Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

The β-barrel assembly machinery in motion

Abstract

In Gram-negative bacteria, the biogenesis of β-barrel outer membrane proteins (OMPs) is mediated by the β-barrel assembly machinery (BAM) complex. During the past decade, structural and functional studies have collectively contributed to advancing our understanding of the structure and function of the BAM complex; however, the exact mechanism that is involved remains elusive. In this Progress article, we discuss recent structural studies that have revealed that the accessory proteins may regulate essential unprecedented conformational changes in the core component BamA during function. We also detail the mechanistic insights that have been gained from structural data, mutagenesis studies and molecular dynamics simulations, and explore two emerging models for the BAM-mediated biogenesis of OMPs in bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A journey towards the biogenesis of a β-barrel outer membrane protein.
Figure 2: The structures of the β-barrel assembly machinery complex.
Figure 3: Mechanistic models for the role of the BAM complex in OMP biogenesis.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Walther, D. M., Rapaport, D. & Tommassen, J. Biogenesis of β-barrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence. Cell. Mol. Life Sci. 66, 2789–2804 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Misra, R. Assembly of the β-barrel outer membrane proteins in Gram-negative bacteria, mitochondria, and chloroplasts. ISRN Mol. Biol. 2012, 708203 (2012).

    PubMed  PubMed Central  Google Scholar 

  3. Schulz, G. E. β-Barrel membrane proteins. Curr. Opin. Struct. Biol. 10, 443–447 (2000).

    CAS  PubMed  Google Scholar 

  4. Noinaj, N. et al. Structural basis for iron piracy by pathogenic Neisseria. Nature 483, 53–58 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Jiang, J. H., Tong, J., Tan, K. S. & Gabriel, K. From evolution to pathogenesis: the link between β-barrel assembly machineries in the outer membrane of mitochondria and Gram-negative bacteria. Int. J. Mol. Sci. 13, 8038–8050 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Heller, K. B. Apparent molecular weights of a heat-modifiable protein from the outer membrane of Escherichia coli in gels with different acrylamide concentrations. J. Bacteriol. 134, 1181–1183 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Noinaj, N., Kuszak, A. J. & Buchanan, S. K. Heat modifiability of outer membrane proteins from Gram-negative bacteria. Methods Mol. Biol. 1329, 51–56 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ricci, D. P. & Silhavy, T. J. The Bam machine: a molecular cooper. Biochim. Biophys. Acta 1818, 1067–1084 (2012).

    CAS  PubMed  Google Scholar 

  9. Knowles, T. J., Scott-Tucker, A., Overduin, M. & Henderson, I. R. Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nat. Rev. Microbiol. 7, 206–214 (2009).

    CAS  PubMed  Google Scholar 

  10. Hagan, C. L., Silhavy, T. J. & Kahne, D. β-Barrel membrane protein assembly by the Bam complex. Annu. Rev. Biochem. 80, 189–210 (2011).

    CAS  PubMed  Google Scholar 

  11. Rollauer, S. E., Sooreshjani, M. A., Noinaj, N. & Buchanan, S. K. Outer membrane protein biogenesis in Gram-negative bacteria. Philos. Trans. R Soc. Lond. B Biol. Sci. 370, 20150023 (2015).

    PubMed  PubMed Central  Google Scholar 

  12. Driessen, A. J. & Nouwen, N. Protein translocation across the bacterial cytoplasmic membrane. Annu. Rev. Biochem. 77, 643–667 (2008).

    CAS  PubMed  Google Scholar 

  13. Sklar, J. G., Wu, T., Kahne, D. & Silhavy, T. J. Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes Dev. 21, 2473–2484 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Moon, C. P., Zaccai, N. R., Fleming, P. J., Gessmann, D. & Fleming, K. G. Membrane protein thermodynamic stability may serve as the energy sink for sorting in the periplasm. Proc. Natl Acad. Sci. USA 110, 4285–4290 (2013).

    CAS  PubMed  Google Scholar 

  15. Costello, S. M., Plummer, A. M., Fleming, P. J. & Fleming, K. G. Dynamic periplasmic chaperone reservoir facilitates biogenesis of outer membrane proteins. Proc. Natl Acad. Sci. USA 113, E4794–E4800 (2016).

    CAS  PubMed  Google Scholar 

  16. De Geyter, J. et al. Protein folding in the cell envelope of Escherichia coli. Nat. Microbiol. 1, 16107 (2016).

    CAS  PubMed  Google Scholar 

  17. Krojer, T., Garrido-Franco, M., Huber, R., Ehrmann, M. & Clausen, T. Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature 416, 455–459 (2002).

    CAS  PubMed  Google Scholar 

  18. Krojer, T. et al. Structural basis for the regulated protease and chaperone function of DegP. Nature 453, 885–890 (2008).

    CAS  PubMed  Google Scholar 

  19. Ge, X. et al. DegP primarily functions as a protease for the biogenesis of β-barrel outer membrane proteins in the Gram-negative bacterium Escherichia coli. FEBS J. 281, 1226–1240 (2014).

    CAS  PubMed  Google Scholar 

  20. Noinaj, N., Rollauer, S. E. & Buchanan, S. K. The β-barrel membrane protein insertase machinery from Gram-negative bacteria. Curr. Opin. Struct. Biol. 31, 35–42 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Braun, V. Energy-coupled transport and signal transduction through the gram-negative outer membrane via TonB–ExbB–ExbD-dependent receptor proteins. FEMS Microbiol. Rev. 16, 295–307 (1995).

    CAS  PubMed  Google Scholar 

  22. Gessmann, D. et al. Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA. Proc. Natl Acad. Sci. USA 111, 5878–5883 (2014).

    CAS  PubMed  Google Scholar 

  23. Noinaj, N. et al. Structural insight into the biogenesis of β-barrel membrane proteins. Nature 501, 385–390 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Noinaj, N., Kuszak, A.J., Balusek, C., Gumbart, J.C. & Buchanan, S.K. Lateral opening and exit pore formation are required for BamA function. Structure 22, 1055–1062 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Paramasivam, N., Habeck, M. & Linke, D. Is the C-terminal insertional signal in Gram-negative bacterial outer membrane proteins species-specific or not? BMC Genomics 13, 510 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Webb, C. T., Heinz, E. & Lithgow, T. Evolution of the β-barrel assembly machinery. Trends Microbiol. 20, 612–620 (2012).

    CAS  PubMed  Google Scholar 

  27. Volokhina, E. B., Beckers, F., Tommassen, J. & Bos, M. P. The β-barrel outer membrane protein assembly complex of Neisseria meningitidis. J. Bacteriol. 191, 7074–7085 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Anwari, K. et al. A modular BAM complex in the outer membrane of the α-proteobacterium Caulobacter crescentus. PLoS ONE 5, e8619 (2010).

    PubMed  PubMed Central  Google Scholar 

  29. Kim, K. H., Aulakh, S. & Paetzel, M. The bacterial outer membrane β-barrel assembly machinery. Protein Sci. 21, 751–768 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Onufryk, C., Crouch, M.-L., Fang, F. C. & Gross, C. A. Characterization of six lipoproteins in the σE regulon. J. Bacteriol. 187, 4552–4561 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu, T. et al. Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121, 235–245 (2005).

    CAS  PubMed  Google Scholar 

  32. Malinverni, J. C. et al. YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli. Mol. Microbiol. 61, 151–164 (2006).

    CAS  PubMed  Google Scholar 

  33. Sklar, J. G. et al. Lipoprotein SmpA is a component of the YaeT complex that assembles outer membrane proteins in Escherichia coli. Proc. Natl Acad. Sci. USA 104, 6400–6405 (2007).

    CAS  PubMed  Google Scholar 

  34. Vuong, P., Bennion, D., Mantei, J., Frost, D. & Misra, R. Analysis of YfgL and YaeT interactions through bioinformatics, mutagenesis, and biochemistry. J. Bacteriol. 190, 1507–1517 (2008).

    CAS  PubMed  Google Scholar 

  35. O'Neil, P. K., Rollauer, S. E., Noinaj, N. & Buchanan, S. K. Fitting the pieces of the β-barrel assembly machinery complex. Biochemistry 54, 6303–6311 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Roman-Hernandez, G., Peterson, J. H. & Bernstein, H. D. Reconstitution of bacterial autotransporter assembly using purified components. eLife 3, e04234 (2014).

    PubMed  PubMed Central  Google Scholar 

  37. Hagan, C. L., Kim, S. & Kahne, D. Reconstitution of outer membrane protein assembly from purified components. Science 328, 890–892 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Noinaj, N., Fairman, J. W. & Buchanan, S. K. The crystal structure of BamB suggests interactions with BamA and its role within the BAM complex. J. Mol. Biol. 407, 248–260 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Heuck, A., Schleiffer, A. & Clausen, T. Augmenting β-augmentation: structural basis of how BamB binds BamA and may support folding of outer membrane proteins. J. Mol. Biol. 406, 659–666 (2011).

    CAS  PubMed  Google Scholar 

  40. Kim, K. H. & Paetzel, M. Crystal structure of Escherichia coli BamB, a lipoprotein component of the β-barrel assembly machinery complex. J. Mol. Biol. 406, 667–678 (2011).

    CAS  PubMed  Google Scholar 

  41. Jansen, K. B., Baker, S. L. & Sousa, M. C. Crystal structure of BamB from Pseudomonas aeruginosa and functional evaluation of its conserved structural features. PLoS ONE 7, e49749 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, K. H., Aulakh, S., Tan, W. & Paetzel, M. Crystallographic analysis of the C-terminal domain of the Escherichia coli lipoprotein BamC. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67, 1350–1358 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Albrecht, R. & Zeth, K. Structural basis of outer membrane protein biogenesis in bacteria. J. Biol. Chem. 286, 27792–27803 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Warner, L. R. et al. Structure of the BamC two-domain protein obtained by Rosetta with a limited NMR data set. J. Mol. Biol. 411, 83–95 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Webb, C. T. et al. Dynamic association of BAM complex modules includes surface exposure of the lipoprotein BamC. J. Mol. Biol. 422, 545–555 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sandoval, C. M., Baker, S. L., Jansen, K., Metzner, S. I. & Sousa, M. C. Crystal structure of BamD: an essential component of the β-Barrel assembly machinery of Gram-negative bacteria. J. Mol. Biol. 409, 348–357 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Dong, C., Hou, H. F., Yang, X., Shen, Y. Q. & Dong, Y. H. Structure of Escherichia coli BamD and its functional implications in outer membrane protein assembly. Acta Crystallogr. D Biol. Crystallogr. 68, 95–101 (2012).

    CAS  PubMed  Google Scholar 

  48. Kim, K. H. et al. Structural characterization of Escherichia coli BamE, a lipoprotein component of the β-barrel assembly machinery complex. Biochemistry 50, 1081–1090 (2011).

    CAS  PubMed  Google Scholar 

  49. Knowles, T. J. et al. Structure and function of BamE within the outer membrane and the β-barrel assembly machine. EMBO Rep. 12, 123–128 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gatzeva-Topalova, P. Z., Warner, L. R., Pardi, A. & Sousa, M. C. Structure and flexibility of the complete periplasmic domain of BamA: the protein insertion machine of the outer membrane. Structure 18, 1492–1501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Albrecht, R. et al. Structure of BamA, an essential factor in outer membrane protein biogenesis. Acta Crystallograph. D Biol. Crystallogr. 70, 1779–1789 (2014).

    CAS  Google Scholar 

  52. Ni, D. et al. Structural and functional analysis of the β-barrel domain of BamA from Escherichia coli. FASEB J. 28, 2677–2685 (2014).

    CAS  PubMed  Google Scholar 

  53. Gatzeva-Topalova, P. Z., Walton, T. A. & Sousa, M. C. Crystal structure of YaeT: conformational flexibility and substrate recognition. Structure 16, 1873–1881 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim, S. et al. Structure and function of an essential component of the outer membrane protein assembly machine. Science 317, 961–964 (2007).

    CAS  PubMed  Google Scholar 

  55. Kim, K. H., Aulakh, S. & Paetzel, M. Crystal structure of β-barrel assembly machinery BamCD protein complex. J. Biol. Chem. 286, 39116–39121 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Jansen, K. B., Baker, S. L. & Sousa, M. C. Crystal structure of BamB bound to a periplasmic domain fragment of BamA, the central component of the β-barrel assembly machine. J. Biol. Chem. 290, 2126–2136 (2015).

    CAS  PubMed  Google Scholar 

  57. Chen, Z. et al. Structural basis for the interaction of BamB with the POTRA3–4 domains of BamA. Acta Crystallogr. D Struct. Biol. 72, 236–244 (2016).

    CAS  PubMed  Google Scholar 

  58. Bergal, H. T., Hopkins, A. H., Metzner, S. I. & Sousa, M. C. The structure of a BamA–BamD fusion illuminates the architecture of the β-barrel assembly machine core. Structure 24, 243–251 (2016).

    CAS  PubMed  Google Scholar 

  59. Ricci, D. P., Hagan, C. L., Kahne, D. & Silhavy, T. J. Activation of the Escherichia coli β-barrel assembly machine (Bam) is required for essential components to interact properly with substrate. Proc. Natl Acad. Sci. USA 109, 3487–3491 (2012).

    CAS  PubMed  Google Scholar 

  60. Bakelar, J., Buchanan, S. K. & Noinaj, N. The structure of the β-barrel assembly machinery complex. Science 351, 180–186 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Gu, Y. et al. Structural basis of outer membrane protein insertion by the BAM complex. Nature 531, 64–69 (2016).

    CAS  PubMed  Google Scholar 

  62. Han, L. et al. Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins. Nat. Struct. Mol. Biol. 23, 192–196 (2016).

    CAS  PubMed  Google Scholar 

  63. Iadanza, M. G. et al. Lateral opening in the intact β-barrel assembly machinery captured by cryo-EM. Nat. Commun. 7, 12865 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Rigel, N. W., Ricci, D. P. & Silhavy, T. J. Conformation-specific labeling of BamA and suppressor analysis suggest a cyclic mechanism for β-barrel assembly in Escherichia coli. Proc. Natl Acad. Sci. USA 110, 5151–5156 (2013).

    CAS  PubMed  Google Scholar 

  65. Fleming, P. J. et al. BamA POTRA domain interacts with a native lipid membrane surface. Biophys. J. 110, 2698–2709 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Burgess, N. K., Dao, T. P., Stanley, A. M. & Fleming, K. G. β-Barrel proteins that reside in the Escherichia coli outer membrane in vivo demonstrate varied folding behavior in vitro. J. Biol. Chem. 283, 26748–26758 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Estrada Mallarino, L. et al. TtOmp85, a β-barrel assembly protein, functions by barrel augmentation. Biochemistry 54, 844–852 (2015).

    CAS  PubMed  Google Scholar 

  68. Stegmeier, J. F. & Andersen, C. Characterization of pores formed by YaeT (Omp85) from Escherichia coli. J. Biochem. 140, 275–283 (2006).

    CAS  PubMed  Google Scholar 

  69. Gruss, F. et al. The structural basis of autotransporter translocation by TamA. Nat. Struct. Mol. Biol. 20, 1318–1320 (2013).

    CAS  PubMed  Google Scholar 

  70. Heinz, E., Selkrig, J., Belousoff, M. J. & Lithgow, T. Evolution of the translocation and assembly module (TAM). Genome Biol. Evol. 7, 1628–1643 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Selkrig, J. et al. Discovery of an archetypal protein transport system in bacterial outer membranes. Nat. Struct. Mol. Biol. 19, 506–510 (2012).

    CAS  PubMed  Google Scholar 

  72. Selkrig, J., Leyton, D. L., Webb, C. T. & Lithgow, T. Assembly of β-barrel proteins into bacterial outer membranes. Biochim. Biophys. Acta 1843, 1542–1550 (2014).

    CAS  PubMed  Google Scholar 

  73. Iqbal, H., Kenedy, M. R., Lybecker, M. & Akins, D. R. The TamB ortholog of Borrelia burgdorferi interacts with the β-barrel assembly machine (BAM) complex protein BamA. Mol. Microbiol. 102, 757–774 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

N.N. is supported by the Department of Biological Sciences at Purdue University, Indiana, USA, a Showalter Trust Award, and by the US National Institute of Allergy and Infectious Diseases (grant 1K22AI113078-01). J.C.G. is supported by a CAREER award from the US National Science Foundation (grant MCB-1452464); S.K.B. is supported by the Intramural Research Program of the US National Institute of Diabetes and Digestive and Kidney Diseases, part of the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicholas Noinaj or Susan K. Buchanan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noinaj, N., Gumbart, J. & Buchanan, S. The β-barrel assembly machinery in motion. Nat Rev Microbiol 15, 197–204 (2017). https://doi.org/10.1038/nrmicro.2016.191

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2016.191

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology