Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Direct electrical stimulation of human cortex — the gold standard for mapping brain functions?

Abstract

Despite its clinical relevance, direct electrical stimulation (DES) of the human brain is surprisingly poorly understood. Although we understand several aspects of electrical stimulation at the cellular level, surface DES evokes a complex summation effect in a large volume of brain tissue, and the effect is difficult to predict as it depends on many local and remote physiological and morphological factors. The complex stimulation effects are reflected in the heterogeneity of behavioural effects that are induced by DES, which range from evocation to inhibition of responses — sometimes even when DES is applied at the same cortical site. Thus, it is a misconception that DES — in contrast to other neuroscience techniques — allows us to draw unequivocal conclusions about the role of stimulated brain areas.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical intrinsic imaging signals during application of DES.
Figure 2: Diverse behavioural effects of DES in humans.

Similar content being viewed by others

References

  1. Krause, F. Die operative Behandlung der Epilepsie. Med. Klin. 5, 1418–1422 (1909).

    Google Scholar 

  2. Krause, F. Surgery Of The Brain And Spinal Cord Based On Personal Experience Vol. 2 (Rebman, New York, 1912)

    Google Scholar 

  3. Cushing, H. A note upon the faradic stimulation of the postcentral gyrus in conscious patients. Brain 32, 44–53 (1909).

    Article  Google Scholar 

  4. Ojemann, G. A., Ojemann, J. G., Lettich, E. & Berger, M. S. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J. Neurosurg. 71, 316–326 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Ojemann, G. A. Cortical organization of language. J. Neurosci. 11, 2281–2287 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Duffau, H. et al. The role of dominant premotor cortex in language: a study using intraoperative functional mapping in awake patients. Neuroimage 20, 1903–1914 (2003).

    Article  PubMed  Google Scholar 

  7. Duffau, H. et al. New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations. Brain 128, 797–810 (2005).

    Article  PubMed  Google Scholar 

  8. Sanai, N., Mirzadeh, Z. & Berger, M. S. Functional outcome after language mapping for glioma resection. N. Engl. J. Med. 358, 18–27 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Thiebaut De Schotten, M. et al. Direct evidence for a parietal-frontal pathway subserving spatial awareness in humans. Science 309, 2226–2228 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Gharabaghi, A., Fruhmann Berger, M., Tatagiba, M. & Karnath, H.-O. The role of the right superior temporal gyrus in visual search – insights from intraoperative electrical stimulation. Neuropsychologia 44, 2578–2581 (2006).

    Article  PubMed  Google Scholar 

  11. Mandonnet, E., Winkler, P. A. & Duffau, H. Direct electrical stimulation as an input gate into brain functional networks: principles, advantages and limitations. Acta Neurochir. 152, 185–193 (2010).

    Article  PubMed  Google Scholar 

  12. Desmurget, M. et al. Movement intention after parietal cortex stimulation in humans. Science 324, 811–813 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Penfield, W. & Roberts, L. Speech and Brain Mechanisms (Princeton Univ. Press, Princeton, New Jersey, 1959).

    Google Scholar 

  14. Van Buren, J. M., Fedio, P. & Frederick, G. C. Mechanism and localization of speech in the parietotemporal cortex. Neurosurgery 2, 233–239 (1978).

    Article  CAS  PubMed  Google Scholar 

  15. Ojemann, G. A. & Whitaker, H. A. The bilingual brain. Arch. Neurol. 35, 409–412 (1978).

    Article  CAS  PubMed  Google Scholar 

  16. Haglund, M. M., Berger, M. S., Shamseldin, E. L. & Ojemann, G. A. Cortical localization of temporal lobe language sites in patients with gliomas. Neurosurgery 34, 567–576 (1994).

    CAS  PubMed  Google Scholar 

  17. Nossek, E. et al. Intraoperative mapping and monitoring of the corticospinal tracts with neurophysiological assessment and 3-dimensional ultrasonography-based navigation. J. Neurosurg. 114, 738–746 (2011).

    Article  PubMed  Google Scholar 

  18. Spena, G. et al. Preoperative and intraoperative brain mapping for the resection of eloquent-area tumors. A prospective analysis of methodology, correlation, and usefulness based on clinical outcomes. Acta Neurochir. 152, 1835–1846 (2010).

    Article  PubMed  Google Scholar 

  19. Ranck, J. B. Which elements are excited in electrical stimulation of mammalian central nervous-system: a review. Brain Res. 98, 417–440 (1975).

    Article  PubMed  Google Scholar 

  20. Gustafsson, B. & Jankowska, E. Direct and inderect activation of nerve-cells by electrical puses applied extracellularly. J. Physiol. 258, 33–61 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nowak, L. G. & Bullier, J. Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter II. Evidence from selective inactivation of cell bodies and axon initial segments. Exp. Brain Res. 118, 489–500 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Rattay, F. The basic mechanism for the electrical stimulation of the nervous system. Neuroscience 89, 335–346 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Tehovnik, E. J., Tolias, A. S., Sultan, F. R., Slocum, W. M. & Logothetis, N. K. Direct and indirect activation of cortical neurons by electrical microstimulation. J. Neurophysiol. 96, 512–521 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Histed, M. H., Bonin, V. & Reid, R. C. Direct activation of sparse, distributed populations of cortical neurons by electrical microstimulation. Neuron 63, 508–522 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Logothetis, N. K. et al. The effects of electrical microstimulation on cortical signal propagation. Nature Neurosci. 13, 1283–1291 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Brunel, N. & van Rossum, M. C. W. Lapicque's 1907 paper: from frogs to integrate-and-fire. Biol. Cybern. 97, 337–339 (2007).

    Article  PubMed  Google Scholar 

  27. Irnich, W. The terms “chronaxie” and “rheobase” are 100 years old. Pacing Clin. Electrophysiol. 33, 491–496 (2010).

    Article  PubMed  Google Scholar 

  28. Mogyoros, I., Kiernan, M. C., Burke, D. & Bostock, H. Excitability changes in human sensory and motor axons during hyperventilation and ischaemia. Brain 120, 317–325 (1997).

    Article  PubMed  Google Scholar 

  29. Mogyoros, I., Kiernan, M. C., Burke, D. & Bostock, H. Strength-duration properties of sensory and motor axons in amyotrophic lateral sclerosis. Brain 121, 851–859 (1998).

    Article  PubMed  Google Scholar 

  30. Bostock, H. The strength duration relationship for excitation of myelinated nerve – computed dependence on membrane parameters. J. Physiol. 341, 59–74 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mainen, Z. F., Joerges, J., Huguenard, J. R. & Sejnowski, T. J. A model of spike initiation in neocortical pyramidal neurons. Neuron 15, 1427–1439 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Tolias, A. S. et al. Mapping cortical activity elicited with electrical microstimulation using fMRI in the macaque. Neuron 48, 901–911 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Logothetis, N. K., Kayser, C. & Oeltermann, A. In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation. Neuron 55, 809–823 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Asanuma, H., Arnold, A. & Zarzecki, P. Further study on the excitation of pyramidal tract cells by intracortical microstimulation. Exp. Brain Res. 26, 443–461 (1976).

    Article  CAS  PubMed  Google Scholar 

  35. Stoney, S. D., Thompson, W. D. & Asanuma, H. Excitation of pyramidal tract cells by intracortical microstimulation: effective extent of stimulating current. J. Neurophysiol. 31, 659–669 (1968).

    Article  PubMed  Google Scholar 

  36. Seidemann, E., Arieli, A., Grinvald, A. & Slovin, H. Dynamics of depolarization and hyperpolarization in the frontal cortex and saccade goal. Science 295, 862–865 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Butovas, S. & Schwarz, C. Spatiotemporal effects of microstimulation in rat neocortex: a parametric study using multielectrode recordings. J. Neurophys. 90, 3024–3039 (2003).

    Article  Google Scholar 

  38. Berman, N. J., Douglas, R. J., Martin, K. A. & Whitteridge, D. Mechanisms of inhibition in cat visual cortex. J. Physiol. 440, 697–722 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Douglas, R. J., Martin, K. A. & Whitteridge, D. An intracellular analysis of the visual responses of neurones in cat visual cortex. J. Physiol. 440, 659–696 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, C. L. Cortical intracellular synaptic potentials in response to thalamic stimulation. J. Cell. Comp. Physiol. 61, 165–179 (1963).

    Article  CAS  PubMed  Google Scholar 

  41. Douglas, R. J. & Martin, K. A. C. Recurrent neuronal circuits in the neocortex. Curr. Biol. 17, R496–R500 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. DeFelipe, J., Conley, M. & Jones, E. G. Long-range focal collateralization of axons arising from corticocortical cells in monkey sensory-motor cortex. J. Neurosci. 6, 3749–3766 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Keller, A. Intrinsic synaptic organization of the motor cortex. Cereb. Cortex 3, 430–441 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Logothetis, N. K. What we can do and what we cannot do with fMRI. Nature 453, 869–878 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Clark, K. L., Armstrong, K. M. & Moore, T. Probing neural circuitry and function with electrical microstimulation. Proc. Biol. Sci. 278, 1121–1130 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cowey, A. The Ferrier Lecture 2004. What can transcranial magnetic stimulation tell us about how the brain works? Phil. Trans. R. Soc. B 360, 1185–1205 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pollen, D. A. in The Nervous System Vol. 2 (ed. Tower, D. B.) 519–528 (Raven Press, New York, 1975).

    Google Scholar 

  48. Pollen, D. A. Response of single neurons to electrical stimulation of the surface of the visual cortex. Brain Behav. Evol. 14, 67–86 (1977).

    Article  CAS  PubMed  Google Scholar 

  49. Pollen, D. A. Brain stimulation and conscious experience. Conscious. Cogn. 13, 626–645 (2004).

    Article  PubMed  Google Scholar 

  50. Haglund, M. M., Ojemann, G. A. & Blasdel, G. G. Optical imaging of bipolar cortical stimulation. J. Neurosurg. 78, 785–793 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Haglund, M. M., Ojemann, G. A. & Hochman, D. W. Optical imaging of epileptiform and functional activity in human cerebral cortex. Nature 358, 668–671 (1992).

    Article  CAS  PubMed  Google Scholar 

  52. Haglund, M. M. & Hochman, D. W. Imaging of intrinsic optical signals in primate cortex during epileptiform activity. Epilepsia 48, 65–74 (2007).

    Article  PubMed  Google Scholar 

  53. Suh, M., Bahar, S., Mehta, A. D. & Schwartz, T. H. Blood volume and hemoglobin oxygenation response follwing electrical stimulation of human cortex. Neuroimage 31, 66–75 (2006).

    Article  PubMed  Google Scholar 

  54. Ishitobi, M. et al. Remote discharges in the posterior language area during basal temporal stimulation. Neuroreport 11, 2997–3000 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Matsumoto, R. et al. Functional connectivity in the human language system: a cortico-cortical evoked potential study. Brain 127, 2316–2330 (2004).

    Article  PubMed  Google Scholar 

  56. Matsumoto, R. et al. Functional connectivity in the human cortical motor system: a cortico-cortical evoked potential study. Brain 130, 181–197 (2007).

    Article  PubMed  Google Scholar 

  57. Penfield, W. & Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as a studied by electrical stimulation. Brain 60, 389–443 (1937).

    Article  Google Scholar 

  58. Brindley, G. S. & Lewin, W. S. The sensations produced by electrical stimulation of the visual cortex. J. Physiol. 196, 479–493 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Penfield, W. & Rasmussen, T. The Cerebral Cortex of Man: A Clinical Study of Localization of Function (Macmillan, New York, 1950).

    Google Scholar 

  60. Penfield, W. & Jasper, H. Epilepsy and the Functional Anatomy of the Human Brain (Little Brown, Boston, 1954).

    Book  Google Scholar 

  61. Duffau, H. New concepts in surgery of WHO grade II gliomas: functional brain mapping, connectionism and plasticity – a review. Neuro-oncology 79, 77–115 (2006).

    Article  Google Scholar 

  62. Pouratian, N., Cannestra, A. F., Bookheimer, S. Y., Martin, N. A. & Toga, A. W. Variability of intraoperative electrocortical stimulation mapping parameters across and within individuals. J. Neurosurg. 101, 458–466 (2004).

    Article  PubMed  Google Scholar 

  63. Karnath, H.-O., Borchers, S. & Himmelbach, M. Comment on “Movement intention after parietal cortex stimulation in humans”. Science 327, 1200 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Richer, F., Martinez, M., Robert, M., Bouvier, G. & Saint-Hilaire, J. M. Stimulation of human somatosensory cortex: tactile and body displacement perceptions in medial regions. Exp. Brain Res. 93, 173–176 (1993).

    Article  CAS  PubMed  Google Scholar 

  65. Fish., D. R., Gloor, P., Quesney, F. L. & Olivier, A. Clinical responses to electrical brain stimulation of the temporal and frontal lobes in patients with epilepsy. Pathophysiological implications. Brain 116, 397–414 (1993).

    Article  PubMed  Google Scholar 

  66. Fried, I. et al. Functional organization of human supplementary motor cortex studied by electrical stimulation. J. Neurosci. 11, 3656–3666 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fritsch, G. & Hitzig, E. Über die elektrische Erregbarkeit des Grosshirns. Arch. Anat. Physiol. Wiss. Med. 37, 300–332 (1870).

    Google Scholar 

  68. Horsley, V. Case of occipital encephalocele in which a correct diagnosis was obtained by means of an induced current. Brain 7, 228–243 (1884).

    Article  Google Scholar 

  69. Bidwell, L. A. & Sherrington, C. S. Focal epilepsy: trephining and removal of small hemorrhagic focus: no improvement; removal of part of leg centre after electrical stimulation: improvement. Br. Med. J. 2, 988–989 (1893).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Foerster, O. & Altenburger, H. Elektobiologische Vorgänge an der menschlichen Hirnrinde. Dtsche. Z. Nervenheilk. 135, 277–288 (1935).

    Article  Google Scholar 

  71. Penfield, W. The electrode, the brain and the mind. Z. Neurol. 201, 291–309 (1972).

    Google Scholar 

  72. Farrell, D. F., Burbank, N., Lettich, E. & Ojemann, G. A. Individual variation in human motor-sensory (rolandic) cortex. J. Clin. Neurophysiol. 24, 286–293 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (grant KA 1258/10-1), the European Union (European Research Council grant StG 211078) and the Max Planck Society. The authors are grateful to W. Feindel, Literary Executor of the Estate of Wilder Penfield at the Montreal Neurological Institute, for suggestions and discussion regarding the history of DES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Otto Karnath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Hans-Otto Karnath's homepage

Glossary

Afterdischarges

Neural discharges after termination of stimulation.

Alexia

An acquired disorder of reading.

Amplitude threshold

The voltage amplitude with which the stimulation pulse is applied.

Anomia

Impaired recall of words, and naming errors.

Antidromic

Conduction that is in the opposite direction to normal — that is, along the axon towards the soma of the neuron.

BOLD signal

(Blood oxygen level-dependent signal). A measure of haemodynamic response based on changes in blood flow that are assumed to be related to neural activity in the brain.

Chronaxie

The chronaxie time is the minimum length of time that is required to excite a neural element using half the intensity that elicits a threshold response.

Electrocorticography

(ECoG). Recording of electrical activity from the cerebral cortex using electrodes placed directly on the exposed surface of the brain.

Inhibitory surround

An inhibitory area of neurons around the excited area. The inhibitory surround accentuates the excited area and thereby enhances the contrast and sharpens discrimination.

Intra-train facilitation

An increase in postsynaptic potential that is evoked by a series of pulses within a distinct time window.

Optical imaging

Illumination of neuronal tissue with visible or near-infrared light; as changes in neural activity alter the light scattering and the absorption properties of brain tissue, the signals can be acquired with a digital video camera, with or without including (voltage-sensitive) dyes or contrast-enhancing agents.

Orthodromic

Conduction along the axon in the normal direction — that is, away from the soma and towards the axon terminal.

Paresthesia

Sensation of the skin, such as numbness, tingling or pricking.

Phosphene

A phenomenon in which a person experiences seeing light without light actually entering the eye.

Rheobase

The minimal current that is necessary to stimulate a neural element with a long stimulus duration is called the rheobase.

Semantic paraphasias

Conditions in which a word is substituted with a word that is semantically related to the intended one by an aphasic individual.

Transcranial magnetic stimulation

(TMS). A non-invasive method for inducing weak electric currents in the brain, thereby causing depolarization or hyperpolarization in neurons below the skull surface where the pulse is given.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borchers, S., Himmelbach, M., Logothetis, N. et al. Direct electrical stimulation of human cortex — the gold standard for mapping brain functions?. Nat Rev Neurosci 13, 63–70 (2012). https://doi.org/10.1038/nrn3140

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing