Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neural stem cell systems: physiological players or in vitro entities?

An Erratum to this article was published on 06 October 2010

Key Points

  • Neural stem cells (NSCs) are self-renewing multipotent populations present in the mammalian CNS. They generate the neurons and glia of the developing and adult brain.

  • During brain development, predetermined developmental programmes give rise to different NSC populations in specific locations and at specific times. This temporal development is partially recapitulated in vitro during embryonic stem cell neuralization processes.

  • Neurosphere- and monolayer-based protocols have allowed the isolation and growth of developmental stage-specific NSC populations in vitro.

  • Recent developments in monolayer NSC systems, devoid of any three-dimensional organization proper to the neurosphere structure, have allowed the generation of pure cultures of NSCs that can be stably maintained over passages, indicating that NSCs can divide and differentiate in vitro in the absence of any niche.

  • NSCs expanded in vitro can undergo deregulation of some of their original antigenic and biological properties (that is, their regional identity and differentiation potential). This alteration of the 'genuine' properties is induced by exposure to growth factors classically used for NSC growth (that is, epidermal growth factor and fibroblast growth factor 2).

Abstract

Neural stem cells (NSCs) can be experimentally derived or induced from different sources, and the NSC systems generated so far are promising tools for basic research and biomedical applications. However, no direct and thorough comparison of their biological and molecular properties or of their physiological relevance and possible relationship to endogenous NSCs has yet been carried out. Here we review the available information on different NSC systems and compare their properties. A better understanding of these systems will be crucial to control NSC fate and functional integration following transplantation and to make NSCs suitable for regenerative efforts following injury or disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Developmental links between the different NSC populations that can be isolated or generated in vitro.
Figure 2: Sources of neurospheres and monolayer NSCs and results of differentiation.

Similar content being viewed by others

References

  1. Chojnacki, A. K., Mak, G. K. & Weiss, S. Identity crisis for adult periventricular neural stem cells: subventricular zone astrocytes, ependymal cells or both? Nature Rev. Neurosci. 10, 153–163 (2009).

    Article  CAS  Google Scholar 

  2. Temple, S. The development of neural stem cells. Nature 414, 112–117 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Alvarez-Buylla, A. & Lim, D. A. For the long run: maintaining germinal niches in the adult brain. Neuron 41, 683–686 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Garcion, E., Halilagic, A., Faissner, A. & ffrench-Constant, C. Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development 131, 3423–3432 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Shen, Q. et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338–1340 (2004). This study provided data suggesting the presence of an endothelial niche that regulates NSC activity in the brain.

    Article  CAS  PubMed  Google Scholar 

  6. Shen, Q. et al. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3, 289–300 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kokovay, E., Shen, Q. & Temple, S. The incredible elastic brain: how neural stem cells expand our minds. Neuron 60, 420–429 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Gage, F. H. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Gotz, M. & Huttner, W. B. The cell biology of neurogenesis. Nature Rev. Mol. Cell Biol. 6, 777–788 (2005).

    Article  CAS  Google Scholar 

  10. Pankratz, M. T. et al. Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage. Stem Cells 25, 1511–1520 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ying, Q. L., Stavridis, M., Griffiths, D., Li, M. & Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nature Biotech. 21, 183–186 (2003).

    Article  CAS  Google Scholar 

  12. Nishikawa, S., Jakt, L. M. & Era, T. Embryonic stem-cell culture as a tool for developmental cell biology. Nature Rev. Mol. Cell Biol. 8, 502–507 (2007).

    Article  CAS  Google Scholar 

  13. Zhang, S. C. Neural subtype specification from embryonic stem cells. Brain Pathol. 16, 132–142 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pevny, L. H., Sockanathan, S., Placzek, M. & Lovell-Badge, R. A role for SOX1 in neural determination. Development 125, 1967–1978 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Tropepe, V. et al. Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30, 65–78 (2001). This study described the rapid induction of “primitive” LIF-responsive transient neuroepithelial cells from mouse ESCs exposed to conditions that minimize the presence of extrinsic factors.

    Article  CAS  PubMed  Google Scholar 

  16. Smukler, S. R., Runciman, S. B., Xu, S. & van der Kooy, D. Embryonic stem cells assume a primitive neural stem cell fate in the absence of extrinsic influences. J. Cell Biol. 172, 79–90 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chambers, S. M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotech. 27, 275–280 (2009). This paper described the rapid generation of early neuroepithelial cells from hESCs by means of a strong inhibition of SMAD signalling. These early neuroepithelial cells constitute a transient pre-rosette population.

    Article  CAS  Google Scholar 

  18. Elkabetz, Y. et al. Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev. 22, 152–165 (2008). This study was the first to demonstrate that hESC-derived neural rosettes can be maintained for some passages in vitro by SHH and Notch receptor agonists. In the same paper it was also shown that this cell population can also be directly isolated, by means of the combination of Forse-1 and N-cadherin cell-sorting strategies, from anterior neural plate-stage tissue.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Suter, D. M., Tirefort, D., Julien, S. & Krause, K. H. A Sox1 to Pax6 switch drives neuroectoderm to radial glia progression during differentiation of mouse embryonic stem cells. Stem Cells 27, 49–58 (2008).

    Article  CAS  Google Scholar 

  20. Glaser, T. & Brustle, O. Retinoic acid induction of ES-cell-derived neurons: the radial glia connection. Trends Neurosci. 28, 397–400 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Koch, P., Opitz, T., Steinbeck, J. A., Ladewig, J. & Brustle, O. A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc. Natl Acad. Sci. USA 106, 3225–3230 (2009). This paper demonstrated that a well-defined hESC-derived population of post-rosette-stage neuroepithelial cells can retain some developmental plasticity following long-term propagation in the presence of EGF and FGF2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Anthony, T. E. & Heintz, N. Genetic lineage tracing defines distinct neurogenic and gliogenic stages of ventral telencephalic radial glial development. Neural Dev. 3, 30 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Anthony, T. E., Klein, C., Fishell, G. & Heintz, N. Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41, 881–890 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Malatesta, P., Hartfuss, E. & Gotz, M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253–5263 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Gotz, M., Stoykova, A. & Gruss, P. Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21, 1031–1044 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Hartfuss, E., Galli, R., Heins, N. & Gotz, M. Characterization of CNS precursor subtypes and radial glia. Dev. Biol. 229, 15–30 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Ogawa, Y. et al. Gliogenic radial glial cells show heterogeneity in the developing mouse spinal cord. Dev. Neurosci. 27, 364–377 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Pinto, L. et al. Prospective isolation of functionally distinct radial glial subtypes--lineage and transcriptome analysis. Mol. Cell. Neurosci. 38, 15–42 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Li, H., Babiarz, J., Woodbury, J., Kane-Goldsmith, N. & Grumet, M. Spatiotemporal heterogeneity of CNS radial glial cells and their transition to restricted precursors. Dev. Biol. 271, 225–238 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Malatesta, P. et al. Neuronal or glial progeny: regional differences in radial glia fate. Neuron 37, 751–764 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Miyata, T., Kawaguchi, A., Okano, H. & Ogawa, M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31, 727–741 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Shen, Q. et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nature Neurosci. 9, 743–751 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Noctor, S. C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neurosci. 7, 136–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Schmid, R. S. et al. Neuregulin 1-erbB2 signaling is required for the establishment of radial glia and their transformation into astrocytes in cerebral cortex. Proc. Natl Acad. Sci. USA 100, 4251–4256 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Conti, L. et al. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol. 3, e283 (2005). The first evidence that it is possible to derive pure NSC lines that exhibit features of neurogenic RG progenitors.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Nelson, A. D., Suzuki, M. & Svendsen, C. N. A high concentration of epidermal growth factor increases the growth and survival of neurogenic radial glial cells within human neurosphere cultures. Stem Cells 26, 348–355 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Yoon, K. et al. Fibroblast growth factor receptor signaling promotes radial glial identity and interacts with Notch1 signaling in telencephalic progenitors. J. Neurosci. 24, 9497–9506 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bibel, M., Richter, J., Lacroix, E. & Barde, Y. A. Generation of a defined and uniform population of CNS progenitors and neurons from mouse embryonic stem cells. Nature Protoc. 2, 1034–1043 (2007).

    Article  CAS  Google Scholar 

  39. Bouhon, I. A., Joannides, A., Kato, H., Chandran, S. & Allen, N. D. Embryonic stem cell-derived neural progenitors display temporal restriction to neural patterning. Stem Cells 24, 1908–1913 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Liour, S. S. et al. Further characterization of embryonic stem cell-derived radial glial cells. Glia 53, 43–56 (2006).

    Article  PubMed  Google Scholar 

  41. Lowell, S., Benchoua, A., Heavey, B. & Smith, A. G. Notch promotes neural lineage entry by pluripotent embryonic stem cells. PLoS Biol. 4, e121 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Nat, R. et al. Neurogenic neuroepithelial and radial glial cells generated from six human embryonic stem cell lines in serum-free suspension and adherent cultures. Glia 55, 385–399 (2007).

    Article  PubMed  Google Scholar 

  43. Bibel, M. et al. Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nature Neurosci. 7, 1003–1009 (2004). This report described the efficient generation of highly enriched RG populations during ES neuronal differentiation.

    Article  CAS  PubMed  Google Scholar 

  44. Plachta, N., Bibel, M., Tucker, K. L. & Barde, Y. A. Developmental potential of defined neural progenitors derived from mouse embryonic stem cells. Development 131, 5449–5456 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Glaser, T., Pollard, S. M., Smith, A. & Brustle, O. Tripotential differentiation of adherently expandable neural stem (NS) cells. PLoS ONE 2, e298 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Haubensak, W., Attardo, A., Denk, W. & Huttner, W. B. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc. Natl Acad. Sci. USA 101, 3196–3201 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Miyata, T. et al. Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 131, 3133–3145 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Englund, C. et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J. Neurosci. 25, 247–251 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sessa, A., Mao, C. A., Hadjantonakis, A. K., Klein, W. H. & Broccoli, V. Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 60, 56–69 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Attardo, A., Calegari, F., Haubensak, W., Wilsch-Brauninger, M. & Huttner, W. B. Live imaging at the onset of cortical neurogenesis reveals differential appearance of the neuronal phenotype in apical versus basal progenitor progeny. PLoS ONE 3, e2388 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Gaspard, N. et al. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455, 351–357 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Reynolds, B. A., Tetzlaff, W. & Weiss, S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci. 12, 4565–4574 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Reynolds, B. A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992). This landmark paper was the first to report culture conditions that allow the in vitro expansion (in a neurosphere system) of multipotent stem or progenitor cells present in the adult mammalian brain.

    Article  CAS  PubMed  Google Scholar 

  54. Laywell, E. D., Kukekov, V. G. & Steindler, D. A. Multipotent neurospheres can be derived from forebrain subependymal zone and spinal cord of adult mice after protracted postmortem intervals. Exp. Neurol. 156, 430–433 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Chojnacki, A. & Weiss, S. Production of neurons, astrocytes and oligodendrocytes from mammalian CNS stem cells. Nature Protoc. 3, 935–940 (2008).

    Article  CAS  Google Scholar 

  56. Ciccolini, F. Identification of two distinct types of multipotent neural precursors that appear sequentially during CNS development. Mol. Cell. Neurosci. 17, 895–907 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Ciccolini, F., Mandl, C., Holzl-Wenig, G., Kehlenbach, A. & Hellwig, A. Prospective isolation of late development multipotent precursors whose migration is promoted by EGFR. Dev. Biol. 284, 112–125 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Ciccolini, F. & Svendsen, C. N. Fibroblast growth factor 2 (FGF-2) promotes acquisition of epidermal growth factor (EGF) responsiveness in mouse striatal precursor cells: identification of neural precursors responding to both EGF and FGF-2. J. Neurosci. 18, 7869–7880 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gritti, A., Cova, L., Parati, E. A., Galli, R. & Vescovi, A. L. Basic fibroblast growth factor supports the proliferation of epidermal growth factor-generated neuronal precursor cells of the adult mouse CNS. Neurosci. Lett. 185, 151–154 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Gritti, A. et al. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J. Neurosci. 16, 1091–1100 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Louis, S. A. & Reynolds, B. A. Generation and differentiation of neurospheres from murine embryonic day 14 central nervous system tissue. Methods Mol. Biol. 290, 265–280 (2005).

    PubMed  Google Scholar 

  62. Martens, D. J., Tropepe, V. & van Der Kooy, D. Separate proliferation kinetics of fibroblast growth factor-responsive and epidermal growth factor-responsive neural stem cells within the embryonic forebrain germinal zone. J. Neurosci. 20, 1085–1095 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Svendsen, C. N. et al. A new method for the rapid and long term growth of human neural precursor cells. J. Neurosci. Methods 85, 141–152 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Tropepe, V. et al. Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev. Biol. 208, 166–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Uchida, N. et al. Direct isolation of human central nervous system stem cells. Proc. Natl Acad. Sci. USA 97, 14720–14725 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Singec, I. et al. Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology. Nature Methods 3, 801–806 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36, 1021–1034 (2002). This landmark study demonstrated that NSC identity could be acquired in vitro by a population of transit-amplifying precursors of the adult mammalian SVZ. These results suggested that exposure to growth factors can induce NSC characteristics in populations that in vivo act as transient neurogenic progenitors.

    Article  CAS  PubMed  Google Scholar 

  68. Gregg, C. & Weiss, S. Generation of functional radial glial cells by embryonic and adult forebrain neural stem cells. J. Neurosci. 23, 11587–11601 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Golmohammadi, M. G. et al. Comparative analysis of the frequency and distribution of stem and progenitor cells in the adult mouse brain. Stem Cells 26, 979–987 (2008).

    Article  PubMed  Google Scholar 

  70. Marshall, G. P., Reynolds, B. A. & Laywell, E. D. Using the neurosphere assay to quantify neural stem cells in vivo. Curr. Pharm. Biotechnol. 8, 141–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Wachs, F. P. et al. High efficacy of clonal growth and expansion of adult neural stem cells. Lab. Invest. 83, 949–962 (2003).

    Article  PubMed  Google Scholar 

  72. Jessberger, S., Clemenson, G. D. & Gage, F. H. Spontaneous fusion and nonclonal growth of adult neural stem cells. Stem Cells 25, 871–874 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Mori, H., Fujitani, T., Kanemura, Y., Kino-Oka, M. & Taya, M. Observational examination of aggregation and migration during early phase of neurosphere culture of mouse neural stem cells. J. Biosci. Bioeng. 104, 231–234 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Campos, L. S. Neurospheres: insights into neural stem cell biology. J. Neurosci. Res. 78, 761–769 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Campos, L. S., Decker, L., Taylor, V. & Skarnes, W. Notch, epidermal growth factor receptor, and β1-integrin pathways are coordinated in neural stem cells. J. Biol. Chem. 281, 5300–5309 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Bez, A. et al. Neurosphere and neurosphere-forming cells: morphological and ultrastructural characterization. Brain Res. 993, 18–29 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Lobo, M. V. et al. Cellular characterization of epidermal growth factor-expanded free-floating neurospheres. J. Histochem. Cytochem. 51, 89–103 (2003).

    Article  PubMed  Google Scholar 

  78. Grandbarbe, L. et al. Delta-Notch signaling controls the generation of neurons/glia from neural stem cells in a stepwise process. Development 130, 1391–1402 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Weiss, S. et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J. Neurosci. 16, 7599–7609 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Johe, K. K., Hazel, T. G., Muller, T., Dugich-Djordjevic, M. M. & McKay, R. D. Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev. 10, 3129–3140 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Palmer, T. D., Takahashi, J. & Gage, F. H. The adult rat hippocampus contains primordial neural stem cells. Mol. Cell. Neurosci. 8, 389–404 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Babu, H., Cheung, G., Kettenmann, H., Palmer, T. D. & Kempermann, G. Enriched monolayer precursor cell cultures from micro-dissected adult mouse dentate gyrus yield functional granule cell-like neurons. PLoS ONE 2, e388 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Palmer, T. D. et al. Cell culture. Progenitor cells from human brain after death. Nature 411, 42–43 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Takahashi, J., Palmer, T. D. & Gage, F. H. Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adult-derived neural stem cell cultures. J. Neurobiol. 38, 65–81 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Pollard, S. M., Conti, L., Sun, Y., Goffredo, D. & Smith, A. Adherent neural stem (NS) cells from fetal and adult forebrain. Cereb. Cortex 16 (Suppl. 1), i112–i120 (2006).

    Article  PubMed  Google Scholar 

  86. Sun, Y. et al. Long-term tripotent differentiation capacity of human neural stem (NS) cells in adherent culture. Mol. Cell. Neurosci. 38, 245–258 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Spiliotopoulos, D. et al. An optimized experimental strategy for efficient conversion of embryonic stem (ES)-derived mouse neural stem (NS) cells into a nearly homogeneous mature neuronal population. Neurobiol. Dis. 34, 320–331 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Goffredo, D. et al. Setting the conditions for efficient, robust and reproducible generation of functionally active neurons from adult subventricular zone-derived neural stem cells. Cell Death Differ. 15, 1847–1856 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Alexson, T. O., Hitoshi, S., Coles, B. L., Bernstein, A. & van der Kooy, D. Notch signaling is required to maintain all neural stem cell populations--irrespective of spatial or temporal niche. Dev. Neurosci. 28, 34–48 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Coles-Takabe, B. L. et al. Don't look: growing clonal versus nonclonal neural stem cell colonies. Stem Cells 26, 2938–2944 (2008).

    Article  PubMed  Google Scholar 

  91. Cordey, M., Limacher, M., Kobel, S., Taylor, V. & Lutolf, M. P. Enhancing the reliability and throughput of neurosphere culture on hydrogel microwell arrays. Stem Cells 26, 2586–2594 (2008).

    Article  PubMed  Google Scholar 

  92. Louis, S. A. et al. Enumeration of neural stem and progenitor cells in the neural colony-forming cell assay. Stem Cells 26, 988–996 (2008).

    Article  PubMed  Google Scholar 

  93. Smith, A. G. Embryo-derived stem cells: of mice and men. Annu. Rev. Cell Dev. Biol. 17, 435–462 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Reynolds, B. A. & Rietze, R. L. Neural stem cells and neurospheres--re-evaluating the relationship. Nature Methods 2, 333–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Dromard, C. et al. NG2 and Olig2 expression provides evidence for phenotypic deregulation of cultured central nervous system and peripheral nervous system neural precursor cells. Stem Cells 25, 340–353 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Copray, S. et al. Olig2 overexpression induces the in vitro differentiation of neural stem cells into mature oligodendrocytes. Stem Cells 24, 1001–1010 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Ligon, K. L. et al. Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma. Neuron 53, 503–517 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Molofsky, A. V. et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425, 962–967 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chandran, S. et al. FGF-dependent generation of oligodendrocytes by a hedgehog-independent pathway. Development 130, 6599–6609 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Gabay, L., Lowell, S., Rubin, L. L. & Anderson, D. J. Deregulation of dorsoventral patterning by FGF confers trilineage differentiation capacity on CNS stem cells in vitro. Neuron 40, 485–499 (2003). This study was one of the first to draw attention to the strong deregulation of the dorsoventral identity that FGF2 exerts on in vitro cultured NSCs.

    Article  CAS  PubMed  Google Scholar 

  101. Hack, M. A., Sugimori, M., Lundberg, C., Nakafuku, M. & Gotz, M. Regionalization and fate specification in neurospheres: the role of Olig2 and Pax6. Mol. Cell. Neurosci. 25, 664–678 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Kessaris, N., Jamen, F., Rubin, L. L. & Richardson, W. D. Cooperation between sonic hedgehog and fibroblast growth factor/MAPK signalling pathways in neocortical precursors. Development 131, 1289–1298 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Pollard, S. M., Wallbank, R., Tomlinson, S., Grotewold, L. & Smith, A. Fibroblast growth factor induces a neural stem cell phenotype in foetal forebrain progenitors and during embryonic stem cell differentiation. Mol. Cell. Neurosci. 38, 393–403 (2008). This manuscript described the rapid induction of several genes in neural cells following exposure to FGF2. The authors suggested that induction of these genes can be pivotal to imparting an NSC identity in in vitro cultured neural progenitors.

    Article  CAS  PubMed  Google Scholar 

  104. Carvajal-Gonzalez, J. M. et al. The dioxin receptor regulates the constitutive expression of the Vav3 proto-oncogene and modulates cell shape and adhesion. Mol. Biol. Cell 20, 1715–1727 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fujikawa, K. et al. Vav3 is regulated during the cell cycle and effects cell division. Proc. Natl Acad. Sci. USA 99, 4313–4318 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bithell, A., Finch, S. E., Hornby, M. F. & Williams, B. P. Fibroblast growth factor 2 maintains the neurogenic capacity of embryonic neural progenitor cells in vitro but changes their neuronal subtype specification. Stem Cells 26, 1565–1574 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Machon, O., Backman, M., Krauss, S. & Kozmik, Z. The cellular fate of cortical progenitors is not maintained in neurosphere cultures. Mol. Cell. Neurosci. 30, 388–397 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Guillemot, F. Cell fate specification in the mammalian telencephalon. Prog. Neurobiol. 83, 37–52 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Heins, N. et al. Glial cells generate neurons: the role of the transcription factor Pax6. Nature Neurosci. 5, 308–315 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Calegari, F., Haubensak, W., Haffner, C. & Huttner, W. B. Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. J. Neurosci. 25, 6533–6538 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pardal, R., Molofsky, A. V., He, S. & Morrison, S. J. Stem cell self-renewal and cancer cell proliferation are regulated by common networks that balance the activation of proto-oncogenes and tumor suppressors. Cold Spring Harb. Symp. Quant. Biol. 70, 177–185 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Politis, P. K. et al. BM88/CEND1 coordinates cell cycle exit and differentiation of neuronal precursors. Proc. Natl Acad. Sci. USA 104, 17861–17866 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Politis, P. K., Thomaidou, D. & Matsas, R. Coordination of cell cycle exit and differentiation of neuronal progenitors. Cell Cycle 7, 691–697 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Zheng, H. et al. p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455, 1129–1133 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Godlewski, J. et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res. 68, 9125–9130 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Molofsky, A. V., He, S., Bydon, M., Morrison, S. J. & Pardal, R. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev. 19, 1432–1437 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Molofsky, A. V. et al. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443, 448–452 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kippin, T. E., Martens, D. J. & van der Kooy, D. p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev. 19, 756–767 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Beekman, C. et al. Evolutionarily conserved role of nucleostemin: controlling proliferation of stem/progenitor cells during early vertebrate development. Mol. Cell. Biol. 26, 9291–9301 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tsai, R. Y. & McKay, R. D. A nucleolar mechanism controlling cell proliferation in stem cells and cancer cells. Genes Dev. 16, 2991–3003 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kondo, T., Johnson, S. A., Yoder, M. C., Romand, R. & Hashino, E. Sonic hedgehog and retinoic acid synergistically promote sensory fate specification from bone marrow-derived pluripotent stem cells. Proc. Natl Acad. Sci. USA 102, 4789–4794 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kondo, T. & Raff, M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289, 1754–1757 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Kondo, T. & Raff, M. Chromatin remodeling and histone modification in the conversion of oligodendrocyte precursors to neural stem cells. Genes Dev. 18, 2963–2972 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Alexanian, A. R. Epigenetic modifiers promote efficient generation of neural-like cells from bone marrow-derived mesenchymal cells grown in neural environment. J. Cell. Biochem. 100, 362–371 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Alexanian, A. R., Maiman, D. J., Kurpad, S. N. & Gennarelli, T. A. In vitro and in vivo characterization of neurally modified mesenchymal stem cells induced by epigenetic modifiers and neural stem cell environment. Stem Cells Dev. 17, 1123–1130 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Khoo, M. L., Shen, B., Tao, H. & Ma, D. D. Long-term serial passage and neuronal differentiation capability of human bone marrow mesenchymal stem cells. Stem Cells Dev. 17, 883–896 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Toselli, M., Cerbai, E., Rossi, F. & Cattaneo, E. Do amniotic fluid-derived stem cells differentiate into neurons in vitro? Nature Biotech. 26, 269–278 (2008).

    Article  CAS  Google Scholar 

  128. Aoi, T. et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321, 699–702 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Nishikawa, S., Goldstein, R. A. & Nierras, C. R. The promise of human induced pluripotent stem cells for research and therapy. Nature Rev. Mol. Cell Biol. 9, 725–729 (2008).

    Article  CAS  Google Scholar 

  130. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Huangfu, D. et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotech. 26, 1269–1275 (2008).

    Article  CAS  Google Scholar 

  134. Lim, D. A. et al. Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature 458, 529–533 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hsieh, J. & Gage, F. H. Epigenetic control of neural stem cell fate. Curr. Opin. Genet. Dev. 14, 461–469 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Li, H. et al. Transcription factor MEF2C influences neural stem/progenitor cell differentiation and maturation in vivo. Proc. Natl Acad. Sci. USA 105, 9397–9402 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Dictus, C., Tronnier, V., Unterberg, A. & Herold-Mende, C. Comparative analysis of in vitro conditions for rat adult neural progenitor cells. J. Neurosci. Methods 161, 250–258 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Gritti, A., Galli, R. & Vescovi, A. L. Clonal analyses and cryopreservation of neural stem cell cultures. Methods Mol. Biol. 438, 173–184 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Akesson, E. et al. Long-term culture and neuronal survival after intraspinal transplantation of human spinal cord-derived neurospheres. Physiol. Behav. 92, 60–66 (2007).

    Article  PubMed  CAS  Google Scholar 

  140. Foroni, C. et al. Resilience to transformation and inherent genetic and functional stability of adult neural stem cells ex vivo. Cancer Res. 67, 3725–3733 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Morshead, C. M., Benveniste, P., Iscove, N. N. & van der Kooy, D. Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nature Med. 8, 268–273 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Smith, R., Bagga, V. & Fricker-Gates, R. A. Embryonic neural progenitor cells: the effects of species, region, and culture conditions on long-term proliferation and neuronal differentiation. J. Hematother. Stem Cell Res. 12, 713–725 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Delaunay, D. et al. Early neuronal and glial fate restriction of embryonic neural stem cells. J. Neurosci. 28, 2551–2562 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Pinto, L. & Gotz, M. Radial glial cell heterogeneity--the source of diverse progeny in the CNS. Prog. Neurobiol. 83, 2–23 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  CAS  PubMed  Google Scholar 

  146. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  147. Buehr, M. et al. Capture of authentic embryonic stem cells from rat blastocysts. Cell 135, 1287–1298 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Ying, Q. L., Nichols, J., Chambers, I. & Smith, A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–292 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to colleagues for the omission of papers that could not be cited owing to space constraints. We thank G. Consalez and members of the laboratory for critical reading of the manuscript. The work of the authors is supported by EuroSystem (FP7, European Union Health-F4-2008-200720), ESTools (FP6, European Union LSHG-CT-2006-018739), NeuroStemcell (FP7, European Union HEALTH-2008-B-222943), Progetto Piattaforma Cariplo Nobel (Fondazione Cariplo, Italy; 20052042/104878) to E.C. and Progetto di Ricerca di Interesse Nazionale (MIUR, Italy; #20074MW29N) and Neuroscreen (FP6, European Union LSHB-CT-2007-037766) to L.C.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

FURTHER INFORMATION

Elena Cattaneo's homepage

Glossary

Niche

A multicellular microenvironment supplying the factors required to maintain stem cell self-renewal and to direct their differentiation.

Antigenic

Pertaining to the expression of a specific marker or array of markers, specific parts of which are recognized by antibodies.

Neural plate

The thickened stripe of ectoderm overlying the notochord in early vertebrate embryos which contains cells that will give rise to the nervous system during embryonic development.

Neural tube

The cylindrical structure formed by the fusion of neural folds around the neural plate. The brain and spinal cord develop from the neural tube.

Rosette

Radial arrangements of columnar cells that express many of the proteins expressed in neuroepithelial cells in the neural tube. They are considered a developmental signature of neuroprogenitors in cultures of differentiating ESCs.

Clonal density

The density of cells (number of cells per l) that should allow formation of single-cell clones. Rigorously, clonality is assured solely by plating a single cell per well, thus allowing the investigation of properties of single cells. This step is essential for formal demonstration of self-renewal and potency.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conti, L., Cattaneo, E. Neural stem cell systems: physiological players or in vitro entities?. Nat Rev Neurosci 11, 176–187 (2010). https://doi.org/10.1038/nrn2761

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2761

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing