Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Standardization of autoantibody testing: a paradigm for serology in rheumatic diseases

Key Points

  • Autoantibody measurement is required for the adequate diagnosis and management of systemic autoimmune rheumatic diseases

  • The advent of new techniques, as well as the increasing number of autoimmune diagnostic laboratories, raises the issues of assay variability and reproducibility

  • As a consequence, harmonization of the available assays is becoming increasingly urgent

  • The availability of suitable reference material for calibration and quality control is emerging as a valuable tool for increasing assay reliability

  • Initiatives for harmonization of testing have been started by several international committees and organizations

Abstract

Autoantibody measurement is an excellent tool to confirm the diagnosis of rheumatic autoimmune diseases. Hence, reliability and harmonization of autoantibody testing are essential, but these issues are still a matter of debate. Intrinsic variability in analytes and reagents as well as heterogeneity of the techniques are the main reasons for discrepancies in inter-laboratory variations and reporting of test results. This lack of reliability might be responsible for wrong or missed diagnoses, as well as additional costs due to assay repetition, unnecessary use of confirmatory tests and/or consequent diagnostic investigations. To overcome such issues, the standardization of autoantibody testing requires efforts on all aspects of the assays, including the definition of the analyte, the pre-analytical stages, the calibration method and the reporting of results. As part of such efforts, the availability of suitable reference materials for calibration and quality control would enable the development of a reliable reference system. Strong-positive sera from patients have been used as reference materials in most of the autoantibody assays for rheumatic diseases; however, antigen-affinity-purified immunoglobulin fractions or in some cases reliable monoclonal antibody preparations offer more adequate tools for standardization. Systematic assessments of reference materials are currently underway, and preliminary results appear to be encouraging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sen, D. & Brasington, R. Tight disease control in early RA. Rheum. Dis. Clin. North Am. 38, 327–343 (2012).

    Article  Google Scholar 

  2. Ghirardello, A. et al. Diagnostic accuracy of currently available anti-double-stranded DNA antibody assays. An Italian multicentre study. Clin. Exp. Rheumatol. 29, 50–56 (2011).

    PubMed  Google Scholar 

  3. van Venrooij, W. J., van Beers, J. J. & Pruijn, G. J. Anti-CCP antibodies: the past, the present and the future. Nat. Rev. Rheumatol. 7, 391–398 (2011).

    Article  CAS  Google Scholar 

  4. Silva, F., Hummel, A. M., Jenne, D. E. & Specks, U. Discrimination and variable impact of ANCA binding to different surface epitopes on proteinase 3, the Wegener's autoantigen. J. Autoimmun. 35, 299–308 (2010).

    Article  CAS  Google Scholar 

  5. Sun, J. et al. Capture-ELISA based on recombinant PR3 is sensitive for PR3-ANCA testing and allows detection of PR3 and PR3-ANCA/PR3 immune complexes. J. Immunol. Methods 1, 111–123 (1998).

    Article  Google Scholar 

  6. Galli, M., Luciani, D., Bertolini, G. & Barbui, T. Anti-β2-glycoprotein I, antiprothrombin antibodies, and the risk of thrombosis in the antiphospholipid syndrome. Blood 102, 2717–2723 (2003).

    Article  CAS  Google Scholar 

  7. Pregnolato, F. & Chighizola, C. in Autoantibodies 3rd edn (eds Shoenfeld, Y., Gershwin, M. E. & Meroni, P. L.) Ch. 88 (Elsevier, in press).

  8. Mahler, M. & Fritzler, M. J. Epitope specificity and significance in systemic autoimmune diseases. Ann. NY Acad. Sci. 1183, 267–287 (2010).

    Article  CAS  Google Scholar 

  9. de Laat, B. et al. Immune responses against domain I of β2-glycoprotein I are driven by conformational changes: domain I of β2-glycoprotein I harbors a cryptic immunogenic epitope. Arthritis Rheum. 63, 3960–3968 (2011).

    Article  CAS  Google Scholar 

  10. Wolin, S. L. & Reinisch, K. M. The Ro 60 kDa autoantigen comes into focus: interpreting epitope mapping experiments on the basis of structure. Autoimmun. Rev. 5, 367–372 (2006).

    Article  CAS  Google Scholar 

  11. Autoantibody Standardization Committee. AutoAb.org [online], (2012).

  12. European Autoimmunity Standardisation Initiative. EASI Network [online], (2013).

  13. Harmonisation of Autoantibody Tests (WG-HAT). International Federation of Clinical Chemistry and Laboratory Medicine [online], (2013).

  14. United Kingdom National External Quality Assessment Service. UK NEQAS [online], (2013).

  15. Vesper, H. W. et al. Characterisation and qualification of commutable reference materials for laboratory medicine: approved guideline. CLSI Document C53-A Vol. 30–12 Wayne (PA): CLSI, 2010.

    Google Scholar 

  16. Schimmel, H., Zegers, I. & Emons, H. Standardization of protein biomarker measurements: is it feasible? Scand. J. Clin. Lab. Invest. Suppl. 242, 27–33 (2010).

    Article  Google Scholar 

  17. Nelson, P. N. et al. Monoclonal antibodies. J. Clin. Pathol. Mol. Pathol. 53, 111–117 (2000).

    Article  CAS  Google Scholar 

  18. Bernareggi, D., Canevari, S. & Figini, M. in Autoantibodies 3rd edn (eds Shoenfeld, Y., Gershwin, M. E. & Meroni, P. L.) Ch. 10 (Elsevier, in press).

  19. Ando, T. & Davies, T. F. Monoclonal antibodies to the thyrotropin receptor. Clin. Develop. Immunol. 12, 137–143 (2005).

    Article  CAS  Google Scholar 

  20. Mendlovic, S. et al. Induction of a systemic lupus erythematosus-like disease in mice by a common human anti-DNA idiotype. Proc. Natl Acad. Sci. USA 85, 2260–2264 (1988).

    Article  CAS  Google Scholar 

  21. Zhu, M. et al. Characterization of IgG monoclonal anti-cardiolipin/anti2GP1 antibodies from two patients with the anti-phospholipid syndrome reveals three species of antibodies. Br. J. Haematol. 105, 102 (1999).

    Article  CAS  Google Scholar 

  22. Pierangeli, S. S. et al. Functional analyses of patient-derived IgG monoclonal anticardiolipin antibodies using in vivo thrombosis and in vivo microcirculation models. Thromb. Haemost. 84, 388–395 (2000).

    Article  CAS  Google Scholar 

  23. Dienava-Verdoold, I. et al. Patient-derived monoclonal antibodies directed towards β2 glycoprotein-1 display lupus anticoagulant activity. J. Thromb. Haemost. 9, 738–747 (2011).

    Article  CAS  Google Scholar 

  24. Miyakis, S. et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J. Thromb. Haemost. 4, 295–306 (2006).

    Article  CAS  Google Scholar 

  25. Meroni, P. L., Borghi, M. O., Raschi, E. & Tedesco, F. Pathogenesis of antiphospholipid syndrome: understanding the antibodies. Nat. Rev. Rheumatol. 7, 330–339 (2011).

    Article  CAS  Google Scholar 

  26. Pengo, V. et al. Incidence of a first thromboembolic event in asymptomatic carriers of high-risk antiphospholipid antibody profile: a multicenter prospective study. Blood 118, 4714–4718 (2011).

    Article  CAS  Google Scholar 

  27. Reber, G. et al. Variability of anti-β2 glycoprotein I antibodies measurement by commercial assays. Thromb. Haemost. 94, 665–672 (2005).

    Article  CAS  Google Scholar 

  28. Pierangeli, S. S. et al. Standards and reference materials for the anticardiolipin and anti-β2 glycoprotein I assays: A report of recommendations from the APL TaskForce at the 13th International Congress on Antiphospholipid Antibodies. Clin. Chim. Acta 413, 358–360 (2012).

    Article  CAS  Google Scholar 

  29. Lakos, G. et al. International consensus guidelines on anticardiolipin and anti-β2 glycoprotein I testing: Report from the 13th International Congress on Antiphospholipid Antibodies. Arthritis Rheum. 64, 1–10 (2012).

    Article  Google Scholar 

  30. Erkan, D., Espinosa, G. & Cervera, R. Catastrophic antiphospholipid syndrome: updated diagnostic algorithms. Autoimmun. Rev. 10, 74–79 (2010).

    Article  Google Scholar 

  31. Cervera, R., Conti, F., Doria, A., Iaccarino, L. & Valesini, G. Does seronegative antiphospholipid syndrome really exist? Autoimmun. Rev. 11, 581–584 (2012).

    Article  CAS  Google Scholar 

  32. Tincani, A. et al. Minimal requirements for antiphospholipid antibodies ELISAs proposed by the European Forum on antiphospholipid antibodies. Thromb. Res. 114, 553–558 (2004).

    Article  CAS  Google Scholar 

  33. Andreoli, L., Rizzini, S., Allegri, F., Meroni, P. L. & Tincani, A. Are the current attempts at standardization of antiphospholipid antibodies still useful? Emerging technologies signal a shift in direction. Semin. Thromb. Hemost. 34, 356–360 (2008).

    Article  CAS  Google Scholar 

  34. Willis, R. et al. Establishment of standardized international units for IgG anti-β2glycoprotein antibody measurement [abstract 2455]. Arthritis Rheum. 64, S1033 (2012).

    Google Scholar 

  35. Schellekens, G. A. et al. Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J. Clin. Invest. 101, 273–281 (1998).

    Article  CAS  Google Scholar 

  36. Suzuki, K. et al. High diagnostic performance of ELISA detection of antibodies to citrullinated antigens in rheumatoid arthritis. Scand. J. Rheumatol. 32, 197–204 (2003).

    Article  CAS  Google Scholar 

  37. Kamoun, M. Diagnostic performance and predictive value of anti-citrullinated peptide antibodies for diagnosis of rheumatoid arthritis: Toward more accurate detection? Clin. Chem. 51, 12–13 (2005).

    Article  CAS  Google Scholar 

  38. van Gaalen, F. A. et al. Autoantibodies to cyclic citrullinated peptides predict progression to rheumatoid arthritis in patients with undifferentiated arthritis. Arthritis Rheum. 50, 709–715 (2004).

    Article  CAS  Google Scholar 

  39. Kroot, E. et al. The prognostic value of the anti-cyclic citrullinated peptide antibody in patients with recent-onset rheumatoid arthritis. Arthritis Rheum. 43, 1831–1835 (2000).

    CAS  PubMed  Google Scholar 

  40. Avouac, J., Gossec, L. & Dougados, M. Diagnostic and predictive value of anti-cyclic citrullinated protein antibodies in rheumatoid arthritis: a systematic literature review. Ann. Rheum. Dis. 65, 845–851 (2006).

    Article  CAS  Google Scholar 

  41. van der Helm-van Mil, A. H. M. et al. Antibodies to citrullinated proteins and differences in clinical progression of rheumatoid arthritis. Arthritis Res. Ther. 7, R949–R958 (2005).

    Article  CAS  Google Scholar 

  42. Meyer, O. et al. Anticitrullinated protein/peptide antibody assays in early rheumatoid arthritis for predicting five year radiographic damage. Ann. Rheum. Dis. 62, 120–126 (2003).

    Article  CAS  Google Scholar 

  43. Kastbom, A. et al. Anti-CCP antibody test predicts the disease course during three years in early rheumatoid arthritis (the TIRA project). Ann. Rheum. Dis. 63, 1085–1089 (2004).

    Article  CAS  Google Scholar 

  44. Chan, M. T. et al. Anti-cyclic citrullinated peptide antibodies are associated with erosive arthritis in SLE. Arthritis Rheum. 52, S611 (2005).

    Article  Google Scholar 

  45. Forslind, K. et al. Prediction of radiological outcome in early RA in clinical practice: role of antibodies to citrullinated peptides (anti-CCP). Ann. Rheum. Dis. 63, 1090–1095 (2004).

    Article  CAS  Google Scholar 

  46. Rantapää-Dahlqvist, S. et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum. 48, 2741–2749 (2003).

    Article  Google Scholar 

  47. Nielen, M. M. et al. Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum. 50, 380–386 (2004).

    Article  Google Scholar 

  48. Nell, V. et al. Benefit of very early referral and very early therapy with disease-modifying anti-rheumatic drugs in patients with early rheumatoid arthritis. Rheumatology 43, 906–914 (2004).

    Article  CAS  Google Scholar 

  49. Aletaha, D. et al. Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 62, 2569–2581 (2010).

    Article  Google Scholar 

  50. Bizzaro, N. et al. Analytical and diagnostic characteristics of 11 2nd- and 3rd-generation immunoenzymatic methods for the detection of antibodies to citrullinated proteins. Clin. Chem. 53, 1527–1533 (2007).

    Article  CAS  Google Scholar 

  51. Bizzaro, N. et al. Preliminary evaluation of the first international reference preparation for anticitrullinated peptide antibodies. Ann. Rheum. Dis. 71, 1388–1392 (2012).

    Article  CAS  Google Scholar 

  52. Fritzler, M. J. & Fritzler, M. L. The emergence of multiplexed technologies as diagnostic platforms in systemic autoimmune diseases. Curr. Med. Chem. 13, 2503–2512 (2006).

    Article  CAS  Google Scholar 

  53. Hanly, J. G., Su, L., Farewell, V. & Fritzler, M. J. Comparison between multiplex assays for autoantibody detection in systemic lupus erythematosus. J. Immunol. Methods 30, 75–80 (2010).

    Article  Google Scholar 

  54. Wiik, A. S., Høier-Madsen, M., Forslid, J., Charles, P. & Meyrowitsch, J. Antinuclear antibodies: A contemporary nomenclature using HEp-2 cells. J. Autoimmun. 35, 276–290 (2010).

    Article  CAS  Google Scholar 

  55. Solomon, D. H. et al. Evidence-based guidelines for the use of immunologic testing: ANA. Arthritis Rheum. 47, 434–444 (2002).

    Article  Google Scholar 

  56. Meroni, P. L. & Schur, P. H. ANA screening: an old test with new recommendations. Ann. Rheum. Dis. 69, 1420–1422 (2010).

    Article  CAS  Google Scholar 

  57. Hochberg, M. C. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 40, 1725 (1997).

    Article  CAS  Google Scholar 

  58. LeRoy, E. C. et al. Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J. Rheumatol. 15, 202–205 (1988).

    CAS  PubMed  Google Scholar 

  59. Shiboski, S. C. et al. American College of Rheumatology classification criteria for Sjögren's syndrome: a data-driven, expert consensus approach in the Sjögren's International Collaborative Clinical Alliance cohort. Arthritis Care Res. (Hoboken) 64, 475–487 (2012).

    Article  CAS  Google Scholar 

  60. Amigues, J. M., Cantagrel, A., Abbal, M. & Mazieres, B. Comparative study of 4 diagnosis criteria sets for mixed connective tissue disease in patients with anti-RNP antibodies. Autoimmunity Group of the Hospitals of Toulouse. J. Rheumatol. 23, 2055–2062 (1996).

    CAS  PubMed  Google Scholar 

  61. Mosca, M., Neri, R. & Bombardieri, S. Undifferentiated connective tissue diseases (UCTD): a review of the literature and a proposal for preliminary classification criteria. Clin. Exp. Rheumatol. 17, 615–620 (1999).

    CAS  PubMed  Google Scholar 

  62. Watts, R. et al. Development and validation of a consensus methodology for the classification of the ANCA-associated vasculitides and polyarteritis nodosa for epidemiological studies. Ann. Rheum. Dis. 66, 222–227 (2007).

    Article  Google Scholar 

  63. Nihtyanova, S. I. & Denton, C. P. Autoantibodies as predictive tools in systemic sclerosis. Nat. Rev. Rheumatol. 6, 112–116 (2010).

    Article  CAS  Google Scholar 

  64. Hirschfield, G. M. Diagnosis of primary biliary cirrhosis. Best Pract. Res. Clin. Gastroenterol. 25, 701–712 (2011).

    Article  Google Scholar 

  65. Munoz, L. E., Gaipl, U. S. & Herrmann, M. Predictive value of anti-dsDNA autoantibodies: importance of the assay. Autoimmun. Rev. 7, 594–597 (2008).

    Article  CAS  Google Scholar 

  66. Oke, V. & Wahren-Herlenius, M. The immunobiology of Ro52 (TRIM21) in autoimmunity: a critical review. J. Autoimmun. 39, 77–82 (2012).

    Article  CAS  Google Scholar 

  67. Mimori, T., Imura, Y., Nakashima, R. & Yoshifuji, H. Autoantibodies in idiopathic inflammatory myopathy: an update on clinical and pathophysiological significance. Curr. Opin. Rheumatol. 19, 523–529 (2007).

    Article  Google Scholar 

  68. Hanley, J. G. et al. Autoantibodies and neuropsychiatric events at the time of systemic lupus erythematosus diagnosis. Arthritis Rheum. 58, 843–853 (2008).

    Article  Google Scholar 

  69. Katz, U. & Zandman-Goddard, G. Drug-induced lupus: an update. Autoimmun. Rev. 10, 46–50 (2010).

    Article  CAS  Google Scholar 

  70. Gomez-Puerta, J. A., Burlingame, R. W. & Cervera, R. Anti-chromatin (anti-nucleosome) antibodies: diagnostic and clinical value. Autoimmun. Rev. 7, 606–611 (2008).

    Article  CAS  Google Scholar 

  71. Pickering, M. C. & Botto, M. Are anti-C1q antibodies different from other SLE autoantibodies? Nat. Rev. Rheumatol. 6, 490–493 (2010).

    Article  CAS  Google Scholar 

  72. Willemze, A., Trouw, L. A., Toes, R. E. & Huizinga, T. W. The influence of ACPA status and characteristics on the course of RA. Nat. Rev. Rheumatol. 8, 144–152 (2012).

    Article  CAS  Google Scholar 

  73. Sanmarco, M. & Bardin, N. The contribution of antiphosphatidylethanolamine antibodies in the diagnosis of the antiphospholipid syndrome. Lupus 21, 727–728 (2012).

    Article  CAS  Google Scholar 

  74. Urbanus, R. T. & de Laat, B. Antiphospholipid antibodies and the protein C pathway. Lupus 19, 394–399 (2010).

    Article  CAS  Google Scholar 

  75. Galli, M. Non β2-glycoprotein I cofactors for antiphospholipid antibodies. Lupus 5, 388–392 (1996).

    Article  CAS  Google Scholar 

  76. Szodoray, P. et al. Identification of rare anti-phospholipid/protein co-factor autoantibodies in patients with systemic lupus erythematosus. Autoimmunity 42, 497–506 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Silvia S. Pierangeli suddenly passed away last August during the revision of the present Review. All the authors do not forget her enthusiasm and great contribution and would like to dedicate the present paper to her memory.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to writing the manuscript and reviewing/editing it before submission. In addition, P. L. Meroni, M. Biggioggero, J. Sheldon, I. Zegers and M. O. Borghi researched data for the article, and P. L. Meroni, S. S. Pierangeli, J. Sheldon, I. Zegers and M. O. Borghi made substantial contributions to discussions of article content.

Corresponding author

Correspondence to Pier Luigi Meroni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meroni, P., Biggioggero, M., Pierangeli, S. et al. Standardization of autoantibody testing: a paradigm for serology in rheumatic diseases. Nat Rev Rheumatol 10, 35–43 (2014). https://doi.org/10.1038/nrrheum.2013.180

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2013.180

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research