltd, a company developing oncolytic viruses for cancer treatment. Z.D., K.Z. and P.S.R. declare no competing interests.

Related links

FURTHER INFORMATION

FDA press release

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delwar, Z., Zhang, K., Rennie, P. et al. Oncolytic virotherapy for urological cancers. Nat Rev Urol 13, 334–352 (2016). https://doi.org/10.1038/nrurol.2016.84

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2016.84

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer