Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathogenic trickery: deception of host cell processes

Key Points

  • Microbial pathogens have developed numerous sophisticated mechanisms to either block or subvert normal host cellular processes, thereby inadvertently contributing to pathogenesis and disease outcome.

  • Many pathogenic bacteria have evolved mechanisms to engage host cell surface proteins or receptors to initially adhere to, and subsequently invade, host cells. They often achieve this by mimicking host cell ligands. Examples include Listeria spp. and Yersinia spp. invasion of non-phagocytic cells.

  • Bacterial pathogens can also invade cells through lipid rafts, by targeting receptors that are concentrated in these signalling platforms.

  • Some pathogens, including Salmonella spp. and Shigella spp., inject their own proteins into host cells to target the cytoskeleton and signal-transduction pathways. Manipulation of host cell components such as Rho GTPases and the cytoskeleton induces membrane ruffling and allows bacterial invasion.

  • Other pathogens can prevent their own uptake by phagocytic cells. For example, Yersinia spp. and Pseudomonas spp. mediate antiphagocytosis by injecting bacterial proteins into the host cell to disrupt Rho GTPase signalling and the cytoskeleton.

  • Pathogens that remain within a vacuole after bacterial invasion can manipulate host cell vesicular transport and endocytosis. It is likely that this can also be attributed to the actions of translocated bacterial proteins.

  • The study of pathogen–host interactions is contributing to our knowledge of both pathogenic mechanisms and host cell biology.

Abstract

Microbial pathogens cause a spectrum of diseases in humans. Although the disease mechanisms vary considerably, most pathogens have developed virulence factors that interact with host molecules, often usurping normal cellular processes, including cytoskeletal dynamics and vesicle targeting. These virulence factors often mimic host molecules, and mediate events as diverse as bacterial invasion, antiphagocytosis, and intracellular parastism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms through which bacterial pathogens inhibit phagocytosis.
Figure 2: A common requirement for the Rho subfamily of GTPases in Salmonella-, Shigella- and growth factor-induced membrane ruffling.

Similar content being viewed by others

References

  1. Uings, I. J. & Farrow, S. N. Cell receptors and cell signalling. Mol. Pathol. 53, 295–299 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Virji, M. Microbial utilization of human signalling molecules. Microbiology 142, 3319–3336 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Boudreau, N. J. & Jones, P. L. Extracellular matrix and integrin signalling: the shape of things to come. Biochem. J. 339, 481–488 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lebrun, M., Mengaud, J., Ohayon, H., Nato, F. & Cossart, P. Internalin must be on the bacterial surface to mediate entry of Listeria monocytogenes into epithelial cells. Mol. Microbiol. 21, 579–592 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Dramsi, S., Dehoux, P. & Cossart, P. Common features of Gram-positive bacterial proteins involved in cell recognition. Mol. Microbiol. 9, 1119–1121 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Mengaud, J., Ohayon, H., Gounon, P., Mege, R. M. & Cossart, P. E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84, 923–932 (1996).These authors used affinity chromatography to isolate the mammalian receptor for Listeria internalin.

    Article  CAS  PubMed  Google Scholar 

  7. Lecuit, M., Ohayon, H., Braun, L., Mengaud, J. & Cossart, P. Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization. Infect. Immun. 65, 5309–5319 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lecuit, M. et al. A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. EMBO J. 18, 3956–3963 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lecuit, M. et al. A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292, 1722–1725 (2001).This paper is the culmination of many in vitro studies on Listeria interaction with host cells. It shows that the internalin–E-cadherin interaction is crucial for the establishment of infection in vivo.

    Article  CAS  PubMed  Google Scholar 

  10. Gaillard, J. L., Berche, P., Mounier, J., Richard, S. & Sansonetti, P. In vitro model of penetration and intracellular growth of Listeria monocytogenes in the human enterocyte-like cell line Caco-2. Infect. Immun. 55, 2822–2829 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Braun, L. et al. InlB: an invasion protein of Listeria monocytogenes with a novel type of surface association. Mol. Microbiol. 25, 285–294 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Marino, M., Braun, L., Cossart, P. & Ghosh, P. Structure of the lnlB leucine-rich repeats, a domain that triggers host cell invasion by the bacterial pathogen L. monocytogenes. Mol. Cell 4, 1063–1072 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Braun, L., Ghebrehiwet, B. & Cossart, P. gC1q-R/p32, a C1q-binding protein, is a receptor for the InlB invasion protein of Listeria monocytogenes. EMBO J. 19, 1458–1466 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shen, Y., Naujokas, M., Park, M. & Ireton, K. InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell 103, 501–510 (2000).References 13 and 14 identified the elusive mammalian receptor for the Listeria surface protein, InlB.

    Article  CAS  PubMed  Google Scholar 

  15. Ghebrehiwet, B. & Peerschke, E. I. Structure and function of gC1q-R: a multiligand binding cellular protein. Immunobiology 199, 225–238 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Birchmeier, C. & Gherardi, E. Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol. 8, 404–410 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Corvera, S. & Czech, M. P. Direct targets of phosphoinositide 3-kinase products in membrane traffic and signal transduction. Trends Cell Biol. 8, 442–446 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Ireton, K., Payrastre, B. & Cossart, P. The Listeria monocytogenes protein InlB is an agonist of mammalian phosphoinositide 3-kinase. J. Biol. Chem. 274, 17025–17032 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Leong, J. M., Fournier, R. S. & Isberg, R. R. Identification of the integrin binding domain of the Yersinia pseudotuberculosis invasin protein. EMBO J. 9, 1979–1989 (1990).The first reported example of bacterial ligand mimicry.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Van Nhieu, G. T. & Isberg, R. R. The Yersinia pseudotuberculosis invasin protein and human fibronectin bind to mutually exclusive sites on the α5β1 integrin receptor. J. Biol. Chem. 266, 24367–24375 (1991).

    CAS  PubMed  Google Scholar 

  21. Tran Van Nhieu, G. & Isberg, R. R. Bacterial internalization mediated by β1 chain integrins is determined by ligand affinity and receptor density. EMBO J. 12, 1887–1895 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Van Nhieu, G. T., Krukonis, E. S., Reszka, A. A., Horwitz, A. F. & Isberg, R. R. Mutations in the cytoplasmic domain of the integrin β1 chain indicate a role for endocytosis factors in bacterial internalization. J. Biol. Chem. 271, 7665–7672 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Isberg, R. R., Hamburger, Z. & Dersch, P. Signaling and invasin-promoted uptake via integrin receptors. Microbes Infect. 2, 793–801 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Weidow, C. L., Black, D. S., Bliska, J. B. & Bouton, A. H. CAS/Crk signalling mediates uptake of Yersinia into human epithelial cells. Cell Microbiol. 2, 549–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Hoessli, D. C. et al. Signaling through sphingolipid microdomains of the plasma membrane: the concept of signaling platform. Glycoconj. J. 17, 191–197 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Rosenberger, C. M., Brumell, J. H. & Finlay, B. B. Microbial pathogenesis: lipid rafts as pathogen portals. Curr. Biol. 10, R823–R825 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Baorto, D. M. et al. Survival of fimH-expressing enterobacteria in macrophages relies on glycolipid traffic. Nature 389, 636–639 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Peyron, P., Bordier, C., N'Diaye, E. N. & Maridonneau-Parini, I. Nonopsonic phagocytosis of Mycobacterium kansasii by human neutrophils depends on cholesterol and is mediated by CR3 associated with glycosylphosphatidylinositol-anchored proteins. J. Immunol. 165, 5186–5191 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Gatfield, J. & Pieters, J. Essential role for cholesterol in entry of mycobacteria into macrophages. Science 288, 1647–1650 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Guignot, J. et al. Polarized entry of uropathogenic Afa/Dr diffusely adhering Escherichia coli strain IH11128 into human epithelial cells: evidence for α5β1 integrin recognition and subsequent internalization through a pathway involving caveolae and dynamic unstable microtubules. Infect. Immun. 69, 1856–1868 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wooldridge, K. G., Williams, P. H. & Ketley, J. M. Host signal transduction and endocytosis of Campylobacter jejuni. Microb. Pathog. 21, 299–305 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Mordue, D. G., Desai, N., Dustin, M. & Sibley, L. D. Invasion by Toxoplasma gondii establishes a moving junction that selectively excludes host cell plasma membrane proteins on the basis of their membrane anchoring. J. Exp. Med. 190, 1783–1792 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lauer, S. et al. Vacuolar uptake of host components, and a role for cholesterol and sphingomyelin in malarial infection. EMBO J. 19, 3556–3564 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hueck, C. J. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62, 379–433 (1998).An excellent overview of type III secretion systems and their secreted proteins.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Schmitz, A. A., Govek, E. E., Bottner, B. & Van Aelst, L. Rho GTPases: signaling, migration, and invasion. Exp. Cell Res. 261, 1–12 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Aderem, A. & Underhill, D. M. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17, 593–623 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Caron, E. & Hall, A. Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282, 1717–1721 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Rosqvist, R., Bolin, I. & Wolf-Watz, H. Inhibition of phagocytosis in Yersinia pseudotuberculosis: a virulence plasmid-encoded ability involving the Yop2b protein. Infect. Immun. 56, 2139–2143 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ramarao, N., Gray-Owen, S. D., Backert, S. & Meyer, T. F. Helicobacter pylori inhibits phagocytosis by professional phagocytes involving type IV secretion components. Mol. Microbiol. 37, 1389–1404 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Goosney, D. L., Celli, J., Kenny, B. & Finlay, B. B. Enteropathogenic Escherichia coli inhibits phagocytosis. Infect. Immun. 67, 490–495 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Persson, C. et al. Localization of the Yersinia PTPase to focal complexes is an important virulence mechanism. Mol. Microbiol. 33, 828–838 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Montagna, L. G., Ivanov, M. I. & Bliska, J. B. Identification of residues in the N-terminal domain of the Yersinia tyrosine phosphatase that are critical for substrate recognition. J. Biol. Chem. 276, 5005–5011 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Evdokimov, A. G., Tropea, J. E., Routzahn, K. M., Copeland, T. D. & Waugh, D. S. Structure of the N-terminal domain of Yersinia pestis YopH at 2.0 Å resolution. Acta Crystallogr. D Biol. Crystallogr. 57, 793–799 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Persson, C., Carballeira, N., Wolf-Watz, H. & Fallman, M. The PTPase YopH inhibits uptake of Yersinia, tyrosine phosphorylation of p130Cas and FAK, and the associated accumulation of these proteins in peripheral focal adhesions. EMBO J. 16, 2307–2318 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Black, D. S. & Bliska, J. B. Identification of p130Cas as a substrate of Yersinia YopH (Yop51), a bacterial protein tyrosine phosphatase that translocates into mammalian cells and targets focal adhesions. EMBO J. 16, 2730–2744 (1997).References 44 and 45 identify the host cell targets of the Yersinia effector YopH as components of focal adhesions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hamid, N. et al. YopH dephosphorylates Cas and Fyn-binding protein in macrophages. Microb. Pathog. 27, 231–242 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Black, D. S., Marie-Cardine, A., Schraven, B. & Bliska, J. B. The Yersinia tyrosine phosphatase YopH targets a novel adhesion-regulated signalling complex in macrophages. Cell. Microbiol. 2, 401–414 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Fallman, M. et al. Yersinia pseudotuberculosis inhibits Fc receptor-mediated phagocytosis in J774 cells. Infect. Immun. 63, 3117–3124 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Von Pawel–Rammingen, U. et al. GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure. Mol. Microbiol. 36, 737–748 (2000).

    Article  PubMed  Google Scholar 

  50. Zumbihl, R. et al. The cytotoxin YopT of Yersinia enterocolitica induces modification and cellular redistribution of the small GTP-binding protein RhoA. J. Biol. Chem. 274, 29289–29293 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Goehring, U. M., Schmidt, G., Pederson, K. J., Aktories, K. & Barbieri, J. T. The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J. Biol. Chem. 274, 36369–36372 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Cowell, B. A., Chen, D. Y., Frank, D. W., Vallis, A. J. & Fleiszig, S. M. ExoT of cytotoxic Pseudomonas aeruginosa prevents uptake by corneal epithelial cells. Infect. Immun. 68, 403–406 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Celli, J., Olivier, M. & Finlay, B. B. Enteropathogenic Escherichia coli mediates antiphagocytosis through the inhibition of PI 3-kinase-dependent pathways. EMBO J. 20, 1245–1258 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Allen, L. A., Schlesinger, L. S. & Kang, B. Virulent strains of Helicobacter pylori demonstrate delayed phagocytosis and stimulate homotypic phagosome fusion in macrophages. J. Exp. Med. 191, 115–128 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sansonetti, P. J. Rupture, invasion and inflammatory destruction of the intestinal barrier by Shigella, making sense of prokaryote–eukaryote cross-talks. FEMS Microbiol. Rev. 25, 3–14 (2001).

    CAS  PubMed  Google Scholar 

  56. Sansonetti, P. J., Kopecko, D. J. & Formal, S. B. Involvement of a plasmid in the invasive ability of Shigella flexneri. Infect. Immun. 35, 852–860 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Watarai, M., Funato, S. & Sasakawa, C. Interaction of Ipa proteins of Shigella flexneri with α5β1 integrin promotes entry of the bacteria into mammalian cells. J. Exp. Med. 183, 991–999 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Skoudy, A. et al. CD44 binds to the Shigella IpaB protein and participates in bacterial invasion of epithelial cells. Cell Microbiol. 2, 19–33 (2000).References 57 and 58 show the direct interaction of Shigella Ipa proteins with mammalian receptors.

    Article  CAS  PubMed  Google Scholar 

  59. Menard, R., Prevost, M. C., Gounon, P., Sansonetti, P. & Dehio, C. The secreted Ipa complex of Shigella flexneri promotes entry into mammalian cells. Proc. Natl Acad. Sci. USA 93, 1254–1258 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Blocker, A. et al. The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J. Cell Biol. 147, 683–693 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tran Van Nhieu, G., Bourdet-Sicard, R., Dumenil, G., Blocker, A. & Sansonetti, P. J. Bacterial signals and cell responses during Shigella entry into epithelial cells. Cell Microbiol. 2, 187–193 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Tran Van Nhieu, G., Caron, E., Hall, A. & Sansonetti, P. J. IpaC induces actin polymerization and filopodia formation during Shigella entry into epithelial cells. EMBO J. 18, 3249–3262 (1999).Together with reference 65 , these authors demonstrate the manipulation of the host cell cytoskeleton by two Shigella effectors, IpA and IpaC, to promote bacterial entry.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bourdet-Sicard, R., Egile, C., Sansonetti, P. J. & Tran Van Nhieu, G. Diversion of cytoskeletal processes by Shigella during invasion of epithelial cells. Microbes Infect. 2, 813–819 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Mounier, J. et al. Rho family GTPases control entry of Shigella flexneri into epithelial cells but not intracellular motility. J. Cell Sci. 112, 2069–2080 (1999).

    CAS  PubMed  Google Scholar 

  65. Bourdet-Sicard, R. et al. Binding of the Shigella protein IpaA to vinculin induces F-actin depolymerization. EMBO J. 18, 5853–5862 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Niebuhr, K. et al. IpgD, a protein secreted by the type III secretion machinery of Shigella flexneri, is chaperoned by IpgE and implicated in entry focus formation. Mol. Microbiol. 38, 8–19 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Hardt, W. D., Chen, L. M., Schuebel, K. E., Bustelo, X. R. & Galan, J. E. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93, 815–826 (1998).This paper, along with reference 77 , shows the coordinate regulation of Rho GTPases by the Salmonella effectors SopE and SptP during invasion, to induce and then dampen membrane ruffling.

    Article  CAS  PubMed  Google Scholar 

  68. Criss, A. K., Ahlgren, D. M., Jou, T. S., McCormick, B. A. & Casanova, J. E. The GTPase Rac1 selectively regulates Salmonella invasion at the apical plasma membrane of polarized epithelial cells. J. Cell Sci. 114, 1331–1341 (2001).

    CAS  PubMed  Google Scholar 

  69. Rudolph, M. G. et al. Biochemical analysis of SopE from Salmonella typhimurium, a highly efficient guanosine nucleotide exchange factor for RhoGTPases. J. Biol. Chem. 274, 30501–30509 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Zhou, D., Chen, L. M., Hernandez, L., Shears, S. B. & Galan, J. E. A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol. Microbiol. 39, 248–259 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Zhou, D., Mooseker, M. S. & Galan, J. E. Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science 283, 2092–2095 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Zhou, D., Mooseker, M. S. & Galan, J. E. An invasion-associated Salmonella protein modulates the actin-bundling activity of plastin. Proc. Natl Acad. Sci. USA 96, 10176–10181 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Scherer, C. A., Cooper, E. & Miller, S. I. The Salmonella type III secretion translocon protein SspC is inserted into the epithelial cell plasma membrane upon infection. Mol. Microbiol. 37, 1133–1145 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Hayward, R. D. & Koronakis, V. Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella. EMBO J. 18, 4926–4934 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. McGhie, E. J., Hayward, R. D. & Koronakis, V. Cooperation between actin-binding proteins of invasive Salmonella: SipA potentiates SipC nucleation and bundling of actin. EMBO J. 20, 2131–2139 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fu, Y. & Galan, J. E. The Salmonella typhimurium tyrosine phosphatase SptP is translocated into host cells and disrupts the actin cytoskeleton. Mol. Microbiol. 27, 359–368 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Fu, Y. & Galan, J. E. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401, 293–297 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Stebbins, C. E. & Galan, J. E. Modulation of host signaling by a bacterial mimic: structure of the Salmonella effector SptP bound to Rac1. Mol. Cell 6, 1449–1460 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Goebel, W. & Kuhn, M. Bacterial replication in the host cell cytosol. Curr. Opin. Microbiol. 3, 49–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Frischknecht, F. & Way, M. Surfing pathogens and the lessons learned for actin polymerization. Trends Cell Biol. 11, 30–38 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Meresse, S. et al. Controlling the maturation of pathogen-containing vacuoles: a matter of life and death. Nature Cell Biol. 1, E183–E188 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Comerci, D. J., Martinez-Lorenzo, M. J., Sieira, R., Gorvel, J. P. & Ugalde, R. A. Essential role of the VirB machinery in the maturation of the Brucella abortus-containing vacuole. Cell. Microbiol. 3, 159–168 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Vogel, J. P. & Isberg, R. R. Cell biology of Legionella pneumophila. Curr. Opin. Microbiol. 2, 30–34 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Subtil, A., Parsot, C. & Dautry-Varsat, A. Secretion of predicted Inc proteins of Chlamydia pneumoniae by a heterologous type III machinery. Mol. Microbiol. 39, 792–800 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Duclos, S. & Desjardins, M. Subversion of a young phagosome: the survival strategies of intracellular pathogens. Cell. Microbiol. 2, 365–377 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Heinzen, R. A., Hackstadt, T. & Samuel, J. E. Developmental biology of Coxiella burnettii. Trends Microbiol. 7, 149–154 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Sinai, A. P. & Joiner, K. A. Safe haven: the cell biology of nonfusogenic pathogen vacuoles. Annu. Rev. Microbiol. 51, 415–462 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Meresse, S., Steele-Mortimer, O., Finlay, B. B. & Gorvel, J. P. The rab7 GTPase controls the maturation of Salmonella typhimurium-containing vacuoles in HeLa cells. EMBO J. 18, 4394–4403 (1999).This paper shows that the GTPase Rab7 regulates the maturation of the Salmonella -containing vacuole.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Beuzon, C. R. et al. Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO J. 19, 3235–3249 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Brumell, J. H., Rosenberger, C. M., Gotto, G. T., Marcus, S. L. & Finlay, B. B. SifA permits survival and replication of Salmonella typhimurium in murine macrophages. Cell. Microbiol. 3, 75–84 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Stein, M. A., Leung, K. Y., Zwick, M., Garcia-del Portillo, F. & Finlay, B. B. Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Mol. Microbiol. 20, 151–164 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Uchiya, K. et al. A Salmonella virulence protein that inhibits cellular trafficking. EMBO J. 18, 3924–3933 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Horwitz, M. A. Phagocytosis of the Legionnaires' disease bacterium (Legionella pneumophila) occurs by a novel mechanism: engulfment within a pseudopod coil. Cell 36, 27–33 (1984).

    Article  CAS  PubMed  Google Scholar 

  94. Rathman, M., Barker, L. P. & Falkow, S. The unique trafficking pattern of Salmonella typhimurium-containing phagosomes in murine macrophages is independent of the mechanism of bacterial entry. Infect. Immun. 65, 1475–1485 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Mordue, D. G. & Sibley, L. D. Intracellular fate of vacuoles containing Toxoplasma gondii is determined at the time of formation and depends on the mechanism of entry. J. Immunol. 159, 4452–4459 (1997).

    CAS  PubMed  Google Scholar 

  96. Da Silva, R. P., Hall, B. F., Joiner, K. A. & Sacks, D. L. CR1, the C3b receptor, mediates binding of infective Leishmania major metacyclic promastigotes to human macrophages. J. Immunol. 143, 617–622 (1989).

    CAS  PubMed  Google Scholar 

  97. Alvarez-Dominguez, C., Vazquez-Boland, J. A., Carrasco-Marin, E., Lopez-Mato, P. & Leyva-Cobian, F. Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. Infect. Immun. 65, 78–88 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Isberg, R. R. & Leong, J. M. Multiple β1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell 60, 861–871 (1990).

    Article  CAS  PubMed  Google Scholar 

  99. Flugel, A. et al. Interaction of enteropathogenic Yersinia enterocolitica with complex basement membranes and the extracellular matrix proteins collagen type IV, laminin-1 and-2, and nidogen/entactin. J. Biol. Chem. 269, 29732–29738 (1994).

    CAS  PubMed  Google Scholar 

  100. van Putten, J. P. & Paul, S. M. Binding of syndecan-like cell surface proteoglycan receptors is required for Neisseria gonorrhoeae entry into human mucosal cells. EMBO J. 14, 2144–2154 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. van Putten, J. P., Duensing, T. D. & Cole, R. L. Entry of OpaA+ gonococci into HEp-2 cells requires concerted action of glycosaminoglycans, fibronectin and integrin receptors. Mol. Microbiol. 29, 369–379 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Gray-Owen, S. D., Dehio, C., Haude, A., Grunert, F. & Meyer, T. F. CD66 carcinoembryonic antigens mediate interactions between Opa-expressing Neisseria gonorrhoeae and human polymorphonuclear phagocytes. EMBO J. 16, 3435–3445 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen, T., Grunert, F., Medina-Marino, A. & Gotschlich, E. C. Several carcinoembryonic antigens (CD66) serve as receptors for gonococcal opacity proteins. J. Exp. Med. 185, 1557–1564 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Virji, M., Makepeace, K. & Moxon, E. R. Distinct mechanisms of interactions of Opc-expressing meningococci at apical and basolateral surfaces of human endothelial cells; the role of integrins in apical interactions. Mol. Microbiol. 14, 173–184 (1994).

    Article  CAS  PubMed  Google Scholar 

  105. de Vries, F. P., Cole, R., Dankert, J., Frosch, M. & van Putten, J. P. Neisseria meningitidis producing the Opc adhesin binds epithelial cell proteoglycan receptors. Mol. Microbiol. 27, 1203–1212 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Abraham, S. N., Sun, D., Dale, J. B. & Beachey, E. H. Conservation of the d-mannose-adhesion protein among type 1 fimbriated members of the family Enterobacteriaceae. Nature 336, 682–684 (1988).

    Article  CAS  PubMed  Google Scholar 

  107. Striker, R., Nilsson, U., Stonecipher, A., Magnusson, G. & Hultgren, S. J. Structural requirements for the glycolipid receptor of human uropathogenic Escherichia coli. Mol. Microbiol. 16, 1021–1029 (1995).

    Article  CAS  PubMed  Google Scholar 

  108. Ryu, H., Kim, Y. S., Grange, P. A. & Cassels, F. J. Escherichia coli strain RDEC-1 AF/R1 endogenous fimbrial glycoconjugate receptor molecules in rabbit small intestine. Infect. Immun. 69, 640–649 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lally, E. T. et al. RTX toxins recognize a β2 integrin on the surface of human target cells. J. Biol. Chem. 272, 30463–30469 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Russell, D. G. & Wright, S. D. Complement receptor type 3 (CR3) binds to an Arg-Gly-Asp-containing region of the major surface glycoprotein, gp63, of Leishmania promastigotes. J. Exp. Med. 168, 279–292 (1988).

    Article  CAS  PubMed  Google Scholar 

  111. Sinha, B. et al. Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin α5β1 . Cell. Microbiol. 1, 101–117 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Ozeri, V., Rosenshine, I., Mosher, D. F., Fassler, R. & Hanski, E. Roles of integrins and fibronectin in the entry of Streptococcus pyogenes into cells via protein F1. Mol. Microbiol. 30, 625–637 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Guermonprez, P. et al. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the αμβ2 integrin (CD11b/CD18). J. Exp. Med. 193, 1035–1044 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ambagala, T. C., Ambagala, A. P. & Srikumaran, S. The leukotoxin of Pasteurella haemolytica binds to β2 integrins on bovine leukocytes. FEMS Microbiol. Lett. 179, 161–167 (1999).

    CAS  PubMed  Google Scholar 

  115. Sturgill-Koszycki, S. et al. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263, 678–681 (1994).

    Article  CAS  PubMed  Google Scholar 

  116. Deretic, V. & Fratti, R. A. Mycobacterium tuberculosis phagosome. Mol. Microbiol. 31, 1603–1609 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Steele-Mortimer, O., Meresse, S., Gorvel, J. P., Toh, B. H. & Finlay, B. B. Biogenesis of Salmonella typhimurium-containing vacuoles in epithelial cells involves interactions with the early endocytic pathway. Cell. Microbiol. 1, 33–49 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Roy, C. R., Berger, K. H. & Isberg, R. R. Legionella pneumophila DotA protein is required for early phagosome trafficking decisions that occur within minutes of bacterial uptake. Mol. Microbiol. 28, 663–674 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. Clemens, D. L. & Horwitz, M. A. Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J. Exp. Med. 181, 257–270 (1995).

    Article  CAS  PubMed  Google Scholar 

  120. Joshi, A. D., Sturgill-Koszycki, S. & Swanson, M. S. Evidence that Dot-dependent and-independent factors isolate the Legionella pneumophila phagosome from the endocytic network in mouse macrophages. Cell. Microbiol. 3, 99–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Pizarro-Cerda, J. et al. Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infect. Immun. 66, 5711–5724 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Heinzen, R. A., Scidmore, M. A., Rockey, D. D. & Hackstadt, T. Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis. Infect. Immun. 64, 796–809 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Hackstadt, T. Redirection of host vesicle trafficking pathways by intracellular parasites. Traffic 1, 93–99 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Hakansson, S., Charron, A. J. & Sibley, L. D. Toxoplasma evacuoles: a two-step process of secretion and fusion forms the parasitophorous vacuole. EMBO J. 20, 3132–3144 (2001).In an elegant study, the authors uncouple Toxoplasma secretion from invasion to show that the Toxoplasma parasitophorous vacuole is formed in a two-step process.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Scianimanico, S. et al. Impaired recruitment of the small GTPase rab7 correlates with the inhibition of phagosome maturation by Leishmania donovani promastigotes. Cell. Microbiol. 1, 19–32 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Finlay lab for their encouragement. Work in our laboratory is supported by grants from the Canadian Institutes of Health Research (CIHR) and Howard Hughes International Research Scholar Awards to B.B.F.. B.B.F. is a Distinguished Investigator of the CIHR.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

Internalin

E-cadherin

InlB

Met tyrosine kinase

C1q

HGF

PI3K

invasin

α3β1

α4β1

α5β1

α6β1

αvβ1

fibronectin

talin

α-actinin

FAK

CAS

Rac1

fimH

CD48

Fcγ-R

CR1

Cdc42

RhoA

YopH

Fyb

SKAP-HOM

Crk

YopE

ExoS

ExoT

Src

IpaA

IpaB

IpaC

IpaD

IpgD

CD44

ezrin

vinculin

cortactin

paxillin

SipA

SopB

SigD

SptP

SifA

Rab7

SpiC

FURTHER INFORMATION

Finlay lab

Salmonella.org

Pathogenic E. coli infection mechanism

Intracellular infection by Salmonella

Theriot lab movie collection

Glossary

PHAGOCYTOSIS

Actin-dependent process, by which cells engulf external particulate material by extension and fusion of pseudopods.

GRAM-POSITIVE BACTERIA

Bacteria with cell walls that retain a basic blue dye during the Gram-stain procedure. These cell walls are relatively thick, consisting of a network of peptidoglycan and lipoteichoic acids.

E-CADHERIN

Calcium-dependent adhesion molecule that mediates homophilic adhesions between epithelial cells.

M CELL

'Membranous' or 'microfold' cell. Specialized cell of follicle-associated epithelium (FAE) in the gut that internalizes macromolecules and microorganisms and delivers them to the underlying lymphoid tissue.

INTEGRINS

A large family of heterodimeric transmembrane proteins that act as receptors for cell-adhesion molecules.

LIPID RAFTS

Dynamic assemblies of cholesterol and sphingolipids in the plasma membrane.

OPSONIZED

Covered with blood-serum proteins — complement, or immunoglobulin-G antibodies — that enhance uptake by phagocytosis.

GPI ANCHOR

A post-translational modification that anchors proteins to membranes, possibly to domains therein. The anchor is made of one molecule of phosphatidylinositol to which a carbohydrate chain is linked through the C-6 hydroxyl of the inositol, and it is linked to the protein through an ethanolamine phosphate moiety.

CAVEOLA

Flask-shaped, cholesterol-rich invagination of the plasma membrane that might mediate the uptake of some extracellular materials, and is probably involved in cell signalling.

GRAM-NEGATIVE BACTERIA

Bacteria with cell walls that do not retain a basic blue dye during the Gram-stain procedure. These cell walls are composed of two membranes, separated by a thin layer of peptidoglycan. The outer membrane anchors surface lipopolysaccharides.

ANTIPHAGOCYTOSIS

Ability of bacteria to inhibit the cytoskeletal rearrangements at the plasma membrane that would lead to their phagocytosis.

DEGRADATIVE ENDOCYTIC PATHWAY

Macromolecules endocytosed at the plasma membrane first arrive in early endosomes, from where they are transported to late endosomes, and finally lysosomes where they are degraded by hydrolases.

GTPASE-ACTIVATING PROTEIN

(GAP). Protein that inactivates small GTP-binding proteins by increasing their rate of GTP hydrolysis.

MACROPINOCYTOSIS

Actin-dependent process by which cells engulf large volumes of fluids.

GUANINE NUCLEOTIDE EXCHANGE FACTOR

(GEF). A protein that facilitates the exchange of GDP (guanine diphosphate) for GTP (guanine triphosphate) in the nucleotide-binding pocket of a GTP-binding protein.

COILING PHAGOCYTOSIS

Internalization of a particle through enclosure by a single finger-like projection that coils around it.

PROMASTIGOTE

Flagellated form of Leishmania carried by an insect vector and injected into the bloodstream of the host.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knodler, L., Celli, J. & Finlay, B. Pathogenic trickery: deception of host cell processes. Nat Rev Mol Cell Biol 2, 578–588 (2001). https://doi.org/10.1038/35085062

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35085062

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing