Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chronotherapy improves blood pressure control and reduces vascular risk in CKD

Abstract

In patients with chronic kidney disease (CKD), the prevalence of increased blood pressure during sleep and blunted sleep-time-relative blood pressure decline (a nondipper pattern) is very high and increases substantially with disease severity. Elevated blood pressure during sleep is the major criterion for the diagnoses of hypertension and inadequate therapeutic ambulatory blood pressure control in these patients. Substantial, clinically meaningful ingestion-time-dependent differences in the safety, efficacy, duration of action and/or effects on the 24 h blood pressure pattern of six different classes of hypertension medications and their combinations have been substantiated. For example, bedtime ingestion of angiotensin-converting-enzyme inhibitors and angiotensin-receptor blockers is more effective than morning ingestion in reducing blood pressure during sleep and converting the 24 h blood pressure profile into a dipper pattern. We have identified a progressive reduction in blood pressure during sleep—a novel therapeutic target best achieved by ingestion of one or more hypertension medications at bedtime—as the most significant predictor of decreased cardiovascular risk in patients with and without CKD. Recent findings suggest that in patients with CKD, ambulatory blood pressure monitoring should be used for the diagnosis of hypertension and assessment of cardiovascular disease risk, and that therapeutic strategies given at bedtime rather than on awakening are preferable for the management of hypertension.

Key Points

  • 24 h variations in blood pressure are the result of rest–activity alterations in behaviour, environmental phenomena and endogenous 24 h rhythms in neural, endocrine, endothelial and haemodynamic variables

  • A blunted sleep-time-relative blood pressure decline is significantly associated with an increased risk of end-organ injury and cardiovascular events

  • In patients with chronic kidney disease (CKD), the prevalence of increased blood pressure during sleep and the nondipper profile is very high and increases substantially with disease severity

  • Ingestion of one or more hypertension medications at bedtime is significantly associated with lower asleep systolic and diastolic blood pressure means and attenuated prevalence of the nondipper profile in patients with CKD

  • In patients with hypertension, including those with CKD, a progressive reduction of blood pressure during sleep is the most significant predictor of decreased cardiovascular disease risk

  • We recommend ambulatory blood pressure monitoring in patients with CKD to ensure accurate diagnosis of hypertension, assess cardiovascular disease risk and establish the optimal therapeutic strategy to reduce this risk

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Exogenous and endogenous determinants of the circadian blood pressure rhythm.
Figure 2: Blood pressure patterns in patients with CKD enrolled in the Hygia project.
Figure 3: Effect of timing of hypertension treatment regimen on blood pressure pattern in patients with CKD.

Similar content being viewed by others

References

  1. Duguay, D. & Cermakian, N. The crosstalk between physiology and circadian clock proteins. Chronobiol. Int. 26, 1479–1513 (2009).

    CAS  PubMed  Google Scholar 

  2. Touitou, Y. & Haus, E. (Eds) Biological rhythms in clinical and laboratory medicine. (Springer-Verlag, 1992).

    Google Scholar 

  3. Hermida, R. C., Ayala, D. E. & Portaluppi, F. Circadian variation of blood pressure: the basis for the chronotherapy of hypertension. Adv. Drug Deliv. Rev. 59, 904–922 (2007).

    CAS  PubMed  Google Scholar 

  4. Smolensky, M. H., Hermida, R. C., Castriotta, R. J. & Portaluppi, F. Role of sleep–wake cycle on blood pressure circadian rhythms and hypertension. Sleep Med. 8, 668–680 (2007).

    PubMed  Google Scholar 

  5. Portaluppi, F. et al. Circadian rhythms and cardiovascular health. Sleep Med. Rev. 16, 151–166 (2012).

    PubMed  Google Scholar 

  6. Fabbian, F. et al. Dipper and non-dipper blood pressure 24-hour patterns: circadian rhythm-dependent physiologic and pathophysiologic mechanisms. Chronobiol. Int. 30, 17–30 (2013).

    PubMed  Google Scholar 

  7. Manfredini, R., Gallerani, M., Portaluppi, F., Salmi, R. & Fersini, C. Chronobiological patterns of onset of acute cerebrovascular diseases. Thromb. Res. 88, 451–463 (1997).

    CAS  PubMed  Google Scholar 

  8. Casetta, I., Granieri, E., Portaluppi, F. & Manfredini, R. Circadian variability in hemorrhagic stroke. JAMA 287, 1266–1267 (2002).

    PubMed  Google Scholar 

  9. Gallerani, M., Portaluppi, F., Grandi, E. & Manfredini, R. Circadian rhythmicity in the occurrence of spontaneous acute dissection and rupture of thoracic aorta. J. Thorac. Cardiovasc. Surg. 113, 603–604 (1997).

    CAS  PubMed  Google Scholar 

  10. Mehta, H. R. et al. Chronobiological patterns of acute aortic dissection. Circulation 106, 1110–1115 (2002).

    PubMed  Google Scholar 

  11. Agarwal, R. & Andersen, M. J. Blood pressure recordings within and outside the clinic and cardiovascular events in chronic kidney disease. Am. J. Nephrol. 26, 503–510 (2006).

    PubMed  Google Scholar 

  12. Liu, M. et al. Non-dipping is a potent predictor of cardiovascular mortality and is associated with autonomic dysfunction in haemodialysis patients. Nephrol. Dial. Transplant. 18, 563–569 (2003).

    PubMed  Google Scholar 

  13. Tripepi, G. et al. Prognostic value of 24-hour ambulatory blood pressure monitoring and of night/day ratio in nondiabetic, cardiovascular events-free hemodialysis patients. Kidney Int. 68, 1294–1302 (2005).

    PubMed  Google Scholar 

  14. Agarwal, R. & Andersen, M. J. Prognostic importance of ambulatory blood pressure recordings in patients with chronic kidney disease. Kidney Int. 69, 1175–1180 (2006).

    CAS  PubMed  Google Scholar 

  15. Minutolo, R. et al. Prognostic role of ambulatory blood pressure measurement in patients with nondialysis chronic kidney disease. Arch. Intern. Med. 171, 1090–1098 (2011).

    PubMed  Google Scholar 

  16. Hermida, R. C. Ambulatory blood pressure monitoring in the prediction of cardiovascular events and effects of chronotherapy: rationale and design of the MAPEC study. Chronobiol. Int. 24, 749–775 (2007).

    PubMed  Google Scholar 

  17. Hermida, R. C., Ayala, D. E., Mojón, A. & Fernández, J. R. Influence of circadian time of hypertension treatment on cardiovascular risk: results of the MAPEC study. Chronobiol. Int. 27, 1629–1651 (2010).

    PubMed  Google Scholar 

  18. Hermida, R. C., Ayala, D. E., Mojón, A. & Fernández, J. R. Decreasing sleep-time blood pressure determined by ambulatory monitoring reduces cardiovascular risk. J. Am. Coll. Cardiol. 58, 1165–1173 (2011).

    CAS  PubMed  Google Scholar 

  19. Hermida, R. C., Ayala, D. E., Mojón, A. & Fernández, J. R. Influence of time of day of blood pressure-lowering treatment on cardiovascular risk in hypertensive patients with type 2 diabetes. Diabetes Care 34, 1270–1276 (2011).

    PubMed  PubMed Central  Google Scholar 

  20. Hermida, R. C., Ayala, D. E., Mojón, A. & Fernández, J. R. Bedtime dosing of antihypertensive medications reduces cardiovascular risk in CKD. J. Am. Soc. Nephrol. 22, 2313–2321 (2011).

    PubMed  PubMed Central  Google Scholar 

  21. Hermida, R. C., Ayala, D. E., Mojón, A. & Fernández, J. R. Sleep-time blood pressure as a therapeutic target for cardiovascular risk reduction in type 2 diabetes. Am. J. Hypertens. 25, 325–334 (2012).

    PubMed  Google Scholar 

  22. Ayala, D. E., Hermida, R. C., Mojón, A. & Fernández, J. R. Cardiovascular risk of resistant hypertension: dependence on treatment-time regimen of blood pressure-lowering medications. Chronobiol. Int. 30, 340–352 (2013).

    CAS  PubMed  Google Scholar 

  23. Hermida, R. C. et al. Modeling the circadian variability of ambulatorily monitored blood pressure by multiple-component analysis. Chronobiol. Int. 19, 461–481 (2002).

    PubMed  Google Scholar 

  24. O'Brien, E., Sheridan, J. & O'Malley, K. Dippers and non-dippers. Lancet 332, 397 (1988).

    Google Scholar 

  25. Sowers, J. R. & Vlachakis, N. Circadian variation in plasma dopamine levels in man. J. Endocrinol. Invest. 7, 341–345 (1984).

    CAS  PubMed  Google Scholar 

  26. Somers, V. K., Dyken, M. E., Mark, A. L. & Abboud, F. M. Sympathetic-nerve activity during sleep in normal subjects. N. Engl. J. Med. 328, 303–307 (1993).

    CAS  PubMed  Google Scholar 

  27. Linsell, C. R., Lightman, S. L., Mullen, P. E., Brown, M. J. & Causon, R. C. Circadian rhythms of epinephrine and norepinephrine in man. J. Clin. Endocrinol. Metab. 60, 1210–1215 (1985).

    CAS  PubMed  Google Scholar 

  28. Lakatua, D. J. et al. Circadian characteristics of urinary epinephrine and norepinephrine from healthy young women in Japan and USA. Chronobiol. Int. 3, 189–195 (1986).

    CAS  PubMed  Google Scholar 

  29. Bartter, F. C., Chan, J. C. M. & Simpson, H. W. in Endocrine Rhythms (ed. Krieger, D. T.) 49–132 (Raven, 1979).

    Google Scholar 

  30. Angeli, A., Gatti, G. & Masera, R. in Biologic Rhythms in Clinical and Laboratory Medicine (eds Touitou, Y. & Haus, E.) 292–314 (Springer-Verlag, 1992).

    Google Scholar 

  31. Kool, M. J., Wijnen, J. A., Derkx, F. H., Struijker Boudier, H. A. & Van Bortel, L. M. Diurnal variation in prorenin in relation to other humoral factors and hemodynamics. Am. J. Hypertens. 7, 723–730 (1994).

    CAS  PubMed  Google Scholar 

  32. Nicholls, M. G. et al. Hormone and blood pressure relationships in primary aldosteronism. Clin. Exp. Hypertens. A. 6, 1441–1458 (1984).

    CAS  PubMed  Google Scholar 

  33. Portaluppi, F. et al. Circadian rhythm of calcitonin gene-related peptide in uncomplicated essential hypertension. J. Hypertens. 10, 1227–1234 (1992).

    CAS  PubMed  Google Scholar 

  34. Sothern, R. B. et al. Temporal (circadian) and functional relationship between atrial natriuretic peptides and blood pressure. Chronobiol. Int. 12, 106–120 (1995).

    CAS  PubMed  Google Scholar 

  35. Kanabrocki, E. L. et al. Day–night variations in blood levels of nitric oxide, T-TFPI and E-selectin. Clin. Appl. Thrombosis/Hemostasis. 7, 339–345 (2001).

    CAS  Google Scholar 

  36. Hermida, R. C. & Smolensky, M. H. Chronotherapy of hypertension. Curr. Opin. Nephrol. Hypertens. 13, 501–505 (2004).

    PubMed  Google Scholar 

  37. Hermida, R. C., Ayala, D. E. & Calvo, C. Administration time-dependent effects of antihypertensive treatment on the circadian pattern of blood pressure. Curr. Opin. Nephrol. Hypertens. 14, 453–459 (2005).

    CAS  PubMed  Google Scholar 

  38. Ohmori, M. & Fujimura, A. ACE inhibitors and chronotherapy. Clin. Exp. Hypertens. 2, 179–185 (2005).

    Google Scholar 

  39. Hermida, R. C., Ayala, D. E., Calvo, C., Portaluppi, F. & Smolensky, M. H. Chronotherapy of hypertension: Administration-time dependent effects of treatment on the circadian pattern of blood pressure. Adv. Drug Deliv. Rev. 59, 923–939 (2007).

    CAS  PubMed  Google Scholar 

  40. Smolensky, M. H., Hermida, R. C., Ayala, D. E., Tiseo, R. & Portaluppi, F. Administration-time-dependent effect of blood pressure-lowering medications: Basis for the chronotherapy of hypertension. Blood Press. Monit. 15, 173–180 (2010).

    PubMed  Google Scholar 

  41. Hermida, R. C. et al. Circadian rhythms in blood pressure regulation and optimization of hypertension treatment with ACE inhibitor and ARB medications. Am. J. Hypertens. 24, 383–391 (2011).

    CAS  PubMed  Google Scholar 

  42. Smolensky, M. H., Siegel, R. A., Haus, E., Hermida, R. C. & Portaluppi, F. in Fundamentals and applications of controlled release drug delivery (eds Siepmann, J., Siegel, R. A. & Rathbone, M. J.) 359–443 (Springer-Verlag, 2012).

    Google Scholar 

  43. Hermida, R. C. et al. Administration-time-differences in effects of hypertension medications on ambulatory blood pressure regulation. Chronobiol. Int. 30, 280–314 (2013).

    CAS  PubMed  Google Scholar 

  44. Reinberg, A. & Smolensky, M. H. Circadian changes of drug disposition in man. Clin. Pharmacokinet. 7, 401–420 (1982).

    CAS  PubMed  Google Scholar 

  45. Bruguerolle, B. & Lemmer, B. Recent advances in chronopharmacokinetics: methodological problems. Life Sci. 52, 1809–1824 (1993).

    CAS  PubMed  Google Scholar 

  46. Bélanger, P. M., Bruguerolle, B. & Labrecque, G. in Physiology and Pharmacology of Biological Rhythms (eds Redfern, P. H. & Lemmer, B.) 177–204 (Springer-Verlag, 1997).

    Google Scholar 

  47. Labrecque, G. & Beauchamp, D. in Chronotherapeutics Ch. 4 (ed. Redfern, P. H.) 75–110 (Pharmaceutical Press, 2003).

    Google Scholar 

  48. Witte, K. & Lemmer, B. in Chronotherapeutics Ch. 5 (ed. Redfern, P. H.) 111–126 (Pharmaceutical Press, 2003).

    Google Scholar 

  49. Okyar, A. et al. Circadian variations in exsorptive transport: in-situ intestinal perfusion data and in-vivo relevance. Chronobiol. Int. 29, 443–453 (2012).

    CAS  PubMed  Google Scholar 

  50. Verdecchia, P. et al. Ambulatory blood pressure: an independent predictor of prognosis in essential hypertension. Hypertension 24, 793–801 (1994).

    CAS  PubMed  Google Scholar 

  51. Sturrock, N. D. et al. Non-dipping circadian blood pressure and renal impairment are associated with increased mortality in diabetes mellitus. Diabet. Med. 17, 360–364 (2000).

    CAS  PubMed  Google Scholar 

  52. Ohkubo, T. et al. Prognostic significance of the nocturnal decline in blood pressure in individuals with and without high 24-h blood pressure: the Ohasama study. J. Hypertens. 20, 2183–2189 (2002).

    CAS  PubMed  Google Scholar 

  53. Dolan, E. et al. Superiority of ambulatory over clinic blood pressure measurement in predicting mortality: the Dublin outcome study. Hypertension 46, 156–161 (2005).

    CAS  PubMed  Google Scholar 

  54. Astrup, A. S. et al. Predictors of mortality in patients with type 2 diabetes with or without diabetic nephropathy: a follow-up study. J. Hypertens. 25, 2479–2485 (2007).

    CAS  PubMed  Google Scholar 

  55. Boggia, J. et al. Prognostic accuracy of day versus night ambulatory blood pressure: a cohort study. Lancet. 370, 1219–1229 (2007).

    PubMed  Google Scholar 

  56. Eguchi, K. et al. Ambulatory blood pressure is a better marker than clinic blood pressure in predicting cardiovascular events in patients with/without type 2 diabetes. Am. J. Hypertens. 21, 443–450 (2008).

    PubMed  Google Scholar 

  57. Salles, G. F., Cardoso, C. R. & Muxfeldt, E. S. Prognostic influence of office and ambulatory blood pressures in resistant hypertension. Arch. Intern. Med. 168, 2340–2346 (2008).

    PubMed  Google Scholar 

  58. Hermida, R. C., Ayala, D. E., Fernández, J. R. & Mojón, A. Sleep-time blood pressure: prognostic value and relevance as a therapeutic target for cardiovascular risk reduction. Chronobiol. Int. 30, 68–86 (2013).

    PubMed  Google Scholar 

  59. Hermida, R. C., Ayala, D. E., Mojón, A. & Fernández, J. R. Blunted sleep-time relative blood pressure decline increases cardiovascular risk independent of blood pressure level—the “normotensive non-dipper” paradox. Chronobiol. Int. 30, 87–98 (2013).

    PubMed  Google Scholar 

  60. Kikuya, M. et al. Ambulatory blood pressure and 10-year risk of cardiovascular and noncardiovascular mortality. The Ohasama Study. Hypertension. 45, 240–245 (2005).

    CAS  PubMed  Google Scholar 

  61. Ben-Dov, I. Z. et al. Predictors of all-cause mortality in clinical ambulatory monitoring. Unique aspects of blood pressure during sleep. Hypertension 49, 1235–1241 (2007).

    CAS  PubMed  Google Scholar 

  62. Fagard, R. H. et al. Daytime and night-time blood pressure as predictors of death and cause-specific cardiovascular events in hypertension. Hypertension 51, 55–61 (2008).

    CAS  PubMed  Google Scholar 

  63. Fan, H. Q. et al. Prognostic value of isolated nocturnal hypertension on ambulatory measurement in 8711 individuals from 10 populations. J. Hypertens. 28, 2036–2045 (2010).

    CAS  PubMed  Google Scholar 

  64. Hermida, R. C., Ayala, D. E., Mojón, A. & Fernández, J. R. Sleep-time blood pressure and the prognostic value of isolated-office and masked hypertension. Am. J. Hypertens. 25, 297–305 (2012).

    PubMed  Google Scholar 

  65. Amar, J. et al. Nocturnal blood pressure and 24-hour pulse pressure are potent indicators of mortality in hemodialysis patients. Kidney Int. 57, 2485–2491 (2000).

    CAS  PubMed  Google Scholar 

  66. Portaluppi, F., Montanari, L., Ferlini, M. & Gilli, P. Altered circadian rhythms of blood pressure and heart rate in non-hemodialysis chronic renal failure. Chronobiol. Int. 7, 321–327 (1990).

    CAS  PubMed  Google Scholar 

  67. Agarwal, R. & Andersen, M. J. Correlates of systolic hypertension in patients with chronic kidney disease. Hypertension 46, 514–520 (2005).

    CAS  PubMed  Google Scholar 

  68. Davidson, M. B., Hix, J. K., Vidt, D. G. & Brotman, D. J. Association of impaired diurnal blood pressure variation with a subsequent decline in glomerular filtration rate. Arch. Intern. Med. 166, 846–852 (2006).

    PubMed  Google Scholar 

  69. Agarwal, R., Peixoto, A. J., Santos, S. F. F. & Zoccali, C. Out-of-office blood pressure monitoring in chronic kidney disease. Blood Press. Monit. 14, 2–11 (2009).

    PubMed  Google Scholar 

  70. Pogue, V. et al. Disparate estimates of hypertension control from ambulatory and clinic blood pressure measurements in hypertensive kidney disease. Hypertension 53, 20–27 (2009).

    CAS  PubMed  Google Scholar 

  71. Mojón, A. et al. Comparison of ambulatory blood pressure parameters of hypertensive patients with and without chronic kidney disease. Chronobiol. Int. 30, 145–158 (2013).

    PubMed  Google Scholar 

  72. Hermida, R. C. et al. Evaluation of the extent and duration of the “ABPM effect” in hypertensive patients. J. Am. Coll. Cardiol. 40, 710–717 (2002).

    PubMed  Google Scholar 

  73. Hermida, R. C., Ayala, D. E., Fontao, M. J., Mojón, A. & Fernández, J. R. Ambulatory blood pressure monitoring: Importance of sampling rate and duration—48 versus 24 hours—on the accurate assessment of cardiovascular risk. Chronobiol. Int. 30, 55–67 (2013).

    PubMed  Google Scholar 

  74. Ayala, D. E. et al. Circadian pattern of ambulatory blood pressure in hypertensive patients with and without type 2 diabetes. Chronobiol. Int. 30, 99–115 (2013).

    PubMed  Google Scholar 

  75. Crespo, J. J. et al. Administration-time-dependent effects of hypertension treatment on ambulatory blood pressure in patients with chronic kidney disease. Chronobiol. Int. 30, 159–175 (2013).

    CAS  PubMed  Google Scholar 

  76. Hermida, R. C. et al. Treatment-time regimen of hypertension medications significantly affects ambulatory blood pressure and clinical characteristics of patients with resistant hypertension. Chronobiol. Int. 30, 192–206 (2013).

    CAS  PubMed  Google Scholar 

  77. Moyá, A. et al. Effects of time-of-day of hypertension treatment on ambulatory blood pressure and clinical characteristics of patients with type 2 diabetes. Chronobiol. Int. 30, 116–131 (2013).

    PubMed  Google Scholar 

  78. Ríos, M. T. et al. Prevalence and clinical characteristics of isolated-office and true resistant hypertension determined by ambulatory blood pressure monitoring. Chronobiol. Int. 30, 207–220 (2013).

    PubMed  Google Scholar 

  79. Levey, A. S. et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 67, 2089–2100 (2005).

    PubMed  Google Scholar 

  80. Mancia, G. et al. 2007 guidelines for the management of arterial hypertension. The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J. Hypertens. 25, 1105–1187 (2007).

    CAS  PubMed  Google Scholar 

  81. Hermida, R. C., Calvo, C., Ayala, D. E., Mojón, A. & López, J. E. Relationship between physical activity and blood pressure in dipper and nondipper hypertensive patients. J. Hypertens. 20, 1097–1104 (2002).

    CAS  PubMed  Google Scholar 

  82. Pechère-Bertschi, A. et al. Renal response to the angiotensin II receptor subtype 1 antagonist irbesartan versus enalapril in hypertensive patients. J. Hypertens. 16, 385–393 (1998).

    PubMed  Google Scholar 

  83. Kohno, I. et al. Effect of imidapril in dipper and nondipper hypertensive patients: comparison between morning and evening administration. Chronobiol. Int. 17, 209–219 (2000).

    CAS  PubMed  Google Scholar 

  84. Kuroda, T. et al. Effects of bedtime vs. morning administration of the long-acting lipophilic angiotensin-converting enzyme inhibitor trandolapril on morning blood pressure in hypertensive patients. Hypertens. Res. 27, 15–20 (2004).

    CAS  PubMed  Google Scholar 

  85. Balan, H., Popescu, E. & Angelescu, G. Comparing different treatment schedules of Zomen (zofenopril). Rom. J. Intern. Med. 49, 75–84 (2011).

    CAS  PubMed  Google Scholar 

  86. Hermida, R. C. & Ayala, D. E. Chronotherapy with the angiotensin-converting enzyme inhibitor ramipril in essential hypertension: improved blood pressure control with bedtime dosing. Hypertension 54, 40–46 (2009).

    CAS  PubMed  Google Scholar 

  87. Hermida, R. C. et al. Administration-time-dependent effects of spirapril on ambulatory blood pressure in uncomplicated essential hypertension. Chronobiol. Int. 27, 560–574 (2010).

    CAS  PubMed  Google Scholar 

  88. Hermida, R. C. et al. Administration-time-dependent effects of valsartan on ambulatory blood pressure in hypertensive subjects. Hypertension 42, 283–290 (2003).

    CAS  PubMed  Google Scholar 

  89. Hermida, R. C., Calvo, C., Ayala, D. E. & López, J. E. Decrease in urinary albumin excretion associated to the normalization of nocturnal blood pressure in hypertensive subjects. Hypertension 46, 960–968 (2005).

    CAS  PubMed  Google Scholar 

  90. Hermida, R. C. et al. Administration-time-dependent effects of valsartan on ambulatory blood pressure in elderly hypertensive subjects. Chronobiol. Int. 22, 755–776 (2005).

    CAS  PubMed  Google Scholar 

  91. O'Sullivan, C., Duggan, J., Atkins, N. & O'Brien, E. Twenty-four-hour ambulatory blood pressure in community-dwelling elderly men and women aged 60–102 years. J. Hypertens. 21, 1641–1647 (2003).

    CAS  PubMed  Google Scholar 

  92. Hermida, R. C. et al. Influence of age and hypertension treatment-time on ambulatory blood pressure in hypertensive patients. Chronobiol. Int. 30, 176–191 (2013).

    PubMed  Google Scholar 

  93. Hermida, R. C. et al. Treatment of non-dipper hypertension with bedtime administration of valsartan. J. Hypertens. 23, 1913–1922 (2005).

    CAS  PubMed  Google Scholar 

  94. Hermida, R. C., Ayala, D. E., Chayán, L., Mojón, A. & Fernández, J. R. Administration-time-dependent effects of olmesartan on the ambulatory blood pressure of essential hypertension patients. Chronobiol. Int. 26, 61–79 (2009).

    CAS  PubMed  Google Scholar 

  95. Tofé, S. & García, B. 24-hour and nighttime blood pressures in type 2 diabetic hypertensive patients following morning or evening administration of olmesartan. J. Clin. Hypertens. (Greenwich) 11, 426–431 (2009).

    Google Scholar 

  96. Equiluz-Bruck, S., Schnack, C., Kopp, H. P. & Schernthaner, G. Nondipping of nocturnal blood pressure is related to urinary albumin excretion rate in patients with type 2 diabetes mellitus. Am. J. Hypertens. 9, 1139–1143 (1996).

    CAS  PubMed  Google Scholar 

  97. Palmas, W. et al. Nocturnal blood pressure elevation predicts progression of albuminuria in elderly people with type 2 diabetes. J. Clin. Hypertens. (Greenwich) 10, 12–20 (2008).

    CAS  Google Scholar 

  98. Hermida, R. C., Ayala, D. E., Fernández, J. R. & Calvo, C. Comparison of the efficacy of morning versus evening administration of telmisartan in essential hypertension. Hypertension 50, 715–722 (2007).

    CAS  PubMed  Google Scholar 

  99. Umeda, T. et al. Timing for administration of an antihypertensive drug in the treatment of essential hypertension. Hypertension. 23 (Suppl. 1), I211–I214 (1994).

    CAS  PubMed  Google Scholar 

  100. Qiu, Y. G., Chenm J. Z., Zhum J. H. & Yao, X. Y. Differential effects of morning or evening dosing of amlodipine on circadian blood pressure and heart rate. Cardiovasc. Drugs Ther. 17, 335–341 (2003).

    CAS  PubMed  Google Scholar 

  101. Kitahara, Y. et al. Effect of morning and bedtime dosing with cilnidipine on blood pressure, heart rate, and sympathetic nervous activity in essential hypertensive patients. J. Cardiovasc. Pharmacol. 43, 68–73 (2004).

    CAS  PubMed  Google Scholar 

  102. Hermida, R. C., Ayala, D. E., Mojón, A. & Fernández, J. R. Chronotherapy with nifedipine GITS in hypertensive patients: Improved efficacy and safety with bedtime dosing. Am. J. Hypertens. 21, 948–954 (2008).

    CAS  PubMed  Google Scholar 

  103. Hermida, R. C., Ayala, D. E., Fontao, M. J., Mojón, A. & Fernández, J. R. Chronotherapy with valsartan/amlodipine combination in essential hypertension: Improved blood pressure control with bedtime dosing. Chronobiol. Int. 27, 1287–1303 (2010).

    CAS  PubMed  Google Scholar 

  104. Meng, Y., Zhang, Z., Liang, X., Wu, C. & Qi, G. Effects of combination therapy with amlodipine and fosinopril administered at different times on blood pressure and circadian blood pressure pattern in patients with essential hypertension. Acta Cardiol. 65, 309–314 (2010).

    PubMed  Google Scholar 

  105. Zeng, J. et al. Fixed-combination of amlodipine and diuretic chronotherapy in the treatment of essential hypertension: improved blood pressure control with bedtime dosing—a multicenter, open-label randomized study. Hypertens. Res. 34, 767–772 (2011).

    CAS  PubMed  Google Scholar 

  106. Hoshino, A., Nakamura, T. & Matsubara, H. The bedtime administration ameliorates blood pressure variability and reduces urinary albumin excretion in amlodipine-olmesartan combination therapy. Clin. Exp. Hypertens. 32, 416–422 (2010).

    CAS  PubMed  Google Scholar 

  107. Hermida, R. C., Ayala, D. E., Mojón, A., Fontao, M. J. & Fernández, J. R. Chronotherapy with valsartan/hydrochlorothiazide combination in essential hypertension: improved sleep-time blood pressure control with bedtime dosing. Chronobiol. Int. 28, 601–610 (2011).

    CAS  PubMed  Google Scholar 

  108. Minutolo R. et al. Changing the timing of antihypertensive therapy to reduce nocturnal blood pressure in CKD: an 8-week uncontrolled trial. Am. J. Kidney Dis. 50, 908–917 (2007).

    PubMed  Google Scholar 

  109. Morgan, T. O. Does it matter when drugs are taken? Hypertension 54, 23–24 (2009).

    CAS  PubMed  Google Scholar 

  110. Parati, G. & Bilo, G. Evening administration of antihypertensive drugs: filling a knowledge gap. J. Hypertens. 28, 1390–1392 (2010).

    CAS  PubMed  Google Scholar 

  111. Iskedjian, M. et al. Relationship between daily dose frequency and adherence to antihypertensive pharmacotherapy: evidence from a meta-analysis. Clin. Ther. 24, 302–316 (2002).

    PubMed  Google Scholar 

  112. Flack, J. M. & Nasser, S. A. Benefits of once-daily therapies in the treatment of hypertension. Vasc. Health Risk Manag. 7, 777–787 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Hermida, R. C. et al. 2013 ambulatory blood pressure monitoring recommendations for the diagnosis of adult hypertension, assessment of cardiovascular and other hypertension-associated risk, and attainment of therapeutic goals. Joint recommendations from the International Society for Chronobiology (ISC), American Association of Medical Chronobiology and Chronotherapeutics (AAMCC), Spanish Society of Applied Chronobiology, Chronotherapy, and Vascular Risk (SECAC), Spanish Society of Atherosclerosis (SEA), and Romanian Society of Internal Medicine (RSIM). Chronobiol. Int. 30, 355–410 (2013).

    CAS  PubMed  Google Scholar 

  114. American Diabetes Association: Standards of medical care in diabetes—2012. Diabetes Care 35 (Suppl. 1), S11–S63 (2012).

  115. Sternberg, H., Rosenthal, T., Shamiss, A. & Green, M. Altered circadian rhythm of blood pressure in shift workers. J. Hum. Hypertens. 9, 349–353 (1995).

    CAS  PubMed  Google Scholar 

  116. Sundberg, S., Kohvakka, A. & Gordin, A. Rapid reversal of circadian blood pressure rhythm in shift workers. J. Hypertens. 6, 393–396 (1988).

    CAS  PubMed  Google Scholar 

  117. Ohira, T. et al. Effects of shift work on 24-hour ambulatory blood pressure and its variability among Japanese workers. Scand. J. Environ. Health. 26, 421–426 (2000).

    CAS  Google Scholar 

  118. Kitamura, T. et al. Circadian rhythm of blood pressure is transformed from a dipper to a non-dipper pattern in shift workers with hypertension. J. Hum. Hypertens. 16, 193–197 (2002).

    CAS  PubMed  Google Scholar 

  119. Portaluppi, F. & Smolensky, M. H. Perspectives on the chronotherapy of hypertension based on the results of the MAPEC study. Chronobiol. Int. 27, 1652–1667 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' research is supported by unrestricted grants from the Ministerio de Ciencia e Innovación (SAF2009-7028-FEDER), the Consellería de Economía e Industria, Xunta de Galicia (INCITE07-PXI-322003ES, INCITE08-E1R-322063ES, INCITE09-E2R-322099ES, IN845B-2010/114 and 09CSA018322PR), the European Research Development Fund, the Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia (CN2012/251 & CN2012/260) and Vicerrectorado de Investigación, University of Vigo (awarded to R. C. Hermida, D. E. Ayala, A. Mojón and J. R. Fernández).

Author information

Authors and Affiliations

Authors

Contributions

R. Hermida, D. E. Ayala and M. H. Smolensky researched the data for the article and wrote the manuscript. All authors made a substantial contribution to discussions of the content and reviewed and/or edited the article before submission.

Corresponding author

Correspondence to Ramón C. Hermida.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermida, R., Ayala, D., Smolensky, M. et al. Chronotherapy improves blood pressure control and reduces vascular risk in CKD. Nat Rev Nephrol 9, 358–368 (2013). https://doi.org/10.1038/nrneph.2013.79

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2013.79

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing