Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

NADPH oxidases: new actors in thyroid cancer?

Key Points

  • Hydrogen peroxide (H2O2) is involved in both the physiology and pathology of the human thyroid gland, with roles both in hormone synthesis and in oxidative DNA damage

  • The NADPH oxidase/dual oxidase (NOX/DUOX) family are the major nonmitochondrial sources of reactive oxygen species in cells; the human thyroid gland expresses DUOX1, DUOX2 and NOX4

  • DUOX2 is the main source of H2O2 for hormone synthesis by thyroid peroxidase; the physiological functions of DUOX1 and NOX4 in human thyroid tissue are still unknown

  • Both DUOXs and NOX4 are overexpressed in human thyroid tumours, which suggests that these H2O2-generating enzymes might be involved in thyroid cancer pathogenesis

  • DUOX1 is upregulated in radiation-induced thyroid cancer, and DUOX1-dependent production of H2O2 promotes persistent DNA damage after human thyroid cells are exposed to ionizing radiation

  • Generation of H2O2 by NOX4 mediates oncogene-induced DNA damage and senescence in human thyroid cells

Abstract

Hydrogen peroxide (H2O2) is a crucial substrate for thyroid peroxidase, a key enzyme involved in thyroid hormone synthesis. However, as a potent oxidant, H2O2 might also be responsible for the high level of oxidative DNA damage observed in thyroid tissues, such as DNA base lesions and strand breakages, which promote chromosomal instability and contribute to the development of tumours. Although the role of H2O2 in thyroid hormone synthesis is well established, its precise mechanisms of action in pathological processes are still under investigation. The NADPH oxidase/dual oxidase family are the only oxidoreductases whose primary function is to produce reactive oxygen species. As such, the function and expression of these enzymes are tightly regulated. Thyrocytes express dual oxidase 2, which produces most of the H2O2 for thyroid hormone synthesis. Thyrocytes also express dual oxidase 1 and NADPH oxidase 4, but the roles of these enzymes are still unknown. Here, we review the structure, expression, localization and function of these enzymes. We focus on their potential role in thyroid cancer, which is characterized by increased expression of these enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The NADPH oxidase family and the role of NOX2 in phagocytic innate immunity defence5,6,7,8.
Figure 2: Localization of DUOX proteins in human thyroid follicle and thyroid hormone synthesis119.
Figure 3: Cross-interaction between DUOX proteins and their partners.
Figure 4: Hypothetical model of the role of H2O2-generating NADPH oxidases in DNA damage in the thyroid.

Similar content being viewed by others

References

  1. Ekholm, R. Iodination of thyroglobulin: an intracellular or extracellular process? Mol. Cell. Endocrinol. 24, 141–163 (1981).

    CAS  PubMed  Google Scholar 

  2. Dupuy, C. et al. Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. Cloning of the porcine and human cDNAs. J. Biol. Chem. 274, 37265–37269 (1999).

    CAS  PubMed  Google Scholar 

  3. De Deken, X. et al. Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. J. Biol. Chem. 275, 23227–23233 (2000).

    CAS  PubMed  Google Scholar 

  4. Weyemi, U. et al. Intracellular expression of reactive oxygen species-generating NADPH oxidase NOX4 in normal and cancer thyroid tissues. Endocr. Relat. Cancer 17, 27–37 (2010).

    CAS  PubMed  Google Scholar 

  5. Sumimoto, H. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J. 275, 3249–3277 (2008).

    CAS  PubMed  Google Scholar 

  6. Lambeth, J. D. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4, 181–189 (2004).

    CAS  PubMed  Google Scholar 

  7. De Deken, X., Corvilain, B., Dumont, J. E. & Miot, F. Roles of DUOX-mediated hydrogen peroxide in metabolism, host defense, and signaling. Antioxid. Redox Signal. 20, 2776–2793 (2014).

    CAS  PubMed  Google Scholar 

  8. Bedard, K. & Krause, K. H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245–313 (2007).

    CAS  PubMed  Google Scholar 

  9. Macheret, M. & Halazonetis, T. D. DNA replication stress as a hallmark of cancer. Annu. Rev. Pathol. 10, 425–448 (2015).

    CAS  PubMed  Google Scholar 

  10. Maier, J. et al. Deoxyribonucleic acid damage and spontaneous mutagenesis in the thyroid gland of rats and mice. Endocrinology 147, 3391–3397 (2006).

    CAS  PubMed  Google Scholar 

  11. Krohn, K., Maier, J. & Paschke, R. Mechanisms of disease: hydrogen peroxide, DNA damage and mutagenesis in the development of thyroid tumors. Nat. Clin. Pract. Endocrinol. Metab. 3, 713–720 (2007).

    CAS  PubMed  Google Scholar 

  12. Vizioli, M. G. et al. Evidence of oncogene-induced senescence in thyroid carcinogenesis. Endocr. Relat. Cancer 18, 743–757 (2011).

    CAS  PubMed  Google Scholar 

  13. Nakashima, M. et al. Foci formation of P53-binding protein 1 in thyroid tumors: activation of genomic instability during thyroid carcinogenesis. Int. J. Cancer 122, 1082–1088 (2008).

    CAS  PubMed  Google Scholar 

  14. Mussazhanova, Z. et al. Significance of p53-binding protein 1 (53BP1) expression in thyroid papillary microcarcinoma: association with BRAFV600E mutation status. Histopathology 63, 726–734 (2013).

    PubMed  Google Scholar 

  15. Weyemi, U. et al. ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence. Oncogene 31, 1117–1129 (2012).

    CAS  PubMed  Google Scholar 

  16. Ameziane-El-Hassani, R. et al. NADPH oxidase DUOX1 promotes long-term persistence of oxidative stress after an exposure to irradiation. Proc. Natl Acad. Sci. USA 112, 5051–5056 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lukosz, M. et al. Nuclear redox signaling. Antioxid. Redox Signal. 12, 713–742 (2010).

    CAS  PubMed  Google Scholar 

  18. Veal, E. A., Day, A. M. & Morgan, B. A. Hydrogen peroxide sensing and signaling. Mol. Cell 26, 1–14 (2007).

    CAS  PubMed  Google Scholar 

  19. Miller, E. W., Dickinson, B. C. & Chang, C. J. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc. Natl Acad. Sci. USA 107, 15681–15686 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Burdon, R. H., Alliangana, D. & Gill, V. Hydrogen peroxide and the proliferation of BHK-21 cells. Free Radic. Res. 23, 471–486 (1995).

    CAS  PubMed  Google Scholar 

  21. Meng, T. C., Fukada, T. & Tonks, N. K. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cell 9, 387–399 (2002).

    CAS  PubMed  Google Scholar 

  22. Boivin, B., Zhang, S., Arbiser, J. L., Zhang, Z. Y. & Tonks, N. K. A modified cysteinyl-labeling assay reveals reversible oxidation of protein tyrosine phosphatases in angiomyolipoma cells. Proc. Natl Acad. Sci. USA 105, 9959–9964 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Xanthoudakis, S. & Curran, T. Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity. EMBO J. 11, 653–665 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Verrastro, I., Tveen-Jensen, K., Woscholski, R., Spickett, C. M. & Pitt, A. R. Reversible oxidation of phosphatase and tensin homolog (PTEN) alters its interactions with signaling and regulatory proteins. Free Radic. Biol. Med. 90, 24–34 (2015).

    PubMed  Google Scholar 

  25. Hainaut, P. & Milner, J. Redox modulation of p53 conformation and sequence-specific DNA binding in vitro. Cancer Res. 53, 4469–4473 (1993).

    CAS  PubMed  Google Scholar 

  26. Abate, C., Patel, L., Rauscher, F. J., 3rd & Curran, T. Redox regulation of fos and jun DNA-binding activity in vitro. Science 249, 1157–1161 (1990).

    CAS  PubMed  Google Scholar 

  27. Segal, A. W. Absence of both cytochrome b−245 subunits from neutrophils in X-linked chronic granulomatous disease. Nature 326, 88–91 (1987).

    CAS  PubMed  Google Scholar 

  28. Parkos, C. A., Dinauer, M. C., Jesaitis, A. J., Orkin, S. H. & Curnutte, J. T. Absence of both the 91kD and 22kD subunits of human neutrophil cytochrome b in two genetic forms of chronic granulomatous disease. Blood 73, 1416–1420 (1989).

    CAS  PubMed  Google Scholar 

  29. Lipinski, S. et al. DUOX2-derived reactive oxygen species are effectors of NOD2-mediated antibacterial responses. J. Cell Sci. 122, 3522–3530 (2009).

    CAS  PubMed  Google Scholar 

  30. Kumar, S., Molina-Cruz, A., Gupta, L., Rodrigues, J. & Barillas-Mury, C. A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae. Science 327, 1644–1648 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Koff, J. L., Shao, M. X., Kim, S., Ueki, I. F. & Nadel, J. A. Pseudomonas lipopolysaccharide accelerates wound repair via activation of a novel epithelial cell signaling cascade. J. Immunol. 177, 8693–8700 (2006).

    CAS  PubMed  Google Scholar 

  32. Geiszt, M., Witta, J., Baffi, J., Lekstrom, K. & Leto, T. L. Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J. 17, 1502–1504 (2003).

    CAS  PubMed  Google Scholar 

  33. Boots, A. W. et al. ATP-mediated activation of the NADPH oxidase DUOX1 mediates airway epithelial responses to bacterial stimuli. J. Biol. Chem. 284, 17858–17867 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Szatrowski, T. P. & Nathan, C. F. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 51, 794–798 (1991).

    CAS  PubMed  Google Scholar 

  35. Aykin-Burns, N., Ahmad, I. M., Zhu, Y., Oberley, L. W. & Spitz, D. R. Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochem. J. 418, 29–37 (2009).

    CAS  PubMed  Google Scholar 

  36. Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870 (2005).

    CAS  PubMed  Google Scholar 

  37. Leusen, J. H. et al. A point mutation in gp91-phox of cytochrome b558 of the human NADPH oxidase leading to defective translocation of the cytosolic proteins p47-phox and p67-phox. J. Clin. Invest. 93, 2120–2126 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Grasberger, H. & Refetoff, S. Identification of the maturation factor for dual oxidase. Evolution of an eukaryotic operon equivalent. J. Biol. Chem. 281, 18269–18272 (2006).

    CAS  PubMed  Google Scholar 

  39. Pachucki, J., Wang, D., Christophe, D. & Miot, F. Structural and functional characterization of the two human ThOX/Duox genes and their 5′-flanking regions. Mol. Cell. Endocrinol. 214, 53–62 (2004).

    CAS  PubMed  Google Scholar 

  40. El Hassani, R. A. et al. Dual oxidase2 is expressed all along the digestive tract. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G933–G942 (2005).

    CAS  PubMed  Google Scholar 

  41. Luxen, S. et al. Heterodimerization controls localization of Duox–DuoxA NADPH oxidases in airway cells. J. Cell Sci. 122, 1238–1247 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Morand, S. et al. Duox maturation factors form cell surface complexes with Duox affecting the specificity of reactive oxygen species generation. FASEB J. 23, 1205–1218 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu, C., Linderholm, A., Grasberger, H. & Harper, R. W. Dual oxidase 2 bidirectional promoter polymorphisms confer differential immune responses in airway epithelia. Am. J. Respir. Cell. Mol. Biol. 47, 484–490 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ameziane-El-Hassani, R. et al. Dual oxidase-2 has an intrinsic Ca2+-dependent H2O2-generating activity. J. Biol. Chem. 280, 30046–30054 (2005).

    CAS  PubMed  Google Scholar 

  45. Ueyama, T. et al. The extracellular A-loop of dual oxidases affects the specificity of reactive oxygen species release. J. Biol. Chem. 290, 6495–6506 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Meitzler, J. L., Hinde, S., Banfi, B., Nauseef, W. M. & Ortiz de Montellano, P. R. Conserved cysteine residues provide a protein-protein interaction surface in dual oxidase (DUOX) proteins. J. Biol. Chem. 288, 7147–7157 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Fortunato, R. S. et al. Functional consequences of dual oxidase–thyroperoxidase interaction at the plasma membrane. J. Clin. Endocrinol. Metab. 95, 5403–5411 (2010).

    CAS  PubMed  Google Scholar 

  48. Carre, A. et al. When an intramolecular disulfide bridge governs the interaction of DUOX2 with its partner DUOXA2. Antioxid. Redox Signal. 23, 724–733 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Song, Y. et al. Association of duoxes with thyroid peroxidase and its regulation in thyrocytes. J. Clin. Endocrinol. Metab. 95, 375–382 (2010).

    CAS  PubMed  Google Scholar 

  50. Rigutto, S. et al. Activation of dual oxidases Duox1 and Duox2: differential regulation mediated by camp-dependent protein kinase and protein kinase C-dependent phosphorylation. J. Biol. Chem. 284, 6725–6734 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Allgeier, A. et al. The human thyrotropin receptor activates G-proteins Gs and Gq/11 . J. Biol. Chem. 269, 13733–13735 (1994).

    CAS  PubMed  Google Scholar 

  52. Knobel, M. & Medeiros-Neto, G. An outline of inherited disorders of the thyroid hormone generating system. Thyroid 13, 771–801 (2003).

    CAS  PubMed  Google Scholar 

  53. Laurent, E. et al. Unlike thyrotropin, thyroid-stimulating antibodies do not activate phospholipase C in human thyroid slices. J. Clin. Invest. 87, 1634–1642 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ledent, C., Dumont, J. E., Vassart, G. & Parmentier, M. Thyroid expression of an A2 adenosine receptor transgene induces thyroid hyperplasia and hyperthyroidism. EMBO J. 11, 537–542 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ledent, C. et al. Costimulation of adenylyl cyclase and phospholipase C by a mutant α1B-adrenergic receptor transgene promotes malignant transformation of thyroid follicular cells. Endocrinology 138, 369–378 (1997).

    CAS  PubMed  Google Scholar 

  56. Fragu, P. & Nataf, B. M. Human thyroid peroxidase activity in benign and malign thyroid disorders. J. Clin. Endocrinol. Metab. 45, 1089–1096 (1977).

    CAS  PubMed  Google Scholar 

  57. Cardoso, L. C. et al. Ca2+/nicotinamide adenine dinucleotide phosphate-dependent H2O2 generation is inhibited by iodide in human thyroids. J. Clin. Endocrinol. Metab. 86, 4339–4343 (2001).

    CAS  PubMed  Google Scholar 

  58. Corvilain, B., Collyn, L., van Sande, J. & Dumont, J. E. Stimulation by iodide of H2O2 generation in thyroid slices from several species. Am. J. Physiol. Endocrinol. Metab. 278, E692–E699 (2000).

    CAS  PubMed  Google Scholar 

  59. Morand, S. et al. Effect of iodide on nicotinamide adenine dinucleotide phosphate oxidase activity and Duox2 protein expression in isolated porcine thyroid follicles. Endocrinology 144, 1241–1248 (2003).

    CAS  PubMed  Google Scholar 

  60. Ambasta, R. K. et al. Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase. J. Biol. Chem. 279, 45935–45941 (2004).

    CAS  PubMed  Google Scholar 

  61. Lyle, A. N. et al. Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circ. Res. 105, 249–259 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sedeek, M., Hebert, R. L., Kennedy, C. R., Burns, K. D. & Touyz, R. M. Molecular mechanisms of hypertension: role of Nox family NADPH oxidases. Curr. Opin. Nephrol. Hypertens. 18, 122–127 (2009).

    CAS  PubMed  Google Scholar 

  63. Gorin, Y. et al. Nox4 mediates angiotensin II-induced activation of Akt/protein kinase B in mesangial cells. Am. J. Physiol. Renal Physiol. 285, F219–F229 (2003).

    CAS  PubMed  Google Scholar 

  64. Takac, I. et al. The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J. Biol. Chem. 286, 13304–13313 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Block, K., Gorin, Y. & Abboud, H. E. Subcellular localization of Nox4 and regulation in diabetes. Proc. Natl Acad. Sci. USA 106, 14385–14390 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee, W. J. et al. Nε-carboxymethyllysine-mediated endoplasmic reticulum stress promotes endothelial cell injury through Nox4/MKP-3 interaction. Free Radic. Biol. Med. 74, 294–306 (2014).

    CAS  PubMed  Google Scholar 

  67. Spencer, N. Y. et al. Control of hepatic nuclear superoxide production by glucose 6-phosphate dehydrogenase and NADPH oxidase-4. J. Biol. Chem. 286, 8977–8987 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Szinnai, G. Clinical genetics of congenital hypothyroidism. Endocr. Dev. 26, 60–78 (2014).

    CAS  PubMed  Google Scholar 

  69. Moreno, J. C. et al. Inactivating mutations in the gene for thyroid oxidase 2 (THOX2) and congenital hypothyroidism. N. Engl. J. Med. 347, 95–102 (2002).

    CAS  PubMed  Google Scholar 

  70. Narumi, S., Muroya, K., Asakura, Y., Aachi, M. & Hasegawa, T. Molecular basis of thyroid dyshormonogenesis: genetic screening in population-based Japanese patients. J. Clin. Endocrinol. Metab. 96, E1838–E1842 (2011).

    CAS  PubMed  Google Scholar 

  71. Zamproni, I. et al. Biallelic inactivation of the dual oxidase maturation factor 2 (DUOXA2) gene as a novel cause of congenital hypothyroidism. J. Clin. Endocrinol. Metab. 93, 605–610 (2008).

    CAS  PubMed  Google Scholar 

  72. Donko, A. et al. Urothelial cells produce hydrogen peroxide through the activation of Duox1. Free Radic. Biol. Med. 49, 2040–2048 (2010).

    CAS  PubMed  Google Scholar 

  73. Johnson, K. R. et al. Congenital hypothyroidism, dwarfism, and hearing impairment caused by a missense mutation in the mouse dual oxidase 2 gene, Duox2. Mol. Endocrinol. 21, 1593–1602 (2007).

    CAS  PubMed  Google Scholar 

  74. Grasberger, H. et al. Mice deficient in dual oxidase maturation factors are severely hypothyroid. Mol. Endocrinol. 26, 481–492 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Duthoit, C. et al. Hydrogen peroxide-induced production of a 40 kDa immunoreactive thyroglobulin fragment in human thyroid cells: the onset of thyroid autoimmunity? Biochem. J. 360, 557–562 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. El Hassani, R. A. et al. Antigenicity and immunogenicity of the C-terminal peptide of human thyroglobulin. Peptides 25, 1021–1029 (2004).

    CAS  PubMed  Google Scholar 

  77. Gerard, A. C., Many, M. C., Daumerie, C., Knoops, B. & Colin, I. M. Peroxiredoxin 5 expression in the human thyroid gland. Thyroid 15, 205–209 (2005).

    CAS  PubMed  Google Scholar 

  78. Poncin, S. et al. N-acetylcysteine and 15 deoxy-Δ12,14-prostaglandin J2 exert a protective effect against autoimmune thyroid destruction in vivo but not against interleukin-1α/interferon γ-induced inhibitory effects in thyrocytes in vitro. Am. J. Pathol. 177, 219–228 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Raad, H., Eskalli, Z., Corvilain, B., Miot, F. & De Deken, X. Thyroid hydrogen peroxide production is enhanced by the Th2 cytokines, IL-4 and IL-13, through increased expression of the dual oxidase 2 and its maturation factor DUOXA2. Free Radic. Biol. Med. 56, 216–225 (2013).

    CAS  PubMed  Google Scholar 

  80. Marique, L. et al. The expression of dual oxidase, thyroid peroxidase, and caveolin-1 differs according to the type of immune response (TH1/TH2) involved in thyroid autoimmune disorders. J. Clin. Endocrinol. Metab. 99, 1722–1732 (2014).

    CAS  PubMed  Google Scholar 

  81. Colotta, F., Allavena, P., Sica, A., Garlanda, C. & Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30, 1073–1081 (2009).

    CAS  PubMed  Google Scholar 

  82. Guarino, V., Castellone, M. D., Avilla, E. & Melillo, R. M. Thyroid cancer and inflammation. Mol. Cell. Endocrinol. 321, 94–102 (2010).

    CAS  PubMed  Google Scholar 

  83. Rhoden, K. J. et al. RET/papillary thyroid cancer rearrangement in nonneoplastic thyrocytes: follicular cells of Hashimoto's thyroiditis share low-level recombination events with a subset of papillary carcinoma. J. Clin. Endocrinol. Metab. 91, 2414–2423 (2006).

    CAS  PubMed  Google Scholar 

  84. Nikiforov, Y. E. & Nikiforova, M. N. Molecular genetics and diagnosis of thyroid cancer. Nat. Rev. Endocrinol. 7, 569–580 (2011).

    CAS  PubMed  Google Scholar 

  85. Ameziane-El-Hassani, R. et al. Role of H2O2 in RET/PTC1 chromosomal rearrangement produced by ionizing radiation in human thyroid cells. Cancer Res. 70, 4123–4132 (2010).

    CAS  PubMed  Google Scholar 

  86. Driessens, N. et al. Hydrogen peroxide induces DNA single- and double-strand breaks in thyroid cells and is therefore a potential mutagen for this organ. Endocr. Relat. Cancer 16, 845–856 (2009).

    CAS  PubMed  Google Scholar 

  87. Sedelnikova, O. A. et al. Role of oxidatively induced DNA lesions in human pathogenesis. Mutat. Res. 704, 152–159 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Karger, S. et al. Distinct pattern of oxidative DNA damage and DNA repair in follicular thyroid tumours. J. Mol. Endocrinol. 48, 193–202 (2012).

    CAS  PubMed  Google Scholar 

  89. Cancer Genome Atlas Research, N. Integrated genomic characterization of papillary thyroid carcinoma. Cell 159, 676–690 (2014).

    Google Scholar 

  90. Li, C., Xiang, X. & Zhou, Y. No association between XRCC1 genetic polymorphisms and differentiated thyroid carcinoma risk: a meta-analysis. Mol. Biol. Rep. 41, 7613–7621 (2014).

    CAS  PubMed  Google Scholar 

  91. Wang, C. & Ai, Z. Association of XRCC1 polymorphisms with thyroid cancer risk. Tumour Biol. 35, 4791–4797 (2014).

    CAS  PubMed  Google Scholar 

  92. Berquist, B. R. & Wilson, D. M. 3rd Pathways for repairing and tolerating the spectrum of oxidative DNA lesions. Cancer Lett. 327, 61–72 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Richardson, C. & Jasin, M. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405, 697–700 (2000).

    CAS  PubMed  Google Scholar 

  94. Viglietto, G. et al. RET/PTC oncogene activation is an early event in thyroid carcinogenesis. Oncogene 11, 1207–1210 (1995).

    CAS  PubMed  Google Scholar 

  95. Versteyhe, S. et al. Comparative analysis of the thyrocytes and T cells: responses to H2O2 and radiation reveals an H2O2-induced antioxidant transcriptional program in thyrocytes. J. Clin. Endocrinol. Metab. 98, E1645–E1654 (2013).

    CAS  PubMed  Google Scholar 

  96. Bhatia, S. & Sklar, C. Second cancers in survivors of childhood cancer. Nat. Rev. Cancer 2, 124–132 (2002).

    PubMed  Google Scholar 

  97. Schneider, A. B. & Sarne, D. H. Long-term risks for thyroid cancer and other neoplasms after exposure to radiation. Nat. Clin. Pract. Endocrinol. Metab. 1, 82–91 (2005).

    PubMed  Google Scholar 

  98. Azzam, E. I., Jay-Gerin, J. P. & Pain, D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 327, 48–60 (2012).

    CAS  PubMed  Google Scholar 

  99. Roy, K., Kodama, S., Suzuki, K., Fukase, K. & Watanabe, M. Hypoxia relieves X-ray-induced delayed effects in normal human embryo cells. Radiat. Res. 154, 659–666 (2000).

    CAS  PubMed  Google Scholar 

  100. Suzuki, K., Ojima, M., Kodama, S. & Watanabe, M. Radiation-induced DNA damage and delayed induced genomic instability. Oncogene 22, 6988–6993 (2003).

    CAS  PubMed  Google Scholar 

  101. Lorimore, S. A., Coates, P. J. & Wright, E. G. Radiation-induced genomic instability and bystander effects: inter-related nontargeted effects of exposure to ionizing radiation. Oncogene 22, 7058–7069 (2003).

    CAS  PubMed  Google Scholar 

  102. Cleaver, J. E. et al. Mitochondrial reactive oxygen species are scavenged by Cockayne syndrome B protein in human fibroblasts without nuclear DNA damage. Proc. Natl Acad. Sci. USA 111, 13487–13492 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Strengert, M. et al. Mucosal reactive oxygen species are required for antiviral response: role of Duox in influenza a virus infection. Antioxid. Redox Signal. 20, 2695–2709 (2014).

    CAS  PubMed  Google Scholar 

  104. Detours, V. et al. Genome-wide gene expression profiling suggests distinct radiation susceptibilities in sporadic and post-Chernobyl papillary thyroid cancers. Br. J. Cancer 97, 818–825 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Dom, G. et al. A gene expression signature distinguishes normal tissues of sporadic and radiation-induced papillary thyroid carcinomas. Br. J. Cancer 107, 994–1000 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Lacroix, L. et al. Expression of nicotinamide adenine dinucleotide phosphate oxidase flavoprotein DUOX genes and proteins in human papillary and follicular thyroid carcinomas. Thyroid 11, 1017–1023 (2001).

    CAS  PubMed  Google Scholar 

  107. Ling, Q. et al. Epigenetic silencing of dual oxidase 1 by promoter hypermethylation in human hepatocellular carcinoma. Am. J. Cancer Res. 4, 508–517 (2014).

    PubMed  PubMed Central  Google Scholar 

  108. Luxen, S., Belinsky, S. A. & Knaus, U. G. Silencing of DUOX NADPH oxidases by promoter hypermethylation in lung cancer. Cancer Res. 68, 1037–1045 (2008).

    CAS  PubMed  Google Scholar 

  109. Wu, Y. et al. Functional activity and tumor-specific expression of dual oxidase 2 in pancreatic cancer cells and human malignancies characterized with a novel monoclonal antibody. Int. J. Oncol. 42, 1229–1238 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ramsey, M. R. & Sharpless, N. E. ROS as a tumour suppressor? Nat. Cell Biol. 8, 1213–1215 (2006).

    CAS  PubMed  Google Scholar 

  111. Bartkova, J. et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444, 633–637 (2006).

    CAS  PubMed  Google Scholar 

  112. Lee, A. C. et al. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem. 274, 7936–7940 (1999).

    CAS  PubMed  Google Scholar 

  113. Vafa, O. et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol. Cell 9, 1031–1044 (2002).

    CAS  PubMed  Google Scholar 

  114. Zeman, M. K. & Cimprich, K. A. Causes and consequences of replication stress. Nat. Cell Biol. 16, 2–9 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Ogrunc, M. et al. Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell Death Differ. 21, 998–1012 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Xu, B. et al. Oxidative stress preferentially induces a subtype of micronuclei and mediates the genomic instability caused by p53 dysfunction. Mutat. Res. 770, 1–8 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Mishra, P. K. et al. Mitochondrial oxidative stress-induced epigenetic modifications in pancreatic epithelial cells. Int. J. Toxicol. 33, 116–129 (2014).

    CAS  PubMed  Google Scholar 

  118. O'Hagan, H. M. et al. Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands. Cancer Cell 20, 606–619 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Miot, F., Dupuy, C., Dumont, J. & Rousset, B. Endotext Ch. 2 (eds Groot, L. J. et al.) (South Dartmouth, 2000)

    Google Scholar 

  120. Hara-Chikuma, M. et al. Aquaporin-3- mediated hydrogen peroxide transport is required for NF-κB signalling in keratinocytes and development of psoriasis. Nat. Commun. 6, 7454 (2015).

    CAS  PubMed  Google Scholar 

  121. Aird, K. M. et al. Suppression of nucleotide metabolism underlies the establishment and maintenance of oncogene-induced senescence. Cell Rep. 3, 1252–1265 (2013).

    CAS  PubMed  Google Scholar 

  122. Bester, A. C. et al. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145, 435–446 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Graindorge, D. et al. Singlet oxygen-mediated oxidation during UVA radiation alters the dynamic of genomic DNA replication. PLoS ONE 10, e0140645 (2015).

    PubMed  PubMed Central  Google Scholar 

  124. Gandhi, M., Dillon, L. W., Pramanik, S., Nikiforov, Y. E. & Wang, Y. H. DNA breaks at fragile sites generate oncogenic RET/PTC rearrangements in human thyroid cells. Oncogene 29, 2272–2280 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Hirakawa, S., Saito, R., Ohara, H., Okuyama, R. & Aiba, S. Dual oxidase 1 induced by Th2 cytokines promotes STAT6 phosphorylation via oxidative inactivation of protein tyrosine phosphatase 1B in human epidermal keratinocytes. J. Immunol. 186, 4762–4770 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of grants from Electricité de France (C.D./RB2015-09), Association pour la Recherche sur le Cancer (C.D./397161), Institut National du Cancer (C.D./2013-1-PLBIO-14-CNRS), Ligue Contre le Cancer (C.D./RS14/75-51), and Programmes Internationaux de Coopération Scientifique: CNRS-France/CNRST-Maroc (C.D. and R.A.-E-H/Afrique-Moyen Orient 2013).

Author information

Authors and Affiliations

Authors

Contributions

R.A.-E.-H. and C.D. researched data for the article and wrote the manuscript. All authors contributed to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Corinne Dupuy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ameziane-El-Hassani, R., Schlumberger, M. & Dupuy, C. NADPH oxidases: new actors in thyroid cancer?. Nat Rev Endocrinol 12, 485–494 (2016). https://doi.org/10.1038/nrendo.2016.64

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2016.64

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer