Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Bacterial programmed cell death: making sense of a paradox

Abstract

Although the concept of programmed cell death (PCD) in bacteria has been met with scepticism, a growing body of evidence suggests that it can no longer be ignored. Several recent studies indicate that the phenotypic manifestations of apoptosis, which are processes that are associated with ordered cellular disassembly in eukaryotes, are conserved in bacteria. In this Opinion article, I propose a model for the coordinated control of potential bacterial PCD effectors and argue that the processes involved are functionally analogous to eukaryotic PCD systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model pathway of bacterial PCD.
Figure 2: A conservation of responses to cellular stress.

Similar content being viewed by others

References

  1. Bayles, K. W. Are the molecular strategies that control apoptosis conserved in bacteria? Trends Microbiol. 11, 306–311 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Conover, M. S., Mishra, M. & Deora, R. Extracellular DNA is essential for maintaining Bordetella biofilm integrity on abiotic surfaces and in the upper respiratory tract of mice. PLoS ONE 6, e16861 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Harmsen, M., Lappann, M., Knochel, S. & Molin, S. Role of extracellular DNA during biofilm formation by Listeria monocytogenes. Appl. Environ. Microbiol. 76, 2271–2279 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hu, W. et al. DNA builds and strengthens the extracellular matrix in Myxococcus xanthus biofilms by interacting with exopolysaccharides. PLoS ONE 7, e51905 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lappann, M. et al. A dual role of extracellular DNA during biofilm formation of Neisseria meningitidis. Mol. Microbiol. 75, 1355–1371 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Martins, M. et al. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms. Mycopathologia 169, 323–331 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Rice, K. C. et al. The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc. Natl Acad. Sci. USA 104, 8113–8118 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sahu, P. K., Iyer, P. S., Oak, A. M., Pardesi, K. R. & Chopade, B. A. Characterization of eDNA from the clinical strain Acinetobacter baumannii AIIMS 7 and its role in biofilm formation. Scientif. World J. 2012, 973436 (2012).

    Google Scholar 

  9. Thomas, V. C., Thurlow, L. R., Boyle, D. & Hancock, L. E. Regulation of autolysis-dependent extracellular DNA release by Enterococcus faecalis extracellular proteases influences biofilm development. J. Bacteriol. 190, 5690–5698 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vilain, S., Pretorius, J. M., Theron, J. & Brozel, V. S. DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilms. Appl. Environ. Microbiol. 75, 2861–2868 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C. & Mattick, J. S. Extracellular DNA required for bacterial biofilm formation. Science 295, 1487 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Miura, M. Apoptotic and nonapoptotic caspase functions in animal development. Cold Spring Harb. Perspect. Biol. 4, a008664 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Boujrad, H., Gubkina, O., Robert, N., Krantic, S. & Susin, S. A. AIF-mediated programmed necrosis: a highly regulated way to die. Cell Cycle 6, 2612–2619 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Ouyang, L. et al. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 45, 487–498 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kerr, J. F. R., Wylie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thornberry, N. A. & Lazebnik, Y. Caspases: enemies within. Science 281, 1312–1316 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Kroemer, G., Galluzzi, L. & Brenner, C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99–163 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell 116, 205–219 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Rawlings, D. E. Proteic toxin-antitoxin, bacterial plasmid addiction systems and their evolution with special reference to the pas system of pTF-FC2. FEMS Microbiol. Lett. 176, 269–277 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Engelberg-Kulka, H., Amitai, S., Kolodkin-Gal, I. & Hazan, R. Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet. 2, e135 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Zhang, Y. et al. MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol. Cell 12, 913–923 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Amitai, S., Kolodkin-Gal, I., Hananya-Meltabashi, M., Sacher, A. & Engelberg-Kulka, H. Escherichia coli MazF leads to the simultaneous selective synthesis of both “death proteins” and “survival proteins”. PLoS Genet. 5, e1000390 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Pedersen, K., Christensen, S. K. & Gerdes, K. Rapid induction and reversal of a bacteriostatic condition by controlled expression of toxins and antitoxins. Mol. Microbiol. 45, 501–510 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Tait, S. W. & Green, D. R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nature Rev. Mol. Cell Biol. 11, 621–632 (2010).

    Article  CAS  Google Scholar 

  25. Walensky, L. D. & Gavathiotis, E. BAX unleashed: the biochemical transformation of an inactive cytosolic monomer into a toxic mitochondrial pore. Trends Biochem. Sci. 36, 642–652 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bayles, K. W. The biological role of death and lysis in biofilm development. Nature Rev. Microbiol. 5, 721–726 (2007).

    Article  CAS  Google Scholar 

  27. Bayles, K. W. The bactericidal action of penicillin: new clues to an unsolved mystery. Trends Microbiol. 8, 274–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Rice, K. C. & Bayles, K. W. Molecular control of bacterial death and lysis. Microbiol. Mol. Biol. Rev. 72, 85–109 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Groicher, K. H., Firek, B. A., Fujimoto, D. F. & Bayles, K. W. The Staphylococcus aureus lrgAB operon modulates murein hydrolase activity and penicillin tolerance. J. Bacteriol. 182, 1794–1801 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rice, K. C. et al. The Staphylococcus aureus cidAB operon: evaluation of its role in regulation of murein hydrolase activity and penicillin tolerance. J. Bacteriol. 185, 2635–2643 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ranjit, D. K., Endres, J. L. & Bayles, K. W. Staphylococcus aureus CidA and LrgA proteins exhibit holin-like properties. J. Bacteriol. 193, 2468–2476 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pang, X. et al. Active Bax and Bak are functional holins. Genes Dev. 25, 2278–2290 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dyall, S. D., Brown, M. T. & Johnson, P. J. Ancient invasions: from endosymbionts to organelles. Science 304, 253–257 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Embley, T. M. & Martin, W. Eukaryotic evolution, changes and challenges. Nature 440, 623–630 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Yang, Y. et al. A chloroplast envelope membrane protein containing a putative LrgB domain related to the control of bacterial death and lysis is required for chloroplast development in Arabidopsis thaliana. New Phytol. 193, 81–95 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Yamaguchi, M. et al. Loss of the plastid envelope protein AtLrgB causes spontaneous chlorotic cell death in Arabidopsis thaliana. Plant Cell Physiol. 53, 125–134 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, J. & Bayles, K. W. Programmed cell death in plants: lessons from bacteria? Trends Plant Sci. 18, 133–139 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Ow, Y. P., Green, D. R., Hao, Z. & Mak, T. W. Cytochrome c: functions beyond respiration. Nature Rev. Mol. Cell Biol. 9, 532–542 (2008).

    Article  CAS  Google Scholar 

  39. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Aizenman, E., Engelberg-Kulka, H. & Glaser, G. An Escherichia coli chromosomal “addiction module” regulated by 3′,5′-bispyrophosphate: a model for programmed bacterial cell death. Proc. Natl Acad. Sci. USA 93, 6059–6063 (1996); erratum 93, 9991 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jensen, R. B. & Gerdes, K. Programmed cell death in bacteria: proteic plasmid stabilization systems. Mol. Microbiol. 17, 205–210 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Naito, T., Kusano, K. & Kobayashi, I. Selfish behavior of restriction-modification systems. Science 267, 897–899 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Yarmolinsky, M. B. Programmed cell death in bacterial populations. Science 267, 836–837 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Gautam, S. & Sharma, A. Involvement of caspase-3-like protein in rapid cell death of Xanthomonas. Mol. Microbiol. 44, 393–401 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Gautam, S. & Sharma, A. Rapid cell death in Xanthomonas campestris pv. glycines. J. Gen. Appl. Microbiol. 48, 67–76 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Raju, K. K., Gautam, S. & Sharma, A. Molecules involved in the modulation of rapid cell death in Xanthomonas. J. Bacteriol. 188, 5408–5416 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wadhawan, S., Gautam, S. & Sharma, A. Metabolic stress-induced programmed cell death in Xanthomonas. FEMS Microbiol. Lett. 312, 176–183 (2010).

    Article  PubMed  CAS  Google Scholar 

  48. Berman-Frank, I., Bidle, K. D., Haramaty, L. & Falkowsky, P. G. The demise of the marine cyanobacterium, Trichodesmium spp., via an autocatalyzed cell death pathway. Limnol. Oceanogr. 49, 997–1005 (2004).

    Article  Google Scholar 

  49. Bidle, K. D. & Falkowski, P. G. Cell death in planktonic, photosynthetic microorganisms. Nature Rev. Microbiol. 2, 643–655 (2004).

    Article  CAS  Google Scholar 

  50. Hakansson, A. P., Roche-Hakansson, H., Mossberg, A. K. & Svanborg, C. Apoptosis-like death in bacteria induced by HAMLET, a human milk lipid-protein complex. PLoS ONE 6, e17717 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hakansson, A., Zhivotovsky, B., Orrenius, S., Sabharwal, H. & Svanborg, C. Apoptosis induced by a human milk protein. Proc. Natl Acad. Sci. USA 92, 8064–8068 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Svensson, M., Hakansson, A., Mossberg, A. K., Linse, S. & Svanborg, C. Conversion of α-lactalbumin to a protein inducing apoptosis. Proc. Natl Acad. Sci. USA 97, 4221–4226 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dwyer, D. J., Camacho, D. M., Kohanski, M. A., Callura, J. M. & Collins, J. J. Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol. Cell 46, 561–572 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bos, J., Yakhnina, A. A. & Gitai, Z. BapE DNA endonuclease induces an apoptotic-like response to DNA damage in Caulobacter. Proc. Natl Acad. Sci. USA 109, 18096–18101 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. da Rocha, R. P., Paquola, A. C., Marques Mdo, V., Menck, C. F. & Galhardo, R. S. Characterization of the SOS regulon of Caulobacter crescentus. J. Bacteriol. 190, 1209–1218 (2008).

    Article  PubMed  CAS  Google Scholar 

  56. Erental, A., Sharon, I. & Engelberg-Kulka, H. Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway. PLoS Biol. 10, e1001281 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Amitai, S., Yassin, Y. & Engelberg-Kulka, H. MazF-mediated cell death in Escherichia coli: a point of no return. J. Bacteriol. 186, 8295–8300 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vousden, K. H. Outcomes of p53 activation — spoilt for choice. J. Cell Sci. 119, 5015–5020 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Abedin, M. J., Wang, D., McDonnell, M. A., Lehmann, U. & Kelekar, A. Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ. 14, 500–510 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Gozuacik, D. & Kimchi, A. Autophagy and cell death. Curr. Top. Dev. Biol. 78, 217–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Yu, L. et al. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304, 1500–1502 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Vousden, K. H. & Prives, C. Blinded by the light: the growing complexity of p53. Cell 137, 413–431 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Millau, J. F., Bastien, N. & Drouin, R. p53 transcriptional activities: a general overview and some thoughts. Mutat. Res. 681, 118–133 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Sullivan, K. D., Gallant-Behm, C. L., Henry, R. E., Fraikin, J. L. & Espinosa, J. M. The p53 circuit board. Biochim. Biophys. Acta 1825, 229–244 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Garrett, J. M. & Young, R. Lethal action of bacteriophage λ S gene. J. Virol. 44, 886–892 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Moreillon, P., Markiewicz, Z., Nachman, S. & Tomasz, A. Two bactericidal targets for penicillin in pneumococci: autolysis-dependent and autolysis-independent killing mechanisms. Antimicrob. Agents Chemother. 34, 33–39 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kroemer, G. & Levine, B. Autophagic cell death: the story of a misnomer. Nature Rev. Mol. Cell Biol. 9, 1004–1010 (2008).

    Article  CAS  Google Scholar 

  68. Rodriguez-Rocha, H., Garcia-Garcia, A., Panayiotidis, M. I. & Franco, R. DNA damage and autophagy. Mutat. Res. 711, 158–166 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ryan, K. M. p53 and autophagy in cancer: guardian of the genome meets guardian of the proteome. Eur. J. Cancer 47, 44–50 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Enari, M. et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43–50 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Liu, X., Zou, H., Slaughter, C. & Wang, X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89, 175–184 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Wyllie, A. H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284, 555–556 (1980).

    Article  CAS  PubMed  Google Scholar 

  73. Gavrieli, Y., Sherman, Y. & Ben-Sasson, S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501 (1992).

    Article  CAS  PubMed  Google Scholar 

  74. Op den Kamp, J. A. F. Lipid asymmetry in membranes. Ann. Rev. Biochem. 48, 47–71 (1979).

    Article  CAS  PubMed  Google Scholar 

  75. Fadok, V. A. et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 148, 2207–2216 (1992).

    CAS  PubMed  Google Scholar 

  76. Koopman, G. et al. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84, 1415–1420 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank X. Luo for lending his expertise on apoptosis, and K. Nelson for her editorial assistance in the development of this manuscript. Work conducted in the author's laboratory is supported by grants from the US National Institutes of Health (P01-AI83211 and R01-AI038901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth W. Bayles.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayles, K. Bacterial programmed cell death: making sense of a paradox. Nat Rev Microbiol 12, 63–69 (2014). https://doi.org/10.1038/nrmicro3136

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3136

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing