Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diabetic nephropathy—emerging epigenetic mechanisms

Key Points

  • Diabetic conditions induce inflammation, fibrosis and hypertrophy in renal cells through various cytokines and growth factors such as transforming growth factor β1, angiotensin II and platelet-derived growth factor

  • The engagement of cytokines and growth factors with their receptors triggers signal transduction cascades that result in the activation of transcription factors to increase expression of inflammatory and fibrotic genes

  • These signalling mechanisms affect epigenetic states—such as DNA methylation and chromatin histone modifications—to augment the expression of profibrotic and inflammatory genes, as well as noncoding RNAs

  • Noncoding RNAs that are induced by diabetic conditions can also promote the expression of pathological genes via various post-transcriptional and post-translational mechanisms

  • These epigenetic mechanisms and noncoding RNAs can lead to persistently open chromatin structures at pathological genes and sustained gene expression, which can also be a mechanism for 'metabolic memory'

  • Key epigenetic regulators, microRNAs and long noncoding RNAs could serve as new therapeutic targets for diabetic nephropathy

Abstract

Diabetic nephropathy (DN), a severe microvascular complication frequently associated with both type 1 and type 2 diabetes mellitus, is a leading cause of renal failure. The condition can also lead to accelerated cardiovascular disease and macrovascular complications. Currently available therapies have not been fully efficacious in the treatment of DN, suggesting that further understanding of the molecular mechanisms underlying the pathogenesis of DN is necessary for the improved management of this disease. Although key signal transduction and gene regulation mechanisms have been identified, especially those related to the effects of hyperglycaemia, transforming growth factor β1 and angiotensin II, progress in functional genomics, high-throughput sequencing technology, epigenetics and systems biology approaches have greatly expanded our knowledge and uncovered new molecular mechanisms and factors involved in DN. These mechanisms include DNA methylation, chromatin histone modifications, novel transcripts and functional noncoding RNAs, such as microRNAs and long noncoding RNAs. In this Review, we discuss the significance of these emerging mechanisms, how they mediate the actions of growth factors to augment the expression of extracellular matrix and inflammatory genes associated with DN and their potential usefulness as diagnostic biomarkers or novel therapeutic targets for DN.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Emerging molecular mechanisms of diabetic nephropathy.
Figure 2: Regulation of gene transcription in DN mediated by histone lysine modifications.

Similar content being viewed by others

References

  1. Jones, C. A. et al. Epidemic of end-stage renal disease in people with diabetes in the United States population: do we know the cause? Kidney Int. 67, 1684–1691 (2005).

    PubMed  Google Scholar 

  2. Sarnak, M. J. et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 108, 2154–2169 (2003).

    Article  Google Scholar 

  3. Chen, S., Jim, B. & Ziyadeh, F. N. Diabetic nephropathy and transforming growth factor-β: transforming our view of glomerulosclerosis and fibrosis build-up. Semin. Nephrol. 23, 532–543 (2003).

    CAS  PubMed  Google Scholar 

  4. Qian, Y., Feldman, E., Pennathur, S., Kretzler, M. & Brosius, F. C. 3rd From fibrosis to sclerosis: mechanisms of glomerulosclerosis in diabetic nephropathy. Diabetes 57, 1439–1445 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kanwar, Y. S., Sun, L., Xie, P., Liu, F. Y. & Chen, S. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu. Rev. Pathol. 6, 395–423 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pagtalunan, M. E. et al. Podocyte loss and progressive glomerular injury in type II diabetes. J. Clin. Invest. 99, 342–348 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Meyer, T. W., Bennett, P. H. & Nelson, R. G. Podocyte number predicts long-term urinary albumin excretion in Pima Indians with Type II diabetes and microalbuminuria. Diabetologia 42, 1341–1344 (1999).

    CAS  PubMed  Google Scholar 

  8. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813–820 (2001).

    CAS  PubMed  Google Scholar 

  9. Sharma, K. & Ziyadeh, F. N. Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-β as a key mediator. Diabetes 44, 1139–1146 (1995).

    CAS  PubMed  Google Scholar 

  10. Yamamoto, T., Nakamura, T., Noble, N. A., Ruoslahti, E. & Border, W. A. Expression of transforming growth factor β is elevated in human and experimental diabetic nephropathy. Proc. Natl Acad. Sci. USA 90, 1814–1818 (1993).

    CAS  PubMed  Google Scholar 

  11. Ruggenenti, P., Cravedi, P. & Remuzzi, G. The RAAS in the pathogenesis and treatment of diabetic nephropathy. Nat. Rev. Nephrol. 6, 319–330 (2010).

    CAS  PubMed  Google Scholar 

  12. Abboud, H. E. Role of platelet-derived growth factor in renal injury. Annu. Rev. Physiol. 57, 297–309 (1995).

    CAS  PubMed  Google Scholar 

  13. Zhu, Y., Casado, M., Vaulont, S. & Sharma, K. Role of upstream stimulatory factors in regulation of renal transforming growth factor-β1. Diabetes 54, 1976–1984 (2005).

    CAS  PubMed  Google Scholar 

  14. Kato, M. et al. A microRNA circuit mediates transforming growth factor-β1 autoregulation in renal glomerular mesangial cells. Kidney Int. 80, 358–368 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, Y., Feng, X., We, R. & Derynck, R. Receptor-associated Mad homologues synergize as effectors of the TGF-β response. Nature 383, 168–172 (1996).

    CAS  PubMed  Google Scholar 

  16. Roberts, A. B., McCune, B. K. & Sporn, M. B. TGF-β: regulation of extracellular matrix. Kidney Int. 41, 557–559 (1992).

    CAS  PubMed  Google Scholar 

  17. Poncelet, A. C. & Schnaper, H. W. Sp1 and Smad proteins cooperate to mediate transforming growth factor-β1-induced α2(I) collagen expression in human glomerular mesangial cells. J. Biol. Chem. 276, 6983–6992 (2001).

    CAS  PubMed  Google Scholar 

  18. Tsuchida, K., Zhu, Y., Siva, S., Dunn, S. R. & Sharma, K. Role of Smad4 on TGF-β-induced extracellular matrix stimulation in mesangial cells. Kidney Int. 63, 2000–2009 (2003).

    CAS  PubMed  Google Scholar 

  19. Kim, Y. S. et al. Novel interactions between TGF-β1 actions and the 12/15-lipoxygenase pathway in mesangial cells. J. Am. Soc. Nephrol. 16, 352–362 (2005).

    CAS  PubMed  Google Scholar 

  20. Chin, B. Y., Mohsenin, A., Li, S. X., Choi, A. M. & Choi, M. E. Stimulation of pro-α1(I) collagen by TGF-β1 in mesangial cells: role of the p38 MAPK pathway. Am. J. Physiol. Renal Physiol. 280, F495–F504 (2001).

    CAS  PubMed  Google Scholar 

  21. Hayashida, T., Poncelet, A. C., Hubchak, S. C. & Schnaper, H. W. TGF-β1 activates MAP kinase in human mesangial cells: a possible role in collagen expression. Kidney Int. 56, 1710–1720 (1999).

    CAS  PubMed  Google Scholar 

  22. Kato, M. et al. Role of the Akt/FoxO3a pathway in TGF-β1-mediated mesangial cell dysfunction: a novel mechanism related to diabetic kidney disease. J. Am. Soc. Nephrol. 17, 3325–3335 (2006).

    CAS  PubMed  Google Scholar 

  23. Mahimainathan, L., Das, F., Venkatesan, B. & Choudhury, G. G. Mesangial cell hypertrophy by high glucose is mediated by downregulation of the tumor suppressor PTEN. Diabetes 55, 2115–2125 (2006).

    CAS  PubMed  Google Scholar 

  24. Sedeek, M. et al. Oxidative stress, Nox isoforms and complications of diabetes—potential targets for novel therapies. J. Cardiovasc. Transl. Res. 5, 509–518 (2012).

    PubMed  Google Scholar 

  25. Inagi, R., Shoji, K. & Nangaku, M. Oxidative and endoplasmic reticulum (ER) stress in tissue fibrosis. Curr. Pathobiol. Rep. 1, 283–289 (2013).

    Google Scholar 

  26. Wang, Y. & Harris, D. C. Macrophages in renal disease. J. Am. Soc. Nephrol. 22, 21–27 (2011).

    PubMed  Google Scholar 

  27. Navarro-González, J. F., Mora-Fernández, C., Muros de Fuentes, M. & Garcia-Pérez, J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat. Rev. Nephrol. 7, 327–340 (2011).

    PubMed  Google Scholar 

  28. Berthier, C. C. et al. Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes 58, 469–477 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gohda, T. et al. Circulating TNF receptors 1 and 2 predict stage 3 CKD in type 1 diabetes. J. Am. Soc. Nephrol. 23, 516–524 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fujita, T. et al. Interleukin-18 contributes more closely to the progression of diabetic nephropathy than other diabetic complications. Acta Diabetol. 49, 111–117 (2012).

    CAS  PubMed  Google Scholar 

  31. Kanamori, H. et al. Inhibition of MCP-1/CCR2 pathway ameliorates the development of diabetic nephropathy. Biochem. Biophys. Res. Commun. 360, 772–777 (2007).

    CAS  PubMed  Google Scholar 

  32. Sayyed, S. G. et al. Podocytes produce homeostatic chemokine stromal cell-derived factor-1/CXCL12, which contributes to glomerulosclerosis, podocyte loss and albuminuria in a mouse model of type 2 diabetes. Diabetologia 52, 2445–2454 (2009).

    CAS  PubMed  Google Scholar 

  33. Kikuchi, Y. et al. Fractalkine and its receptor, CX3CR1, upregulation in streptozotocin-induced diabetic kidneys. Nephron Exp. Nephrol. 97, e17–e25 (2004).

    CAS  PubMed  Google Scholar 

  34. Song, K. H., Park, J., Park, J. H., Natarajan, R. & Ha, H. Fractalkine and its receptor mediate extracellular matrix accumulation in diabetic nephropathy in mice. Diabetologia 56, 1661–1669 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Komorowsky, C. V., Brosius, F. C. 3rd, Pennathur, S. & Kretzler, M. Perspectives on systems biology applications in diabetic kidney disease. J. Cardiovasc. Transl. Res. 5, 491–508 (2012).

    PubMed  PubMed Central  Google Scholar 

  36. Brosius, F. C. 3rd & Alpers, C. E. New targets for treatment of diabetic nephropathy: what we have learned from animal models. Curr. Opin. Nephrol. Hypertens. 22, 17–25 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Woroniecka, K. I. et al. Transcriptome analysis of human diabetic kidney disease. Diabetes 60, 2354–2369 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Nathan, D. M. et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N. Engl. J. Med. 353, 2643–2653 (2005).

    PubMed  Google Scholar 

  39. Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA 290, 2159–2167 (2003).

  40. Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA 287, 2563–2569 (2002).

  41. Pop-Busui, R. et al. Effects of prior intensive insulin therapy on cardiac autonomic nervous system function in type 1 diabetes mellitus: the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study (DCCT/EDIC). Circulation 119, 2886–2893 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. de Boer, I. H. et al. Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes. N. Engl. J. Med. 365, 2366–2376 (2011).

    CAS  PubMed  Google Scholar 

  43. de Boer, I. H. for the DCCT/EDIC Research Group. Kidney disease and related findings in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study. Diabetes Care 37, 24–30 (2014).

    CAS  PubMed  Google Scholar 

  44. Colagiuri, S., Cull, C. A. & Holman, R. R. for the UKPDS Group. Are lower fasting plasma glucose levels at diagnosis of type 2 diabetes associated with improved outcomes? UK Prospective Diabetes Study 61. Diabetes Care 25, 1410–1417 (2002).

    PubMed  Google Scholar 

  45. ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 358, 2560–2572 (2008).

  46. The Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 358, 2545–2559 (2008).

  47. Lu, Q. et al. The Akt-FoxO3a-manganese superoxide dismutase pathway is involved in the regulation of oxidative stress in diabetic nephropathy. Exp. Physiol. 98, 934–945 (2013).

    CAS  PubMed  Google Scholar 

  48. Reddy, M. A., Tak Park, J. & Natarajan, R. Epigenetic modifications in the pathogenesis of diabetic nephropathy. Semin. Nephrol. 33, 341–353 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, S. L. et al. Enhanced proatherogenic responses in macrophages and vascular smooth muscle cells derived from diabetic db/db mice. Diabetes 55, 2611–2619 (2006).

    CAS  PubMed  Google Scholar 

  50. El-Osta, A. et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J. Exp. Med. 205, 2409–2417 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Engerman, R. L. & Kern, T. S. Progression of incipient diabetic retinopathy during good glycemic control. Diabetes 36, 808–812 (1987).

    CAS  PubMed  Google Scholar 

  52. Kowluru, R. A., Abbas, S. N. & Odenbach, S. Reversal of hyperglycemia and diabetic nephropathy: effect of reinstitution of good metabolic control on oxidative stress in the kidney of diabetic rats. J. Diabetes Complications 18, 282–288 (2004).

    PubMed  Google Scholar 

  53. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    CAS  PubMed  Google Scholar 

  54. Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).

    CAS  PubMed  Google Scholar 

  55. Portela, A. & Esteller, M. Epigenetic modifications and human disease. Nat. Biotechnol. 28, 1057–1068 (2010).

    CAS  PubMed  Google Scholar 

  56. Jirtle, R. L. & Skinner, M. K. Environmental epigenomics and disease susceptibility. Nat. Rev. Genet. 8, 253–262 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Simmons, R. Epigenetics and maternal nutrition: nature v. nurture. Proc. Nutr. Soc. 70, 73–81 (2011).

    CAS  PubMed  Google Scholar 

  58. Thomas, M. C., Groop, P. H. & Tryggvason, K. Towards understanding the inherited susceptibility for nephropathy in diabetes. Curr. Opin. Nephrol. Hypertens. 21, 195–202 (2012).

    CAS  PubMed  Google Scholar 

  59. Sandholm, N. et al. New susceptibility loci associated with kidney disease in type 1 diabetes. PLoS Genet. 8, e1002921 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Villeneuve, L. M., Reddy, M. A. & Natarajan, R. Epigenetics: deciphering its role in diabetes and its chronic complications. Clin. Exp. Pharmacol. Physiol. 38, 401–409 (2011).

    CAS  PubMed Central  Google Scholar 

  61. Cooper, M. E. & El-Osta, A. Epigenetics: mechanisms and implications for diabetic complications. Circ. Res. 107, 1403–1413 (2010).

    CAS  PubMed  Google Scholar 

  62. Miao, F. et al. Profiles of epigenetic histone post-translational modifications at type 1 diabetes susceptible genes. J. Biol. Chem. 287, 16335–16345 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sapienza, C. et al. DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy. Epigenetics 6, 20–28 (2011).

    CAS  PubMed  Google Scholar 

  64. Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Toperoff, G. et al. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood. Hum. Mol. Genet. 21, 371–383 (2012).

    CAS  PubMed  Google Scholar 

  66. Bell, C. G. et al. Integrated genetic and epigenetic analysis identifies haplotype-specific methylation in the FTO type 2 diabetes and obesity susceptibility locus. PLoS ONE 5, e14040 (2010).

    PubMed  PubMed Central  Google Scholar 

  67. Bell, C. G. et al. Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Med. Genomics 3, 33 (2010).

    PubMed  PubMed Central  Google Scholar 

  68. Bechtel, W. et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat. Med. 16, 544–550 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Pirola, L. et al. Genome-wide analysis distinguishes hyperglycemia regulated epigenetic signatures of primary vascular cells. Genome Res. 21, 1601–1615 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ko, Y. A. et al. Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development. Genome Biol. 14, R108 (2013).

    PubMed  PubMed Central  Google Scholar 

  71. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  72. Zhou, V. W., Goren, A. & Bernstein, B. E. Charting histone modifications and the functional organization of mammalian genomes. Nat. Rev. Genet. 12, 7–18 (2011).

    PubMed  Google Scholar 

  73. Jin, F., Li, Y., Ren, B. & Natarajan, R. Enhancers: multi-dimensional signal integrators. Transcription 2, 226–230 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Klose, R. J. & Zhang, Y. Regulation of histone methylation by demethylimination and demethylation. Nat. Rev. Mol. Cell Biol. 8, 307–318 (2007).

    CAS  PubMed  Google Scholar 

  76. Cedar, H. & Bergman, Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295–304 (2009).

    CAS  PubMed  Google Scholar 

  77. Guttman, M. & Rinn, J. L. Modular regulatory principles of large non-coding RNAs. Nature 482, 339–346 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Yuan, H. et al. Involvement of p300/CBP and epigenetic histone acetylation in TGF-β1-mediated gene transcription in mesangial cells. Am. J. Physiol. Renal Physiol. 304, F601–F613 (2013).

    CAS  PubMed  Google Scholar 

  79. Sun, G. et al. Epigenetic histone methylation modulates fibrotic gene expression. J. Am. Soc. Nephrol. 21, 2069–2080 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Reddy, M. A. et al. Losartan reverses permissive epigenetic changes in renal glomeruli of diabetic db/db mice. Kidney Int. 85, 362–373 (2014).

    CAS  PubMed  Google Scholar 

  81. Komers, R. et al. Epigenetic changes in renal genes dysregulated in mouse and rat models of type 1 diabetes. Lab. Invest. 93, 543–552 (2013).

    CAS  PubMed  Google Scholar 

  82. Giacco, F. & Brownlee, M. Oxidative stress and diabetic complications. Circ. Res. 107, 1058–1070 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Miao, F., Gonzalo, I. G., Lanting, L. & Natarajan, R. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J. Biol. Chem. 279, 18091–18097 (2004).

    CAS  PubMed  Google Scholar 

  84. Miao, F. et al. Genome-wide analysis of histone lysine methylation variations caused by diabetic conditions in human monocytes. J. Biol. Chem. 282, 13854–13863 (2007).

    CAS  PubMed  Google Scholar 

  85. Miao, F. et al. Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes. Diabetes 57, 3189–3198 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Li, Y. et al. Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-κB-dependent inflammatory genes. Relevance to diabetes and inflammation. J. Biol. Chem. 283, 26771–26781 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Yun, J. M., Jialal, I. & Devaraj, S. Epigenetic regulation of high glucose-induced proinflammatory cytokine production in monocytes by curcumin. J. Nutr. Biochem. 22, 450–458 (2011).

    CAS  PubMed  Google Scholar 

  88. Villeneuve, L. M. et al. Enhanced levels of microRNA-125b in vascular smooth muscle cells of diabetic db/db mice lead to increased inflammatory gene expression by targeting the histone methyltransferase Suv39h1. Diabetes 59, 2904–2915 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Villeneuve, L. M. et al. Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proc. Natl Acad. Sci. USA 105, 9047–9052 (2008).

    CAS  PubMed  Google Scholar 

  90. Tonna, S., El-Osta, A., Cooper, M. E. & Tikellis, C. Metabolic memory and diabetic nephropathy: potential role for epigenetic mechanisms. Nat. Rev. Nephrol. 6, 332–341 (2010).

    CAS  PubMed  Google Scholar 

  91. Miao, F. et al. Evaluating the role of epigenetic histone modifications in the metabolic memory of type 1 diabetes. Diabetes 63, 1748–1762 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Mouse ENCODE Consortium. An encyclopedia of mouse DNA elements (Mouse ENCODE). Genome Biol. 13, 418 (2012).

  93. Rosenbloom, K. R. et al. ENCODE whole-genome data in the UCSC Genome Browser: update 2012. Nucleic Acids Res. 40, D912–D917 (2012).

    CAS  PubMed  Google Scholar 

  94. Park, P. J. ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet. 10, 669–680 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    CAS  PubMed  Google Scholar 

  96. Laird, P. W. Principles and challenges of genomewide DNA methylation analysis. Nat. Rev. Genet. 11, 191–203 (2010).

    CAS  PubMed  Google Scholar 

  97. Simon, J. M., Giresi, P. G., Davis, I. J. & Lieb, J. D. Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA. Nat. Protoc. 7, 256–267 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Bernstein, B. E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28, 1045–1048 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 9, 102–114 (2008).

    CAS  PubMed  Google Scholar 

  101. Kim, V. N. MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol. 6, 376–385 (2005).

    CAS  PubMed  Google Scholar 

  102. Kato, M., Castro, N. E. & Natarajan, R. MicroRNAs: potential mediators and biomarkers of diabetic complications. Free Radic. Biol. Med. 64, 85–94 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Harvey, S. J. et al. Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease. J. Am. Soc. Nephrol. 19, 2150–2158 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ho, J. et al. Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury. J. Am. Soc. Nephrol. 19, 2069–2075 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ho, J. et al. The pro-apoptotic protein Bim is a microRNA target in kidney progenitors. J. Am. Soc. Nephrol. 22, 1053–1063 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Shi, S. et al. Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J. Am. Soc. Nephrol. 19, 2159–2169 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Nagalakshmi, V. K. et al. Dicer regulates the development of nephrogenic and ureteric compartments in the mammalian kidney. Kidney Int. 79, 317–330 (2011).

    CAS  PubMed  Google Scholar 

  108. Zhdanova, O. et al. The inducible deletion of Drosha and microRNAs in mature podocytes results in a collapsing glomerulopathy. Kidney Int. 80, 719–730 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhao, Y. et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129, 303–317 (2007).

    CAS  PubMed  Google Scholar 

  110. Chen, J. F. et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc. Natl Acad. Sci. USA 105, 2111–2116 (2008).

    CAS  PubMed  Google Scholar 

  111. Sun, Y. et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res. 32, e188 (2004).

    PubMed  PubMed Central  Google Scholar 

  112. Tian, Z., Greene, A. S., Pietrusz, J. L., Matus, I. R. & Liang, M. MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis. Genome Res. 18, 404–411 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Kato, M. et al. Post-transcriptional up-regulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TGF-β-induced collagen expression in kidney cells. J. Biol. Chem. 285, 34004–34015 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Kato, M. et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors. Proc. Natl Acad. Sci. USA 104, 3432–3437 (2007).

    CAS  PubMed  Google Scholar 

  115. Kato, M. et al. TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat. Cell Biol. 11, 881–889 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Park, J. T. et al. FOG2 protein down-regulation by transforming growth factor-β1-induced microRNA-200b/c leads to Akt kinase activation and glomerular mesangial hypertrophy related to diabetic nephropathy. J. Biol. Chem. 288, 22469–22480 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Deshpande, S. D. et al. Transforming growth factor-β-induced cross talk between p53 and a microRNA in the pathogenesis of diabetic nephropathy. Diabetes 62, 3151–3162 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kato, M. & Natarajan, R. MicroRNA circuits in transforming growth factor-β actions and diabetic nephropathy. Semin. Nephrol. 32, 253–260 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Chung, A. C., Huang, X. R., Meng, X. & Lan, H. Y. miR-192 mediates TGF-β/Smad3-driven renal fibrosis. J. Am. Soc. Nephrol. 21, 1317–1325 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Kato, M. et al. TGF-β induces acetylation of chromatin and of Ets-1 to alleviate repression of miR-192 in diabetic nephropathy. Sci. Signal. 6, ra43 (2013).

    PubMed  PubMed Central  Google Scholar 

  121. Krupa, A. et al. Loss of microRNA-192 promotes fibrogenesis in diabetic nephropathy. J. Am. Soc. Nephrol. 21, 438–447 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang, B. et al. E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-β. Diabetes 59, 1794–1802 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang, B. et al. miR-200a prevents renal fibrogenesis through repression of TGF-β2 expression. Diabetes 60, 280–287 (2011).

    CAS  PubMed  Google Scholar 

  124. Gregory, P. A. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593–601 (2008).

    CAS  PubMed  Google Scholar 

  125. Ren, S. & Duffield, J. S. Pericytes in kidney fibrosis. Curr. Opin. Nephrol. Hypertens. 22, 471–480 (2013).

    CAS  PubMed  Google Scholar 

  126. LeBleu, V. S. et al. Origin and function of myofibroblasts in kidney fibrosis. Nat. Med. 19, 1047–1053 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Kriz, W., Kaissling, B. & Le Hir, M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J. Clin. Invest. 121, 468–474 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Dey, N. et al. MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes. J. Biol. Chem. 286, 25586–25603 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhong, X. et al. miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 56, 663–674 (2013).

    CAS  PubMed  Google Scholar 

  130. Wang, J. et al. Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice. Cell Biochem. Biophys. 67, 537–546 (2013).

    CAS  PubMed  Google Scholar 

  131. Chau, B. N. et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci. Transl. Med. 4, 121ra18 (2012).

    PubMed  PubMed Central  Google Scholar 

  132. Zhang, Z. et al. MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice. FEBS Lett. 583, 2009–2014 (2009).

    CAS  PubMed  Google Scholar 

  133. Wang, Q. et al. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J. 22, 4126–4135 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Wang, X. X. et al. Diabetic nephropathy is accelerated by farnesoid X receptor deficiency and inhibited by farnesoid X receptor activation in a type 1 diabetes model. Diabetes 59, 2916–2927 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Long, J., Wang, Y., Wang, W., Chang, B. H. & Danesh, F. R. Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions. J. Biol. Chem. 285, 23457–23465 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Long, J., Wang, Y., Wang, W., Chang, B. H. & Danesh, F. R. MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. J. Biol. Chem. 286, 11837–11848 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Wang, B. et al. Suppression of microRNA-29 expression by TGF-β1 promotes collagen expression and renal fibrosis. J. Am. Soc. Nephrol. 23, 252–265 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Chen, H. Y. et al. MicroRNA-29b inhibits diabetic nephropathy in db/db mice. Mol. Ther. 22, 842–853 (2014).

    PubMed  PubMed Central  Google Scholar 

  139. Qin, W. et al. TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J. Am. Soc. Nephrol. 22, 1462–1474 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Sun, L. et al. Low-dose paclitaxel ameliorates fibrosis in the remnant kidney model by down-regulating miR-192. J. Pathol. 225, 364–377 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Mu, J. et al. Functional implications of microRNA-215 in TGF-β1-induced phenotypic transition of mesangial cells by targeting CTNNBIP1. PLoS ONE 8, e58622 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Long, J. et al. MicroRNA-22 is a master regulator of bone morphogenetic protein-7/6 homeostasis in the kidney. J. Biol. Chem. 288, 36202–36214 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Wu, J. et al. Downregulation of microRNA-30 facilitates podocyte injury and is prevented by glucocorticoids. J. Am. Soc. Nephrol. 25, 92–104 (2014).

    CAS  PubMed  Google Scholar 

  144. Li, R. et al. The microRNA miR-433 promotes renal fibrosis by amplifying the TGF-β/Smad3-Azin1 pathway. Kidney Int. 84, 1129–1144 (2013).

    CAS  PubMed  Google Scholar 

  145. Zhang, Z. et al. MicroRNA-451 regulates p38 MAPK signaling by targeting of Ywhaz and suppresses the mesangial hypertrophy in early diabetic nephropathy. FEBS Lett. 586, 20–26 (2012).

    CAS  PubMed  Google Scholar 

  146. Brennan, E. P. et al. Lipoxins attenuate renal fibrosis by inducing let-7c and suppressing TGFβR1. J. Am. Soc. Nephrol. 24, 627–637 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Wang, B. et al. Transforming growth factor-β1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b. Kidney Int. 85, 352–361 (2014).

    CAS  PubMed  Google Scholar 

  148. Babelova, A. et al. Role of Nox4 in murine models of kidney disease. Free Radic. Biol. Med. 53, 842–853 (2012).

    CAS  PubMed  Google Scholar 

  149. Zhu, Y., Usui, H. K. & Sharma, K. Regulation of transforming growth factor-beta in diabetic nephropathy: implications for treatment. Semin. Nephrol. 27, 153–160 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Fu, Y. et al. Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy. Am. J. Nephrol. 32, 581–589 (2010).

    CAS  PubMed  Google Scholar 

  151. Feng, B. et al. miR-146a-mediated extracellular matrix protein production in chronic diabetes complications. Diabetes 60, 2975–2984 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Muratsu-Ikeda, S. et al. Downregulation of miR-205 modulates cell susceptibility to oxidative and endoplasmic reticulum stresses in renal tubular cells. PLoS ONE 7, e41462 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Wei, J. et al. Aldose reductase regulates miR-200a-3p/141–143p to coordinate Keap1–Nrf2, Tgfβ1/2, and Zeb1/2 signaling in renal mesangial cells and the renal cortex of diabetic mice. Free Radic. Biol. Med. 67, 91–102 (2014).

    CAS  PubMed  Google Scholar 

  154. Cabili, M. N. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25, 1915–1927 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Wapinski, O. & Chang, H. Y. Long noncoding RNAs and human disease. Trends Cell Biol. 21, 354–361 (2011).

    CAS  PubMed  Google Scholar 

  156. Taft, R. J., Pang, K. C., Mercer, T. R., Dinger, M. & Mattick, J. S. Non-coding RNAs: regulators of disease. J. Pathol. 220, 126–139 (2010).

    CAS  PubMed  Google Scholar 

  157. Moran, V. A., Perera, R. J. & Khalil, A. M. Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res. 40, 6391–6400 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Wilusz, J. E., Sunwoo, H. & Spector, D. L. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 23, 1494–1504 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Leung, A. et al. Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells. Circ. Res. 113, 266–278 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Alvarez, M. L. & DiStefano, J. K. Functional characterization of the plasmacytoma variant translocation 1 gene (PVT1) in diabetic nephropathy. PLoS ONE 6, e18671 (2011).

    PubMed  PubMed Central  Google Scholar 

  161. Hanson, R. L. et al. Identification of PVT1 as a candidate gene for end-stage renal disease in type 2 diabetes using a pooling-based genome-wide single nucleotide polymorphism association study. Diabetes 56, 975–983 (2007).

    CAS  PubMed  Google Scholar 

  162. Huppi, K. et al. The identification of microRNAs in a genomically unstable region of human chromosome 8q24. Mol. Cancer Res. 6, 212–221 (2008).

    CAS  PubMed  Google Scholar 

  163. Alvarez, M. L., Khosroheidari, M., Eddy, E. & Kiefer, J. Role of microRNA 1207–1205P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: implications for diabetic nephropathy. PLoS ONE 8, e77468 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Zhou, Q. et al. Identification of novel long noncoding RNAs associated with TGF-β/Smad3-mediated renal inflammation and fibrosis by RNA sequencing. Am. J. Pathol. 184, 409–417 (2014).

    CAS  PubMed  Google Scholar 

  165. Fassett, R. G. et al. Biomarkers in chronic kidney disease: a review. Kidney Int. 80, 806–821 (2011).

    CAS  PubMed  Google Scholar 

  166. Farazi, T. A., Spitzer, J. I., Morozov, P. & Tuschl, T. miRNAs in human cancer. J. Pathol. 223, 102–115 (2011).

    CAS  PubMed  Google Scholar 

  167. Fabbri, M. miRNAs as molecular biomarkers of cancer. Expert Rev. Mol. Diagn. 10, 435–444 (2010).

    CAS  PubMed  Google Scholar 

  168. Wang, K. et al. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc. Natl Acad. Sci. USA 106, 4402–4407 (2009).

    CAS  PubMed  Google Scholar 

  169. Tijsen, A. J. et al. MiR423–425p as a circulating biomarker for heart failure. Circ. Res. 106, 1035–1039 (2010).

    CAS  PubMed  Google Scholar 

  170. Szeto, C. C. et al. Micro-RNA expression in the urinary sediment of patients with chronic kidney diseases. Dis. Markers 33, 137–144 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Neal, C. S. et al. Circulating microRNA expression is reduced in chronic kidney disease. Nephrol. Dial. Transplant. 26, 3794–3802 (2011).

    CAS  PubMed  Google Scholar 

  172. Luk, C. C. et al. Urinary biomarkers for the prediction of reversibility in acute-on-chronic renal failure. Dis. Markers 34, 179–185 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Wang, G. et al. Urinary sediment miRNA levels in adult nephrotic syndrome. Clin. Chim. Acta 418, 5–11 (2013).

    CAS  PubMed  Google Scholar 

  174. Yang, Y. et al. Urine miRNAs: potential biomarkers for monitoring progression of early stages of diabetic nephropathy. Med. Hypotheses 81, 274–278 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Ichii, O. et al. Altered expression of microRNA miR-146a correlates with the development of chronic renal inflammation. Kidney Int. 81, 280–292 (2012).

    CAS  PubMed  Google Scholar 

  176. DiStefano, J. K., Taila, M. & Alvarez, M. L. Emerging roles for miRNAs in the development, diagnosis, and treatment of diabetic nephropathy. Curr. Diab. Rep. 13, 582–591 (2013).

    CAS  PubMed  Google Scholar 

  177. Cai, X. et al. Serum microRNAs levels in primary focal segmental glomerulosclerosis. Pediatr. Nephrol. 28, 1797–1801 (2013).

    PubMed  PubMed Central  Google Scholar 

  178. Barutta, F. et al. Urinary exosomal microRNAs in incipient diabetic nephropathy. PLoS ONE 8, e73798 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Argyropoulos, C. et al. Urinary microRNA profiling in the nephropathy of type 1 diabetes. PLoS ONE 8, e54662 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Ziyadeh, F. N. et al. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-β antibody in db/db diabetic mice. Proc. Natl Acad. Sci. USA 97, 8015–8020 (2000).

    CAS  PubMed  Google Scholar 

  181. Declèves, A. E. & Sharma, K. New pharmacological treatments for improving renal outcomes in diabetes. Nat. Rev. Nephrol. 6, 371–380 (2010).

    PubMed  Google Scholar 

  182. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    CAS  PubMed  Google Scholar 

  183. Cianciolo Cosentino, C. et al. Histone deacetylase inhibitor enhances recovery after AKI. J. Am. Soc. Nephrol. 24, 943–953 (2013).

    PubMed  PubMed Central  Google Scholar 

  184. Advani, A. et al. Long-term administration of the histone deacetylase inhibitor vorinostat attenuates renal injury in experimental diabetes through an endothelial nitric oxide synthase-dependent mechanism. Am. J. Pathol. 178, 2205–2214 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Huang, K. et al. Sirt1 resists advanced glycation end products-induced expressions of fibronectin and TGF-β1 by activating the Nrf2/ARE pathway in glomerular mesangial cells. Free Radic. Biol. Med. 65, 528–540 (2013).

    CAS  PubMed  Google Scholar 

  186. Krützfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).

    PubMed  Google Scholar 

  187. Putta, S. et al. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J. Am. Soc. Nephrol. 23, 458–469 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Lindow, M. & Kauppinen, S. Discovering the first microRNA-targeted drug. J. Cell Biol. 199, 407–412 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Pan, Y. et al. MS2 VLP-based delivery of microRNA-146a inhibits autoantibody production in lupus-prone mice. Int. J. Nanomedicine 7, 5957–5967 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Wahlestedt, C. Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat. Rev. Drug Discov. 12, 433–446 (2013).

    CAS  PubMed  Google Scholar 

  191. Du, B. et al. High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells. FEBS Lett. 584, 811–816 (2010).

    CAS  PubMed  Google Scholar 

  192. Jenkins, R. H. et al. miR-192 induces G/M growth arrest in aristolochic acid nephropathy. Am. J. Pathol. 184, 996–1009 (2014).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding from the National Institutes of Health (NIDDK and NHLBI), the Juvenile Diabetes Research Foundation and the American Diabetes Association.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data for the article, discussed its content, wrote the manuscript and edited the article before submission.

Corresponding author

Correspondence to Rama Natarajan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, M., Natarajan, R. Diabetic nephropathy—emerging epigenetic mechanisms. Nat Rev Nephrol 10, 517–530 (2014). https://doi.org/10.1038/nrneph.2014.116

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2014.116

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing