Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths

Abstract

Helminth-induced type 2 immune responses, which are characterized by the T helper 2 cell-associated cytokines interleukin-4 (IL-4) and IL-13, mediate host protection through enhanced tissue repair, the control of inflammation and worm expulsion. In this Opinion article, we consider type 2 immunity in the context of helminth-mediated tissue damage. We examine the relationship between the control of helminth infection and the mechanisms of wound repair, and we provide a new understanding of the adaptive type 2 immune response and its contribution to both host tolerance and resistance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The type 2 immune response promotes tissue repair and immunity against helminths.
Figure 2: The role of the immune system in homeostasis.
Figure 3: Helminth infections as a selective force for evolution of the type 2 immune response.

References

  1. Allen, J. E. & Wynn, T. A. Evolution of Th2 immunity: a rapid repair response to tissue destructive pathogens. PLoS Pathog. 7, e1002003 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Artis, D., Maizels, R. M. & Finkelman, F. D. Forum: Immunology: Allergy challenged. Nature 484, 458–459 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Palm, N. W., Rosenstein, R. K. & Medzhitov, R. Allergic host defences. Nature 484, 465–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Deter, J., Cosson, J. F., Chaval, Y., Charbonnel, N. & Morand, S. The intestinal nematode Trichuris arvicolae affects the fecundity of its host, the common vole Microtus arvalis. Parasitol. Res. 101, 1161–1164 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Coop, R. L. & Kyriazakis, I. Influence of host nutrition on the development and consequences of nematode parasitism in ruminants. Trends Parasitol. 17, 325–330 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Gulland, F. M. The role of nematode parasites in Soay sheep (Ovis aries L.) mortality during a population crash. Parasitology 105, 493–503 (1992).

    Article  PubMed  Google Scholar 

  7. King, C. H. Health metrics for helminthic infections. Adv. Parasitol. 73, 51–69 (2010).

    Article  PubMed  Google Scholar 

  8. Schneider, D. S. & Ayres, J. S. Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nature Rev. Immunol. 8, 889–895 (2008).

    Article  CAS  Google Scholar 

  9. Chen, F. et al. An essential role for TH2-type responses in limiting acute tissue damage during experimental helminth infection. Nature Med. 18, 260–266 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Monticelli, L. A. et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nature Immunol. 12, 1045–1054 (2011).

    Article  CAS  Google Scholar 

  11. Herbert, D. R. et al. Arginase I suppresses IL-12/IL-23p40-driven intestinal inflammation during acute schistosomiasis. J. Immunol. 184, 6438–6446 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Pesce, J. T. et al. Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog. 5, e1000371 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Read, A. F., Graham, A. L. & Raberg, L. Animal defenses against infectious agents: is damage control more important than pathogen control. PLoS Biol. 6, e4 (2008).

    Article  PubMed  CAS  Google Scholar 

  14. Jackson, J. A., Friberg, I. M., Little, S. & Bradley, J. E. Review series on helminths, immune modulation and the hygiene hypothesis: immunity against helminths and immunological phenomena in modern human populations: coevolutionary legacies? Immunology 126, 18–27 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eming, S. A., Krieg, T. & Davidson, J. M. Inflammation in wound repair: molecular and cellular mechanisms. J. Invest. Dermatol. 127, 514–525 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Nguyen, K. D. et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480, 104–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hernandez, J. L., Leung, G. & McKay, D. M. Cestode regulation of inflammation and inflammatory diseases. Int. J. Parasitol. 43, 233–243 (2012).

    Article  PubMed  CAS  Google Scholar 

  18. Elliott, D. E. & Weinstock, J. V. Helminth-host immunological interactions: prevention and control of immune-mediated diseases. Ann. NY Acad. Sci. 1247, 83–96 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Diegelmann, R. F. & Evans, M. C. Wound healing: an overview of acute, fibrotic and delayed healing. Front. Biosci. 9, 283–289 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Mills, K. H. TLR-dependent T cell activation in autoimmunity. Nature Rev. Immunol. 11, 807–822 (2011).

    Article  CAS  Google Scholar 

  21. Everts, B., Smits, H. H., Hokke, C. H. & Yazdanbakhsh, M. Helminths and dendritic cells: sensing and regulating via pattern recognition receptors, Th2 and Treg responses. Eur. J. Immunol. 40, 1525–1537 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Saenz, S. A. et al. IL25 elicits a multipotent progenitor cell population that promotes TH2 cytokine responses. Nature 464, 1362–1366 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ramalingam, T. R. et al. Regulation of helminth-induced Th2 responses by thymic stromal lymphopoietin. J. Immunol. 182, 6452–6459 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Smithgall, M. D. et al. IL-33 amplifies both Th1- and Th2-type responses through its activity on human basophils, allergen-reactive Th2 cells, iNKT and NK cells. Int. Immunol. 20, 1019–1030 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Zaph, C. et al. Epithelial-cell-intrinsic IKK-β expression regulates intestinal immune homeostasis. Nature 446, 552–556 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Siracusa, M. C. et al. TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature 477, 229–233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Massacand, J. C. et al. Helminth products bypass the need for TSLP in Th2 immune responses by directly modulating dendritic cell function. Proc. Natl Acad. Sci. USA 106, 13968–13973 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Townsend, M. J., Fallon, P. G., Matthews, D. J., Jolin, H. E. & McKenzie, A. N. T1/ST2-deficient mice demonstrate the importance of T1/ST2 in developing primary T helper cell type 2 responses. J. Exp. Med. 191, 1069–1076 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Humphreys, N. E., Xu, D., Hepworth, M. R., Liew, F. Y. & Grencis, R. K. IL-33, a potent inducer of adaptive immunity to intestinal nematodes. J. Immunol. 180, 2443–2449 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, Y. H. et al. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J. Exp. Med. 204, 1837–1847 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fallon, P. G. et al. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J. Exp. Med. 203, 1105–1116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kuroda, E. et al. Silica crystals and aluminum salts regulate the production of prostaglandin in macrophages via NALP3 inflammasome-independent mechanisms. Immunity 34, 514–526 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Mishra, P. K. et al. Micrometer-sized titanium particles can induce potent Th2-type responses through TLR4-independent pathways. J. Immunol. 187, 6491–6498 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Kool, M. et al. An unexpected role for uric acid as an inducer of T helper 2 cell immunity to inhaled antigens and inflammatory mediator of allergic asthma. Immunity 34, 527–540 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Kouzaki, H., Iijima, K., Kobayashi, T., O'Grady, S. M. & Kita, H. The danger signal, extracellular ATP, is a sensor for an airborne allergen and triggers IL-33 release and innate Th2-type responses. J. Immunol. 186, 4375–4387 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Strid, J., Sobolev, O., Zafirova, B., Polic, B. & Hayday, A. The intraepithelial T cell response to NKG2D-ligands links lymphoid stress surveillance to atopy. Science 334, 1293–1297 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Carvalho, L. et al. Review series on helminths, immune modulation and the hygiene hypothesis: mechanisms underlying helminth modulation of dendritic cell function. Immunology 126, 28–34 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Puneet, P. et al. The helminth product ES-62 protects against septic shock via Toll-like receptor 4-dependent autophagosomal degradation of the adaptor MyD88. Nature Immunol. 12, 344–351 (2011).

    Article  CAS  Google Scholar 

  39. Everts, B. et al. Schistosome-derived omega-1 drives Th2 polarization by suppressing protein synthesis following internalization by the mannose receptor. J. Exp. Med. 209, 1753–1767 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Neill, D. R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Price, A. E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl Acad. Sci. USA 107, 11489–11494 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Allen, J. E. & Maizels, R. M. Diversity and dialogue in immunity to helminths. Nature Rev. Immunol. 11, 375–388 (2011).

    Article  CAS  Google Scholar 

  44. Wynn, T. A. IL-13 effector functions. Annu. Rev. Immunol. 21, 425–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Pulendran, B. & Artis, D. New paradigms in type 2 immunity. Science 337, 431–435 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rosenberg, H. F., Dyer, K. D. & Foster, P. S. Eosinophils: changing perspectives in health and disease. Nature Rev. Immunol. 13, 9–22 (2013).

    Article  CAS  Google Scholar 

  47. Wynn, T. A. & Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nature Med. 18, 1028–1040 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Loke, P. et al. Alternative activation is an innate response to injury that requires CD4+ T cells to be sustained during chronic infection. J. Immunol. 179, 3926–3936 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Sandler, N. G., Mentink-Kane, M. M., Cheever, A. W. & Wynn, T. A. Global gene expression profiles during acute pathogen-induced pulmonary inflammation reveal divergent roles for Th1 and Th2 responses in tissue repair. J. Immunol. 171, 3655–3667 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Harris, N. & Gause, W. C. To B or not to B: B cells and the Th2-type immune response to helminths. Trends Immunol. 32, 80–88 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Anthony, R. M. et al. Protective immune mechanisms in helminth infection. Nature Rev. Immunol. 7, 975–987 (2007).

    Article  CAS  Google Scholar 

  52. Anthony, R. M. et al. Memory TH2 cells induce alternatively activated macrophages to mediate protection against nematode parasites. Nature Med. 12, 955–960 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Harvie, M. et al. The lung is an important site for priming CD4 T-cell-mediated protective immunity against gastrointestinal helminth parasites. Infect. Immun. 78, 3753–3762 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gurish, M. F. et al. IgE enhances parasite clearance and regulates mast cell responses in mice infected with Trichinella spiralis. J. Immunol. 172, 1139–1145 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Ushio, H., Watanabe, N., Kiso, Y., Higuchi, S. & Matsuda, H. Protective immunity and mast cell and eosinophil responses in mice infested with larval Haemaphysalis longicornis ticks. Parasite Immunol. 15, 209–214 (1993).

    Article  CAS  PubMed  Google Scholar 

  56. Matsuda, H. et al. Necessity of IgE antibodies and mast cells for manifestation of resistance against larval Haemaphysalis longicornis ticks in mice. J. Immunol. 144, 259–262 (1990).

    CAS  PubMed  Google Scholar 

  57. Okumura, S., Sagara, H., Fukuda, T., Saito, H. & Okayama, Y. FcɛRI-mediated amphiregulin production by human mast cells increases mucin gene expression in epithelial cells. J. Allergy Clin. Immunol. 115, 272–279 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Hoffmann, K. F., Cheever, A. W. & Wynn, T. A. IL-10 and the dangers of immune polarization: excessive type 1 and type 2 cytokine responses induce distinct forms of lethal immunopathology in murine schistosomiasis. J. Immunol. 164, 6406–6416 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Pearce, E. J. et al. Schistosoma mansoni in IL-4-deficient mice. Int. Immunol. 8, 435–444 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Reece, J. J., Siracusa, M. C. & Scott, A. L. Innate immune responses to lung-stage helminth infection induce alternatively activated alveolar macrophages. Infect. Immun. 74, 4970–4981 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. McNeil, K. S., Knox, D. P. & Proudfoot, L. Anti-inflammatory responses and oxidative stress in Nippostrongylus brasiliensis-induced pulmonary inflammation. Parasite Immunol. 24, 15–22 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Thomas, G. D. et al. The biology of nematode- and IL4Rα-dependent murine macrophage polarization in vivo as defined by RNA-Seq and targeted lipidomics. Blood 120, e93–e104 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wynes, M. W., Frankel, S. K. & Riches, D. W. IL-4-induced macrophage-derived IGF-I protects myofibroblasts from apoptosis following growth factor withdrawal. J. Leukoc. Biol. 76, 1019–1027 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Gillery, P., Leperre, A., Maquart, F. X. & Borel, J. P. Insulin-like growth factor-I (IGF-I) stimulates protein synthesis and collagen gene expression in monolayer and lattice cultures of fibroblasts. J. Cell. Physiol. 152, 389–396 (1992).

    Article  CAS  PubMed  Google Scholar 

  65. Toulon, A. et al. A role for human skin-resident T cells in wound healing. J. Exp. Med. 206, 743–750 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zeng, M. Y. et al. An efferocytosis-induced, IL-4-dependent macrophage-iNKT cell circuit suppresses sterile inflammation and is defective in murine CGD. Blood 121, 3473–3483 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Varin, A., Mukhopadhyay, S., Herbein, G. & Gordon, S. Alternative activation of macrophages by IL-4 impairs phagocytosis of pathogens but potentiates microbial-induced signalling and cytokine secretion. Blood 115, 353–362 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schopf, L. R., Hoffmann, K. F., Cheever, A. W., Urban, J. F. Jr & Wynn, T. A. IL-10 is critical for host resistance and survival during gastrointestinal helminth infection. J. Immunol. 168, 2383–2392 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Hesse, M. et al. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J. Immunol. 167, 6533–6544 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Hesse, M. et al. The pathogenesis of schistosomiasis is controlled by cooperating IL-10-producing innate effector and regulatory T cells. J. Immunol. 172, 3157–3166 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Shirey, K. A. et al. Control of RSV-induced lung injury by alternatively activated macrophages is IL-4Rα-, TLR4-, and IFN-α-dependent. Mucosal Immunol. 3, 291–300 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nature Rev. Immunol. 8, 958–969 (2008).

    Article  CAS  Google Scholar 

  73. Cooke, A. Review series on helminths, immune modulation and the hygiene hypothesis: how might infection modulate the onset of type 1 diabetes? Immunology 126, 12–17 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zaccone, P. & Cooke, A. Infectious triggers protect from autoimmunity. Semin. Immunol. 23, 122–129 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Mishra, P. K., Patel, N., Wu, W., Bleich, D. & Gause, W. C. Prevention of type 1 diabetes through infection with an intestinal nematode parasite requires IL-10 in the absence of a Th2-type response. Mucosal Immunol. 6, 297–308 (2012).

    Article  PubMed  CAS  Google Scholar 

  76. Hubner, M. P. et al. Helminth protection against autoimmune diabetes in nonobese diabetic mice is independent of a type 2 immune shift and requires TGF-β. J. Immunol. 188, 559–568 (2012).

    Article  PubMed  Google Scholar 

  77. Mentink-Kane, M. M. et al. Accelerated and progressive and lethal liver fibrosis in mice that lack interleukin (IL)-10, IL-12p40, and IL-13Rα2. Gastroenterology 141, 2200–2209 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Wilson, M. S. et al. Immunopathology of schistosomiasis. Immunol. Cell Biol. 85, 148–154 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Chiaramonte, M. G., Donaldson, D. D., Cheever, A. W. & Wynn, T. A. An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J. Clin. Invest. 104, 777–785 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chiaramonte, M. G., Cheever, A. W., Malley, J. D., Donaldson, D. D. & Wynn, T. A. Studies of murine schistosomiasis reveal interleukin-13 blockade as a treatment for established and progressive liver fibrosis. Hepatology 34, 273–282 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Wilson, M. S. et al. Suppression of allergic airway inflammation by helminth-induced regulatory T cells. J. Exp. Med. 202, 1199–1212 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Egawa, M. et al. Inflammatory monocytes recruited to allergic skin acquire an anti-inflammatory M2 phenotype via basophil-derived interleukin-4. Immunity 38, 570–580 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Nair, M. G. et al. Alternatively activated macrophage-derived RELM-α is a negative regulator of type 2 inflammation in the lung. J. Exp. Med. 206, 937–952 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pesce, J. T. et al. Retnlα (relmα/fizz1) suppresses helminth-induced Th2-type immunity. PLoS Pathog. 5, e1000393 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Wilson, M. S. et al. IL-13Rα2 and IL-10 coordinately suppress airway inflammation, airway-hyperreactivity, and fibrosis in mice. J. Clin. Invest. 117, 2941–2951 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Seno, H. et al. Efficient colonic mucosal wound repair requires Trem2 signaling. Proc. Natl Acad. Sci. USA 106, 256–261 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243–247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wills-Karp, M. & Finkelman, F. D. Innate lymphoid cells wield a double-edged sword. Nature Immunol. 12, 1025–1027 (2011).

    Article  CAS  Google Scholar 

  89. Kool, M., Fierens, K. & Lambrecht, B. N. Alum adjuvant: some of the tricks of the oldest adjuvant. J. Med. Microbiol. 61, 927–934 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Grainger, J. R. et al. Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-β pathway. J. Exp. Med. 207, 2331–2341 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Piggott, D. A. et al. MyD88-dependent induction of allergic Th2 responses to intranasal antigen. J. Clin. Invest. 115, 459–467 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jenkins, S. J. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332, 1284–1288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank F. Finkelman at the Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, USA, for providing excellent critical comments that strengthened this manuscript. This work was partly supported by the US National Institutes of Health (NIH) grants R01AI031678 and R01AI066188 awarded to W.C.G., and T.A.W. is supported by the Intramural Research Program from the NIH National Institute of Allergy and Infectious Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Gause.

Ethics declarations

Competing interests

T.A.W. holds patents on the treatment of fibrosis by blocking interleukin-13 (IL-13) and IL-21.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gause, W., Wynn, T. & Allen, J. Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths. Nat Rev Immunol 13, 607–614 (2013). https://doi.org/10.1038/nri3476

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3476

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing