Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The highly diverse antiphage defence systems of bacteria

A Publisher Correction to this article was published on 18 October 2023

This article has been updated

Abstract

Bacteria and their viruses have coevolved for billions of years. This ancient and still ongoing arms race has led bacteria to develop a vast antiphage arsenal. The development of high-throughput screening methods expanded our knowledge of defence systems from a handful to more than a hundred systems, unveiling many different molecular mechanisms. These findings reveal that bacterial immunity is much more complex than previously thought. In this Review, we explore recently discovered bacterial antiphage defence systems, with a particular focus on their molecular diversity, and discuss the ecological and evolutionary drivers and implications of the existing diversity of antiphage defence mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diversity of bacterial antiphage defences.
Fig. 2: Antiphage molecular mechanisms.
Fig. 3: Phage resistance mechanisms target all steps of antiphage defence.

Similar content being viewed by others

Change history

References

  1. Ofir, G. & Sorek, R. Contemporary phage biology: from classic models to new insights. Cell 172, 1260–1270 (2018).

    Article  PubMed  CAS  Google Scholar 

  2. Suttle, C. A. Marine viruses — major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).

    Article  PubMed  CAS  Google Scholar 

  3. Kever, L. et al. Aminoglycoside antibiotics inhibit phage infection by blocking an early step of the infection cycle. mBio 13, e0078322 (2022).

    Article  PubMed  Google Scholar 

  4. Kronheim, S. et al. A chemical defence against phage infection. Nature 564, 283–286 (2018). This study demonstrates that some bacteria produce small antiphage molecules.

    Article  PubMed  CAS  Google Scholar 

  5. Cohen, D. et al. Cyclic GMP–AMP signalling protects bacteria against viral infection. Nature 574, 691–695 (2019). This study shows that homologues of the eukaryotic cGASSTING pathway are bacterial signalling antiphage systems.

    Article  PubMed  CAS  Google Scholar 

  6. Ofir, G. et al. Antiviral activity of bacterial TIR domains via immune signalling molecules. Nature 600, 116–120 (2021). In this study, the authors discover the molecular mechanism of Thoeris, an antiphage signalling system that comprises TIR domains known to be involved in immune signalling in plants.

    Article  PubMed  CAS  Google Scholar 

  7. Tal, N. et al. Cyclic CMP and cyclic UMP mediate bacterial immunity against phages. Cell 184, 5728–5739.e16 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Gao, L. A. et al. Prokaryotic innate immunity through pattern recognition of conserved viral proteins. Science 377, eabm4096 (2022). This study shows that nucleotide binding oligomerization domain-like receptors (NLR), which are known to perform recognition of pathogen-associated molecular patterns in eukaryotes, can recognize conserved structural features of phage proteins to trigger immune response.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Chopin, M.-C., Chopin, A. & Bidnenko, E. Phage abortive infection in lactococci: variations on a theme. Curr. Opin. Microbiol. 8, 473–479 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria and their phage foes. Nature 577, 327–336 (2020).

    Article  PubMed  CAS  Google Scholar 

  11. LeRoux, M. & Laub, M. T. Toxin–antitoxin systems as phage defense elements. Annu. Rev. Microbiol. 76, 21–43 (2022).

    Article  PubMed  Google Scholar 

  12. Tesson, F. et al. Systematic and quantitative view of the antiviral arsenal of prokaryotes. Nat. Commun. 13, 2561 (2022). In this study, the authors developed a tool to systematically detect antiphage systems in prokaryotic genomes and used it to describe the antiviral arsenal of bacteria.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Millman, A. et al. An expanded arsenal of immune systems that protect bacteria from phages. Cell Host Microbe 30, 1556–1569.e5 (2022).

    Article  PubMed  CAS  Google Scholar 

  14. Lopatina, A., Tal, N. & Sorek, R. Abortive infection: bacterial suicide as an antiviral immune strategy. Annu. Rev. Virol. 7, 371–384 (2020).

    Article  PubMed  CAS  Google Scholar 

  15. Tock, M. R. & Dryden, D. T. F. The biology of restriction and anti-restriction. Curr. Opin. Microbiol. 8, 466–472 (2005).

    Article  PubMed  CAS  Google Scholar 

  16. Goldfarb, T. et al. BREX is a novel phage resistance system widespread in microbial genomes. EMBO J. 34, 169–183 (2015).

    Article  PubMed  CAS  Google Scholar 

  17. Gordeeva, J. et al. BREX system of Escherichia coli distinguishes self from non-self by methylation of a specific DNA site. Nucleic Acids Res. 47, 253–265 (2019).

    Article  PubMed  CAS  Google Scholar 

  18. Ofir, G. et al. DISARM is a widespread bacterial defence system with broad anti-phage activities. Nat. Microbiol. 3, 90–98 (2018).

    Article  PubMed  CAS  Google Scholar 

  19. Wang, L., Jiang, S., Deng, Z., Dedon, P. C. & Chen, S. DNA phosphorothioate modification — a new multi-functional epigenetic system in bacteria. FEMS Microbiol. Rev. 43, 109–122 (2019).

    Article  PubMed  CAS  Google Scholar 

  20. Xiong, L. et al. A new type of DNA phosphorothioation-based antiviral system in archaea. Nat. Commun. 10, 1688 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang, S. et al. SspABCD-SspFGH constitutes a new type of DNA phosphorothioate-based bacterial defense system. mBio 12, e00613–e00621 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Xiong, X. et al. SspABCD-SspE is a phosphorothioation-sensing bacterial defence system with broad anti-phage activities. Nat. Microbiol. 5, 917–928 (2020).

    Article  PubMed  CAS  Google Scholar 

  23. Thiaville, J. J. et al. Novel genomic island modifies DNA with 7-deazaguanine derivatives. Proc. Natl Acad. Sci. USA 113, E1452–E1459 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hille, F. et al. The biology of CRISPR–Cas: backward and forward. Cell 172, 1239–1259 (2018).

    Article  PubMed  CAS  Google Scholar 

  25. Garb, J. et al. Multiple phage resistance systems inhibit infection via SIR2-dependent NAD+ depletion. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01207-8 (2022).

    Article  PubMed  Google Scholar 

  26. Zaremba, M. et al. Short prokaryotic argonautes provide defence against incoming mobile genetic elements through NAD+ depletion. Nat. Microbiol. 7, 1857–1869 (2022).

    Article  PubMed  CAS  Google Scholar 

  27. Zeng, Z. et al. A short prokaryotic argonaute activates membrane effector to confer antiviral defense. Cell Host Microbe 30, 930–943.e6 (2022).

    Article  PubMed  CAS  Google Scholar 

  28. Deep, A. et al. The SMC-family wadjet complex protects bacteria from plasmid transformation by recognition and cleavage of closed-circular DNA. Mol. Cell 82, 4145–4159.e7 (2022).

    Article  PubMed  CAS  Google Scholar 

  29. Dalton, V. B. et al. Bacterial cGAS senses a viral RNA to initiate immunity. Preprint at bioRxiv https://doi.org/10.1101/2023.03.07.531596 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Depardieu, F. et al. A eukaryotic-like serine/threonine kinase protects staphylococci against phages. Cell Host Microbe 20, 471–481 (2016).

    Article  PubMed  CAS  Google Scholar 

  31. Zhang, T. et al. Direct activation of a bacterial innate immune system by a viral capsid protein. Nature 612, 132–140 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Rousset, F. et al. Phages and their satellites encode hotspots of antiviral systems. Cell Host Microbe 30, 740–753.e5 (2022). This study uncovered a new method to bioinformatically predict antiphage systems by identifying defensive hotspots in phages and phage satellites and demonstrates that antiphage systems of satellites can benefit their helper phage.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Parma, D. H. et al. The Rex system of bacteriophage lambda: tolerance and altruistic cell death. Genes Dev. 6, 497–510 (1992).

    Article  PubMed  CAS  Google Scholar 

  34. Durmaz, E. & Klaenhammer, T. R. Abortive phage resistance mechanism abiz speeds the lysis clock to cause premature lysis of phage-infected lactococcus lactis. J. Bacteriol. 189, 1417–1425 (2007).

    Article  PubMed  CAS  Google Scholar 

  35. LeRoux, M. et al. The DarTG toxin–antitoxin system provides phage defence by ADP-ribosylating viral DNA. Nat. Microbiol. 7, 1028–1040 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Guegler, C. K. & Laub, M. T. Shutoff of host transcription triggers a toxin–antitoxin system to cleave phage RNA and abort infection. Mol. Cell 81, 2361–2373.e9 (2021). This study describes a toxinantitoxin system type III with antiphage activity, which encodes an endoribonuclease toxin that degrades viral transcript.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Gao, L. et al. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084 (2020). This study uses a bioinformatic prediction method to validates 29 novel defence systems.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Millman, A. et al. Bacterial retrons function in anti-phage defense. Cell 183, 1551–1561.e12 (2020). This study shows that retrons can function as antiphage sensors that guard the RecBCD complex and trigger toxic effectors when activated.

    Article  PubMed  CAS  Google Scholar 

  39. Bobonis, J. et al. Bacterial retrons encode phage-defending tripartite toxin–antitoxin systems. Nature 609, 144–150 (2022).

    Article  PubMed  CAS  Google Scholar 

  40. Tal, N. et al. Bacteria deplete deoxynucleotides to defend against bacteriophage infection. Nat. Microbiol. 7, 1200–1209 (2022).

    Article  PubMed  CAS  Google Scholar 

  41. Kaufmann, G. Anticodon nucleases. Trends Biochem. Sci. 25, 70–74 (2000).

    Article  PubMed  CAS  Google Scholar 

  42. Penner, M., Morad, I., Snyder, L. & Kaufmann, G. Phage T4-coded Stp: double-edged effector of coupled DNA and tRNA-restriction systems. J. Mol. Biol. 249, 857–868 (1995).

    Article  PubMed  CAS  Google Scholar 

  43. Hsueh, B. Y. et al. Phage defence by deaminase-mediated depletion of deoxynucleotides in bacteria. Nat. Microbiol. 7, 1210–1220 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Koga, M., Otsuka, Y., Lemire, S. & Yonesaki, T. Escherichia coli rnlA and rnlB compose a novel toxin–antitoxin system. Genetics 187, 123–130 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Uzan, M. & Miller, E. S. Post-transcriptional control by bacteriophage T4: mRNA decay and inhibition of translation initiation. Virol. J. 7, 360 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Athukoralage, J. S. & White, M. F. Cyclic nucleotide signaling in phage defense and counter-defense. Annu. Rev. Virol. 9, 451–468 (2022).

    Article  PubMed  Google Scholar 

  47. Steens, J. A., Salazar, C. R. P. & Staals, R. H. J. The diverse arsenal of type III CRISPR–Cas-associated CARF and SAVED effectors. Biochem. Soc. Trans. 50, 1353–1364 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Millman, A., Melamed, S., Amitai, G. & Sorek, R. Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems. Nat. Microbiol. 5, 1608–1615 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Whiteley, A. T. et al. Bacterial cGAS-like enzymes synthesize diverse nucleotide signals. Nature 567, 194–199 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Leavitt, A. et al. Viruses inhibit TIR gcADPR signaling to overcome bacterial defense. Nature 611, 326–331 (2022).

    Article  PubMed  CAS  Google Scholar 

  51. Athukoralage, J. S. et al. The dynamic interplay of host and viral enzymes in type III CRISPR-mediated cyclic nucleotide signalling. eLife 9, e55852 (2020).

    Google Scholar 

  52. Nussenzweig, P. M. & Marraffini, L. A. Molecular mechanisms of CRISPR–Cas immunity in bacteria. Annu. Rev. Genet. 54, 93–120 (2020).

    Article  PubMed  CAS  Google Scholar 

  53. LeGault, K. N., Barth, Z. K., DePaola, P. & Seed, K. D. A phage parasite deploys a nicking nuclease effector to inhibit viral host replication. Nucleic Acids Res. https://doi.org/10.1093/nar/gkac002 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Doron, S. et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359, eaar4120 (2018). This study develops a bioinformatic prediction method and experimentally validates nine novel antiphage systems.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jaskólska, M., Adams, D. W. & Blokesch, M. Two defence systems eliminate plasmids from seventh pandemic vibrio cholerae. Nature 604, 323–329 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lau, R. K. et al. Structure and mechanism of a cyclic trinucleotide-activated bacterial endonuclease mediating bacteriophage immunity. Mol. Cell 77, 723–733.e6 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Cheng, R. et al. A nucleotide-sensing endonuclease from the Gabija bacterial defense system. Nucleic Acids Res. 49, 5216–5229 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Davidov, E. & Kaufmann, G. RloC: a wobble nucleotide-excising and zinc-responsive bacterial tRNase. Mol. Microbiol. 69, 1560–1574 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Williams, M. C. et al. Restriction endonuclease cleavage of phage DNA enables resuscitation from Cas13-induced bacterial dormancy. Nat. Microbiol. 8, 400–409 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Bari, S. M. N. et al. A unique mode of nucleic acid immunity performed by a multifunctional bacterial enzyme. Cell Host Microbe 30, 570–582.e7 (2022).

    Article  PubMed  CAS  Google Scholar 

  61. Morehouse, B. R. et al. STING cyclic dinucleotide sensing originated in bacteria. Nature 586, 429–433 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Gao, Y. et al. Molecular basis of RADAR anti-phage supramolecular assemblies. Cell 186, 999–1012.e20 (2023).

    Article  PubMed  CAS  Google Scholar 

  63. Duncan-Lowey, B. et al. Cryo-EM structure of the RADAR supramolecular anti-phage defense complex. Cell 186, 987–998.e15 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Bernheim, A. et al. Prokaryotic viperins produce diverse antiviral molecules. Nature 589, 120–124 (2021).

    Article  PubMed  CAS  Google Scholar 

  65. Johnson, A. G. et al. Bacterial gasdermins reveal an ancient mechanism of cell death. Science 375, 221–225 (2022). This study uncovers the existence of bacterial Gasdermins that, similar to eukaryotic ones, form pores leading to immunity-related cell death.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. VanderWal, A. R., Park, J.-U., Polevoda, B., Kellogg, E. H. & O’Connell, M. R. CRISPR-Csx28 forms a Cas13b-activated membrane pore required for robust CRISPR-Cas adaptive immunity. Preprint at bioRxiv https://doi.org/10.1101/2021.11.02.466367 (2021).

  67. Cheng, X., Wang, W. & Molineux, I. J. F exclusion of bacteriophage T7 occurs at the cell membrane. Virology 326, 340–352 (2004).

    Article  PubMed  CAS  Google Scholar 

  68. Schmitt, C. K., Kemp, P. & Molineux, I. J. Genes 1.2 and 10 of bacteriophages T3 and T7 determine the permeability lesions observed in infected cells of Escherichia coli expressing the F plasmid gene pifA. J. Bacteriol. 173, 6507–6514 (1991).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Duncan-Lowey, B., McNamara-Bordewick, N. K., Tal, N., Sorek, R. & Kranzusch, P. J. Effector-mediated membrane disruption controls cell death in CBASS antiphage defense. Mol. Cell 81, 5039–5051.e5 (2021).

    Article  PubMed  CAS  Google Scholar 

  70. Piel, D. et al. Phage–host coevolution in natural populations. Nat. Microbiol. 7, 1075–1086 (2022).

    Article  PubMed  CAS  Google Scholar 

  71. Samson, J. E., Magadán, A. H., Sabri, M. & Moineau, S. Revenge of the phages: defeating bacterial defences. Nat. Rev. Microbiol. 11, 675–687 (2013).

    Article  PubMed  CAS  Google Scholar 

  72. Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317–327 (2010).

    Article  PubMed  CAS  Google Scholar 

  73. Puigbò, P., Makarova, K. S., Kristensen, D. M., Wolf, Y. I. & Koonin, E. V. Reconstruction of the evolution of microbial defense systems. BMC Evol. Biol. 17, 94 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Payne, L. J. et al. Identification and classification of antiviral defence systems in bacteria and archaea with PADLOC reveals new system types. Nucleic Acids Res. 49, 10868–10878 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Fillol-Salom, A. et al. Bacteriophages benefit from mobilizing pathogenicity islands encoding immune systems against competitors. Cell 185, 3248–3262.e20 (2022).

    Article  PubMed  CAS  Google Scholar 

  76. Vassallo, C. N., Doering, C. R., Littlehale, M. L., Teodoro, G. I. C. & Laub, M. T. A functional selection reveals previously undetected anti-phage defence systems in the E. coli pangenome. Nat. Microbiol. 7, 1568–1579 (2022). In this study, the authors developed a new high-throughput method for the discovery of antiphage systems through random cloning of genomic fragments of E. coli isolates, uncovering 21 novel systems.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Benler, S. et al. Cargo genes of Tn7-like transposons comprise an enormous diversity of defense systems, mobile genetic elements, and antibiotic resistance genes. mBio 12, e0293821 (2021).

    Article  PubMed  Google Scholar 

  78. Hochhauser, D., Millman, A. & Sorek, R. The defense island repertoire of the Escherichia coli pan-genome. PLoS Genet. 19, e1010694 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. LeGault, K. N. et al. Temporal shifts in antibiotic resistance elements govern phage-pathogen conflicts. Science 373, eabg2166 (2021). This study demonstrates that V. cholerae resistance to phages is determined by the turnover of SXT integrative and conjugative elements, which often encode both antibiotic resistance genes and antiphage systems.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Picton, D. M. et al. The phage defence island of a multidrug resistant plasmid uses both BREX and type IV restriction for complementary protection from viruses. Nucleic Acids Res. 49, 11257–11273 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Wu, Y. et al. Defence systems provide synergistic anti-phage activity in E. coli. Preprint at bioRxiv https://doi.org/10.1101/2022.08.21.504612 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Rocha, E. P. C. & Bikard, D. Microbial defenses against mobile genetic elements and viruses: who defends whom from what? PLoS Biol. 20, e3001514 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Hussain, F. A. et al. Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages. Science 374, 488–492 (2021). This study shows that in a set of nearly clonal V. lentus strains, phage host range is largely explained by the rapid turnover of phage defence elements.

    Article  PubMed  CAS  Google Scholar 

  84. Bernheim, A. & Sorek, R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat. Rev. Microbiol. 18, 113–119 (2020).

    Article  PubMed  CAS  Google Scholar 

  85. Dedrick, R. M. et al. Prophage-mediated defence against viral attack and viral counter-defence. Nat. Microbiol. 2, 16251 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Gentile, G. M. et al. More evidence of collusion: a new prophage-mediated viral defense system encoded by mycobacteriophage Sbash. mBio 10, e00196-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Montgomery, M. T., Guerrero Bustamante, C. A., Dedrick, R. M., Jacobs-Sera, D. & Hatfull, G. F. Yet more evidence of collusion: a new viral defense system encoded by Gordonia Phage CarolAnn. mBio 10, e02417–e02418 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Owen, S. V. et al. Prophages encode phage-defense systems with cognate self-immunity. Cell Host Microbe 29, 1620–1633.e8 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Ali, Y. et al. Temperate Streptococcus thermophilus phages expressing superinfection exclusion proteins of the Ltp type. Front. Microbiol. 5, 98 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Yu, Y. T. & Snyder, L. Translation elongation factor Tu cleaved by a phage-exclusion system. Proc. Natl Acad. Sci. USA 91, 802–806 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Koonin, E. V., Makarova, K. S., Wolf, Y. I. & Krupovic, M. Evolutionary entanglement of mobile genetic elements and host defence systems: guns for hire. Nat. Rev. Genet. 21, 119–131 (2020).

    Article  PubMed  CAS  Google Scholar 

  92. Anantharaman, V., Makarova, K. S., Burroughs, A. M., Koonin, E. V. & Aravind, L. Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing. Biol. Direct 8, 15 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Lowey, B. et al. CBASS immunity uses CARF-related effectors to sense 3′–5′- and 2′–5′-linked cyclic oligonucleotide signals and protect bacteria from phage infection. Cell 182, 38–49.e17 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Francois, R. et al. A conserved family of immune effectors cleaves cellular ATP upon viral infection. Preprint at bioRxiv https://doi.org/10.1101/2023.01.24.525353 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Aravind, L., Iyer, L. M. & Burroughs, A. M. Discovering biological conflict systems through genome analysis: evolutionary principles and biochemical novelty. Annu. Rev. Biomed. Data Sci. 5, 367–391 (2022).

    Article  PubMed  CAS  Google Scholar 

  96. Stern, A. & Sorek, R. The phage-host arms race: shaping the evolution of microbes. Bioessays 33, 43–51 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Dupuis, M.-È., Villion, M., Magadán, A. H. & Moineau, S. CRISPR–Cas and restriction–modification systems are compatible and increase phage resistance. Nat. Commun. 4, 2087 (2013).

    Article  PubMed  Google Scholar 

  98. Costa, A. R. et al. Accumulation of defense systems drives panphage resistance in Pseudomonas aeruginosa. Preprint at bioRxiv https://doi.org/10.1101/2022.08.12.503731 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Srikant, S., Guegler, C. K. & Laub, M. T. The evolution of a counter-defense mechanism in a virus constrains its host range. eLife 11, e79549 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Maguin, P., Varble, A., Modell, J. W. & Marraffini, L. A. Cleavage of viral DNA by restriction endonucleases stimulates the type II CRISPR–Cas immune response. Mol. Cell 82, 907–919.e7 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Zheng, Z. et al. The CRISPR–Cas systems were selectively inactivated during evolution of Bacillus cereus group for adaptation to diverse environments. ISME J. 14, 1479–1493 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Vasu, K. & Nagaraja, V. Diverse functions of restriction–modification systems in addition to cellular defense. Microbiol. Mol. Biol. Rev. 77, 53–72 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Varble, A., Meaden, S., Barrangou, R., Westra, E. R. & Marraffini, L. A. Recombination between phages and CRISPR–Cas loci facilitates horizontal gene transfer in staphylococci. Nat. Microbiol. 4, 956–963 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Watson, B. N. J., Staals, R. H. J. & Fineran, P. C. CRISPR-Cas-mediated phage resistance enhances horizontal gene transfer by transduction. mBio 9, e02406–e02417 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Hsu, B. B. et al. Dynamic modulation of the gut microbiota and metabolome by bacteriophages in a mouse model. Cell Host Microbe 25, 803–814.e5 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Braga, L. P. P. et al. Impact of phages on soil bacterial communities and nitrogen availability under different assembly scenarios. Microbiome 8, 52 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Kellner, M. J., Koob, J. G., Gootenberg, J. S., Abudayyeh, O. O. & Zhang, F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat. Protoc. 14, 2986–3012 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Loenen, W. A. M., Dryden, D. T. F., Raleigh, E. A., Wilson, G. G. & Murray, N. E. Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res. 42, 3–19 (2014).

    Article  PubMed  CAS  Google Scholar 

  109. Lopez, S. C., Crawford, K. D., Lear, S. K., Bhattarai-Kline, S. & Shipman, S. L. Precise genome editing across kingdoms of life using retron-derived DNA. Nat. Chem. Biol. 18, 199–206 (2022).

    Article  PubMed  CAS  Google Scholar 

  110. Pennisi, E. The CRISPR craze. Science 341, 833–836 (2013).

    Article  PubMed  CAS  Google Scholar 

  111. Schubert, M. G. et al. High-throughput functional variant screens via in vivo production of single-stranded DNA. Proc. Natl Acad. Sci. USA 118, e2018181118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Alseth, E. O. et al. Bacterial biodiversity drives the evolution of CRISPR-based phage resistance. Nature 574, 549–552 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Shaer Tamar, E. & Kishony, R. Multistep diversification in spatiotemporal bacterial-phage coevolution. Nat. Commun. 13, 7971 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Jacob, F. Evolution and tinkering. Science 196, 1161–1166 (1977).

    Article  PubMed  CAS  Google Scholar 

  115. Kibby, E. M. et al. Bacterial NLR-related proteins protect against phage. Cell 186, 2410–2424.e18 (2023).

    Article  PubMed  CAS  Google Scholar 

  116. Wein, T. & Sorek, R. Bacterial origins of human cell-autonomous innate immune mechanisms. Nat. Rev. Immunol. 186, 2410–2424.e18 (2022).

    Google Scholar 

  117. Cury, J. et al. Conservation of antiviral systems across domains of life reveals novel immune mechanisms in humans. Preprint at bioRxiv https://doi.org/10.1101/2022.12.12.520048 (2022).

    Article  Google Scholar 

  118. Warren, R. A. Modified bases in bacteriophage DNAs. Annu. Rev. Microbiol. 34, 137–158 (1980).

    Article  PubMed  CAS  Google Scholar 

  119. Liu, Y. et al. Covalent modifications of the bacteriophage genome confer a degree of resistance to bacterial CRISPR systems. J. Virol. 94, e01630-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Hobbs, S. J. et al. Phage anti-CBASS and anti-PYCSAR nucleases subvert bacterial immunity. Nature 605, 522–526 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Borges, A. L. et al. Bacteriophage cooperation suppresses CRISPR-Cas3 and Cas9 immunity. Cell 174, 917–925.e10 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Landsberger, M. et al. Anti-CRISPR phages cooperate to overcome CRISPR-Cas immunity. Cell 174, 908–916.e12 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Blower, T. R., Evans, T. J., Przybilski, R., Fineran, P. C. & Salmond, G. P. C. Viral evasion of a bacterial suicide system by RNA-based molecular mimicry enables infectious altruism. PLoS Genet. 8, e1003023 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Makarova, K. S., Wolf, Y. I., Snir, S. & Koonin, E. V. Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. J. Bacteriol. 193, 6039–6056 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Bondy-Denomy, J. et al. Prophages mediate defense against phage infection through diverse mechanisms. ISME J. 10, 2854–2866 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Scholl, D., Adhya, S. & Merril, C. Escherichia coli K1’s capsule is a barrier to bacteriophage T7. Appl. Environ. Microbiol. 71, 4872–4874 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Ohshima, Y., Schumacher-Perdreau, F., Peters, G. & Pulverer, G. The role of capsule as a barrier to bacteriophage adsorption in an encapsulated Staphylococcus simulans strain. Med. Microbiol. Immunol. 177, 229–233 (1988).

    Article  PubMed  CAS  Google Scholar 

  128. Scanlan, P. D. & Buckling, A. Co-evolution with lytic phage selects for the mucoid phenotype of Pseudomonas fluorescens SBW25. ISME J. 6, 1148–1158 (2012).

    Article  PubMed  CAS  Google Scholar 

  129. Seed, K. D. et al. Evolutionary consequences of intra-patient phage predation on microbial populations. eLife 3, e03497 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Harvey, H. et al. Pseudomonas aeruginosa defends against phages through type IV pilus glycosylation. Nat. Microbiol. 3, 47–52 (2018).

    Article  PubMed  CAS  Google Scholar 

  131. Tzipilevich, E., Pollak-Fiyaksel, O., Shraiteh, B. & Ben-Yehuda, S. Bacteria elicit a phage tolerance response subsequent to infection of their neighbors. EMBO J. 41, e109247 (2022).

    Article  PubMed  CAS  Google Scholar 

  132. Wohlfarth, J. C. et al. l-form conversion in Gram-positive bacteria enables escape from phage infection. Nat. Microbiol. 8, 387–399 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  133. Ongenae, V. et al. Reversible bacteriophage resistance by shedding the bacterial cell wall. Open. Biol. 12, 210379 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Dillingham, M. S. & Kowalczykowski, S. C. RecBCD enzyme and the repair of double-stranded DNA breaks. Microbiol. Mol. Biol. Rev. 72, 642–671 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Guo, L., Sattler, L., Shafqat, S., Graumann, P. L. & Bramkamp, M. A bacterial dynamin-like protein confers a novel phage resistance strategy on the population level in Bacillus subtilis. mBio https://doi.org/10.1128/mbio.03753-21 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Stokar-Avihail, A. et al. Discovery of phage determinants that confer sensitivity to bacterial immune systems. Cell 186, 1863–1876.e16 (2023). This study systematically uncovers triggers of antiphage defence systems and major trends of sensing mechanisms of antiphage immunity.

    Article  PubMed  CAS  Google Scholar 

  137. Athukoralage, J. S. et al. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. Nature 577, 572–575 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Huiting, E. et al. Bacteriophages inhibit and evade cGAS-like immune function in bacteria. Cell 186, 864–876.e21 (2023).

    Article  PubMed  CAS  Google Scholar 

  139. Pawluk, A., Davidson, A. R. & Maxwell, K. L. Anti-CRISPR: discovery, mechanism and function. Nat. Rev. Microbiol. 16, 12–17 (2018).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to A. Millman, G. Ofir and F. Rousset for their very useful feedback on early versions of this manuscript. The authors also thank all members of the Molecular Diversity of Microbes Lab for their comments and suggestions during the writing process. H.G. and A.B. are supported by the ERC Starting Grant (PECAN 101040529). To promote gender equality and inclusivity in research, we are convinced of the importance of acknowledging gender bias in research article citation. Using a custom script available on our github (https://github.com/mdmparis/Estimating_gender_bias_in_references), we estimated that among the 139 references cited in the main text, approximately 45% (63) have a female first author and approximately 15% (21) have a female last author.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Aude Bernheim.

Ethics declarations

Competing interests

H.G. is employed by Generare Biosciences. A.B. declares no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Eugene Koonin, John van der Oost and Lennart Randau for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georjon, H., Bernheim, A. The highly diverse antiphage defence systems of bacteria. Nat Rev Microbiol 21, 686–700 (2023). https://doi.org/10.1038/s41579-023-00934-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-023-00934-x

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology