Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Extracellular vesicles — new tool for joint repair and regeneration

Abstract

Cell-derived extracellular vesicles (EVs), present in synovial fluid and cartilage extracellular matrix (ECM), are involved in joint development and in the regulation of joint homeostasis. Although the exact function of EVs in these processes remains incompletely defined, the knowledge already acquired in this field suggests a role for these EVs as biomarkers of joint disease, and as a new tool to restore joint homeostasis and enhance articular tissue regeneration. In addition to direct injection of therapeutic EVs into the target site, surface coating of scaffolds and embedding of EVs in hydrogels might also lead to novel therapeutic possibilities. Based on the existing literature of EVs in synovial fluid and articular tissues, and investigation of the molecular factors (including microRNAs) active in joint homeostasis (or during its disturbance), we postulate novel perspectives for the implementation of EVs as a regenerative medicine approach in joint repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed mechanisms of EV-mediated communication in inflammatory joint disease.
Figure 2: Proposed applications of EVs in joint disease.

Similar content being viewed by others

References

  1. Witwer, K. W. et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles http://dx.doi.org/10.3402/jev.v2i0.20360 (2013).

  2. Berckmans, R. J. et al. Cell-derived microparticles in synovial fluid from inflamed arthritic joints support coagulation exclusively via a factor VII-dependent mechanism. Arthritis Rheum. 46, 2857–2866 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Thery, C., Zitvogel, L. & Amigorena, S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2, 569–579 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Thery, C., Ostrowski, M. & Segura, E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9, 581–593 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Yanez-Mo, M. et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 4, 27066 (2015).

    Article  PubMed  Google Scholar 

  7. Zomer, A. et al. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161, 1046–1057 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ridder, K. et al. Extracellular vesicle-mediated transfer of genetic information between the hematopoietic system and the brain in response to inflammation. PLoS Biol. 12, e1001874 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Anderson, H. C. Vesicles associated with calcification in the matrix of epiphyseal cartilage. J. Cell Biol. 41, 59–72 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Anderson, H. C. Matrix vesicles and calcification. Curr. Rheumatol. Rep. 5, 222–226 (2003).

    Article  PubMed  Google Scholar 

  11. Nahar, N. N., Missana, L. R., Garimella, R., Tague, S. E. & Anderson, H. C. Matrix vesicles are carriers of bone morphogenetic proteins (BMPs), vascular endothelial growth factor (VEGF), and noncollagenous matrix proteins. J. Bone Miner. Metab. 26, 514–519 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Fourcade, O. et al. Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells. Cell 80, 919–927 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Buzas, E. I., Gyorgy, B., Nagy, G., Falus, A. & Gay, S. Emerging role of extracellular vesicles in inflammatory diseases. Nat. Rev. Rheumatol. 10, 356–364 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Goldring, M. B. & Marcu, K. B. Cartilage homeostasis in health and rheumatic diseases. Arthritis Res. Ther. 11, 224 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Berckmans, R. J. et al. Synovial microparticles from arthritic patients modulate chemokine and cytokine release by synoviocytes. Arthritis Res. Ther. 7, R536–R544 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Messer, L. et al. Microparticle-induced release of B-lymphocyte regulators by rheumatoid synoviocytes. Arthritis Res. Ther. 11, R40 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Reich, N. et al. Microparticles stimulate angiogenesis by inducing ELR+ CXC-chemokines in synovial fibroblasts. J. Cell. Mol. Med. 15, 756–762 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Kato, T. et al. Exosomes from IL-1β stimulated synovial fibroblasts induce osteoarthritic changes in articular chondrocytes. Arthritis Res. Ther. 16, R163 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jungel, A. et al. Microparticles stimulate the synthesis of prostaglandin E2 via induction of cyclooxygenase 2 and microsomal prostaglandin E synthase 1. Arthritis Rheum. 56, 3564–3574 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Distler, J. H. et al. The induction of matrix metalloproteinase and cytokine expression in synovial fibroblasts stimulated with immune cell microparticles. Proc. Natl Acad. Sci. USA 102, 2892–2897 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gyorgy, B. et al. Improved flow cytometric assessment reveals distinct microvesicle (cell-derived microparticle) signatures in joint diseases. PLoS ONE 7, e49726 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, H. et al. A membrane form of TNF-α presented by exosomes delays T cell activation-induced cell death. J. Immunol. 176, 7385–7393 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Boilard, E. et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327, 580–583 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Duchez, A. C. et al. Platelet microparticles are internalized in neutrophils via the concerted activity of 12-lipoxygenase and secreted phospholipase A2-IIA. Proc. Natl Acad. Sci. USA 112, E3564–E3573 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cloutier, N. et al. The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes. EMBO Mol. Med. 5, 235–249 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Skriner, K., Adolph, K., Jungblut, P. R. & Burmester, G. R. Association of citrullinated proteins with synovial exosomes. Arthritis Rheum. 54, 3809–3814 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Mor-Vaknin, N. et al. The DEK nuclear autoantigen is a secreted chemotactic factor. Mol. Cell. Biol. 26, 9484–9496 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sillat, T. et al. Toll-like receptors in human chondrocytes and osteoarthritic cartilage. Acta Orthop. 84, 585–592 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hu, F. et al. Toll-like receptors expressed by synovial fibroblasts perpetuate Th1 and Th17 cell responses in rheumatoid arthritis. PLoS ONE 9, e100266 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Gomez, R., Villalvilla, A., Largo, R., Gualillo, O. & Herrero-Beaumont, G. TLR4 signalling in osteoarthritis — finding targets for candidate DMOADs. Nat. Rev. Rheumatol. 11, 159–170 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Bretz, N. P. et al. Body fluid exosomes promote secretion of inflammatory cytokines in monocytic cells via Toll-like receptor signaling. J. Biol. Chem. 288, 36691–36702 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim, H. A. et al. The catabolic pathway mediated by Toll-like receptors in human osteoarthritic chondrocytes. Arthritis Rheum. 54, 2152–2163 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Liu-Bryan, R. & Terkeltaub, R. Chondrocyte innate immune myeloid differentiation factor 88-dependent signaling drives procatabolic effects of the endogenous Toll-like receptor 2/Toll-like receptor 4 ligands low molecular weight hyaluronan and high mobility group box chromosomal protein 1 in mice. Arthritis Rheum. 62, 2004–2012 (2010).

    PubMed  PubMed Central  Google Scholar 

  34. Lo Cicero, A., Majkowska, I., Nagase, H., Di Liegro, I. & Troeberg, L. Microvesicles shed by oligodendroglioma cells and rheumatoid synovial fibroblasts contain aggrecanase activity. Matrix Biol. 31, 229–233 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Pasztoi, M. et al. The recently identified hexosaminidase D enzyme substantially contributes to the elevated hexosaminidase activity in rheumatoid arthritis. Immunol. Lett. 149, 71–76 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Pasztoi, M. et al. Gene expression and activity of cartilage degrading glycosidases in human rheumatoid arthritis and osteoarthritis synovial fibroblasts. Arthritis Res. Ther. 11, R68 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Mu, W., Rana, S. & Zoller, M. Host matrix modulation by tumor exosomes promotes motility and invasiveness. Neoplasia 15, 875–887 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Smith, M. M. & Ghosh, P. The synthesis of hyaluronic acid by human synovial fibroblasts is influenced by the nature of the hyaluronate in the extracellular environment. Rheumatol. Int. 7, 113–122 (1987).

    Article  PubMed  Google Scholar 

  39. Bellingham, S. A., Coleman, B. M. & Hill, A. F. Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res. 40, 10937–10949 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cheng, L., Sun, X., Scicluna, B. J., Coleman, B. M. & Hill, A. F. Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine. Kidney Int. 86, 433–444 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Gernapudi, R. et al. Targeting exosomes from preadipocytes inhibits preadipocyte to cancer stem cell signaling in early-stage breast cancer. Breast Cancer Res. Treat. 150, 685–695 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hong, E. & Reddi, A. H. MicroRNAs in chondrogenesis, articular cartilage, and osteoarthritis: implications for tissue engineering. Tissue Eng. Part B. Rev. 18, 445–453 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Miyaki, S. et al. MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum. 60, 2723–2730 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamasaki, K. et al. Expression of microRNA-146a in osteoarthritis cartilage. Arthritis Rheum. 60, 1035–1041 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nakasa, T., Shibuya, H., Nagata, Y., Niimoto, T. & Ochi, M. The inhibitory effect of microRNA-146a expression on bone destruction in collagen-induced arthritis. Arthritis Rheum. 63, 1582–1590 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Boukouris, S. & Mathivanan, S. Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteomics Clin. Appl. 9, 358–367 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cheng, L., Sharples, R. A., Scicluna, B. J. & Hill, A. F. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J. Extracell. Vesicles 3, 23743 (2014).

    Article  Google Scholar 

  48. Julich, H., Willms, A., Lukacs-Kornek, V. & Kornek, M. Extracellular vesicle profiling and their use as potential disease specific biomarker. Front. Immunol. 5, 413 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Skog, J. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10, 1470–1476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vanniasinghe, A. S. et al. Targeting fibroblast-like synovial cells at sites of inflammation with peptide targeted liposomes results in inhibition of experimental arthritis. Clin. Immunol. 151, 43–54 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Metselaar, J. M. et al. Liposomal targeting of glucocorticoids to synovial lining cells strongly increases therapeutic benefit in collagen type II arthritis. Ann. Rheum. Dis. 63, 348–353 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim, S. H. et al. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. J. Immunol. 174, 6440–6448 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Heldring, N., Mager, I., Wood, M. J., Le Blanc, K. & Andaloussi, S. E. Therapeutic potential of multipotent mesenchymal stromal cells and their extracellular vesicles. Hum. Gene Ther. 26, 506–517 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Kordelas, L. et al. MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 28, 970–973 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. MacDonald, G. I., Augello, A. & De Bari, C. Role of mesenchymal stem cells in reestablishing immunologic tolerance in autoimmune rheumatic diseases. Arthritis Rheum. 63, 2547–2557 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Robbins, P. D. & Morelli, A. E. Regulation of immune responses by extracellular vesicles. Nat. Rev. Immunol. 14, 195–208 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. De Jong, O. G., Van Balkom, B. W., Schiffelers, R. M., Bouten, C. V. & Verhaar, M. C. Extracellular vesicles: potential roles in regenerative medicine. Front. Immunol. 5, 608 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. Grande, D. A., Schwartz, J. A., Brandel, E., Chahine, N. O. & Sgaglione, N. Articular cartilage repair: where we have been, where we are now, and where we are headed. Cartilage 4, 281–285 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Savkovic, V. et al. Mesenchymal stem cells in cartilage regeneration. Curr. Stem Cell. Res. Ther. 9, 469–488 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. De Windt, T. S. et al. Concise review: unraveling stem cell cocultures in regenerative medicine: which cell interactions steer cartilage regeneration and how? Stem Cells Transl. Med. 3, 723–733 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  62. Caplan, A. I. & Correa, D. The MSC: an injury drugstore. Cell Stem Cell 9, 11–15 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Camussi, G., Deregibus, M. C., Bruno, S., Cantaluppi, V. & Biancone, L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 78, 838–848 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Bruno, S. et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J. Am. Soc. Nephrol. 20, 1053–1067 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Baglio, S. R., Pegtel, D. M. & Baldini, N. Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front. Physiol. 3, 359 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lamichhane, T. N. et al. Emerging roles for extracellular vesicles in tissue engineering and regenerative medicine. Tissue Eng. Part B. Rev. 21, 45–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Vonk, L. A., Kragten, A. H., Dhert, W. J., Saris, D. B. & Creemers, L. B. Overexpression of hsa-miR-148a promotes cartilage production and inhibits cartilage degradation by osteoarthritic chondrocytes. Osteoarthr. Cartil. 22, 145–153 (2014).

    Article  CAS  Google Scholar 

  68. Record, M., Carayon, K., Poirot, M. & Silvente-Poirot, S. Exosomes as new vesicular lipid transporters involved in cell–cell communication and various pathophysiologies. Biochim. Biophys. Acta 1841, 108–120 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Cloutier, N. et al. Platelets can enhance vascular permeability. Blood 120, 1334–1343 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Smith, B. D. & Grande, D. A. The current state of scaffolds for musculoskeletal regenerative applications. Nat. Rev. Rheumatol. 11, 213–222 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Samad, A., Sultana, Y. & Aqil, M. Liposomal drug delivery systems: an update review. Curr. Drug Deliv. 4, 297–305 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Sawada, S. et al. Functional polymer gel–exosomes hybrids for drug delivery system and tissue engineering. [abstract P4C-192], Presented at the 2014 ISEV Annual Meeting (2014).

  73. Malda, J. et al. 25th anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 25, 5011–5028 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Visser, J. et al. Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication 5, 035007 (2013).

    Article  PubMed  CAS  Google Scholar 

  75. Dai, S. et al. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol. Ther. 16, 782–790 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Wiklander, O. P. et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J. Extracell. Vesicles 4, 26316 (2015).

    Article  PubMed  Google Scholar 

  77. Ohno, S. et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol. Ther. 21, 185–191 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Hurtig, M. B. et al. Preclinical studies for cartilage repair: recommendations from the International Cartilage Repair Society. Cartilage 2, 137–152 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bergknut, N. et al. The dog as an animal model for intervertebral disc degeneration? Spine (Phila. Pa 1976) 37, 351–358 (2012).

    Article  PubMed  Google Scholar 

  80. Malda, J. et al. Comparative study of depth-dependent characteristics of equine and human osteochondral tissue from the medial and lateral femoral condyles. Osteoarthr. Cartil. 20, 1147–1151 (2012).

    Article  CAS  Google Scholar 

  81. Lotvall, J. et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 3, 26913 (2014).

    Article  PubMed  Google Scholar 

  82. Gyorgy, B. et al. Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood 117, e39–e48 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' research work is supported by the Dutch Arthritis Foundation (grant numbers LLP-12 and LLP-22; J.M., P.R.W.), the EU Seventh Framework Programme (FP7/2007–2013, grant agreement 309962 [HydroZONES]) (J.M.), the European Research Council (grant agreement 647426 [3D-JOINT]) (J.M., P.R.W.), and a grant from the Dutch government to the Netherlands Institute for Regenerative Medicine (NIRM, grant number FES0908) (J.B.).

Author information

Authors and Affiliations

Authors

Contributions

J.M. and J.B. contributed equally to researching data for the article and writing the manuscript. All authors made substantial contributions to discussion of content and to review and edit the manuscript before submission.

Corresponding author

Correspondence to Marca H. M. Wauben.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malda, J., Boere, J., van de Lest, C. et al. Extracellular vesicles — new tool for joint repair and regeneration. Nat Rev Rheumatol 12, 243–249 (2016). https://doi.org/10.1038/nrrheum.2015.170

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2015.170

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing