Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advancing schizophrenia drug discovery: optimizing rodent models to bridge the translational gap

Key Points

  • Schizophrenia is a common and extremely debilitating neuropsychiatric disease, yet — arguably — the search for improved treatments has not advanced substantially over the past 20 years.

  • This lack of success may reflect the widespread use of simple assays for drug testing (with their seductively high throughput) in oversimplistic models of the disease.

  • The knowledge of the genetic and environmental causes of schizophrenia has advanced substantially in recent years, as has our ability to detect altered aspects of rodent behaviour that share features with those that are characteristic of the human disease as well as the neural systems that underpin these shared features.

  • In this Review, we advocate that the use of disease models that are based on disease mechanisms — in conjunction with assay systems with end points that can be translated directly into the clinic — will accelerate the drug discovery process.

  • Close integration of preclinical and clinical programmes is essential for translational neuroscience strategies to be successful.

Abstract

Although our knowledge of the pathophysiology of schizophrenia has increased, treatments for this devastating illness remain inadequate. Here, we critically assess rodent models and behavioural end points used in schizophrenia drug discovery and discuss why these have not led to improved treatments. We provide a perspective on how new models, based on recent advances in the understanding of the genetics and neural circuitry underlying schizophrenia, can bridge the translational gap and lead to the development of more effective drugs. We conclude that previous serendipitous approaches should be replaced with rational strategies for drug discovery in integrated preclinical and clinical programmes. Validation of drug targets in disease-based models that are integrated with translationally relevant end point assessments will reduce the current attrition rate in schizophrenia drug discovery and ultimately lead to therapies that tackle the disease process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genes implicated in schizophrenia converging at the synapse and nucleus.
Figure 2: Dysfunctional connectivity in schizophrenia.

Similar content being viewed by others

References

  1. van Os, J., Kenis, G. & Rutten, B. P. F. The environment and schizophrenia. Nature 468, 203–212 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Insel, T. R. Rethinking schizophrenia. Nature 468, 187–193 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Lieberman, J. A., Miyamoto, S., Duncan, G. E. & Marx, C. E. Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol. Psychiatry 10, 79–104 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Laruelle, M. et al. Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc. Natl Acad. Sci. USA 93, 9235–9240 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Howes, O. D. et al. Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch. Gen. Psychiatry 66, 13–20 (2009).

    Article  PubMed  Google Scholar 

  6. Kapur, S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am. J. Psychiatry 160, 13–23 (2003).

    Article  PubMed  Google Scholar 

  7. Lieberman. J. A. & Stroup, T. S. The NIMH-CATIE Schizophrenia Study: what did we learn? Am. J. Psychiatry. 168, 770–775 (2011).

    Article  PubMed  Google Scholar 

  8. Nasrallah, H. A. Atypical antipsychotic-induced metabolic side effects: insights from receptor-binding profiles. Mol. Psychiatry 13, 27–35 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Meltzer, H. Y. What's atypical about atypical antipsychotic drugs? Curr. Opin. Pharmacol. 4, 53–57 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Green, M. F., Kern, R. S. & Heaton, R. K. Longitudinal studies of cognition and functional outcome in schizophrenia: implications for MATRICS. Schizophr. Res. 72, 41–51 (2004).

    Article  PubMed  Google Scholar 

  11. Millan, M. J. et al. Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nature Rev. Drug Discov. 11, 141–168 (2012).

    Article  CAS  Google Scholar 

  12. Krystal, J. H. et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 51, 199–214 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Javitt, D. C. & Zukin, S. R. Recent advances in the phencyclidine model of schizophrenia. Am. J. Psychiatry 148, 1301–1308 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Paz, R. D., Tardito, S., Atzori, M. & Tseng, K. Y. Glutamatergic dysfunction in schizophrenia: from basic neuroscience to clinical psychopharmacology. Eur. Neuropsychopharmacol. 18, 773–786 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Adams, B. W. & Moghaddam, B. Effect of clozapine, haloperidol, or M100907 on phencyclidine-activated glutamate efflux in the prefrontal cortex. Biol. Psychiatry 50, 750–757 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Li, N. et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329, 959–964 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nudmamud-Thanoi S., Piyabhan P., Harte M. K., Cahir M. & Reynolds G. P. Deficits of neuronal glutamatergic markers in the caudate nucleus in schizophrenia. J. Neural Transm. Suppl. 72, 281–285 (2007).

    Article  CAS  Google Scholar 

  18. Harrison, P. J., Law, A. J. & Eastwood, S. L. Glutamate receptors and transporters in the hippocampus in schizophrenia. Ann. NY Acad. Sci. 1003, 94–101 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Harrison, P. J. & Eastwood, S. L. Vesicular glutamate transporter (VGLUT) gene expression provides further evidence for glutamatergic synaptic pathology in the hippocampus in schizophrenia. Schizophr. Res. 60, S62–S63 (2003).

    Article  Google Scholar 

  20. Kristiansen, L. V., Huerta, I., Beneyto, M. & Meador-Woodruff, J. H. NMDA receptors and schizophrenia. Curr. Opin. Pharmacol. 7, 48–55 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Kirov, G. et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol. Psychiatry 17, 142–153 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Schwartz, T. L., Sachdeva, S. & Stahl, S. M. 'Genetic data supporting the NMDA glutamate receptor hypothesis for schizophrenia'. Curr. Pharm. Des. 18, 1580–1592 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Large, C. H. Do NMDA receptor antagonist models of schizophrenia predict the clinical efficacy of antipsychotic drugs? J. Psychopharmacol. 21, 283–301 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Hagan, J. J. & Jones, D. N. C. Predicting drug efficacy for cognitive deficits in schizophrenia. Schizophr. Bull. 31, 830–853 (2005).

    Article  PubMed  Google Scholar 

  25. Heekeren, K. et al. Prepulse inhibition of the startle reflex and its attentional modulation in the human S-ketamine and N,N-dimethyltryptamine (DMT) models of psychosis. J. Psychopharmacol. 21, 312–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Sams-Dodd, F. Effects of dopamine agonists and antagonists on PCP-induced stereotyped behaviour and social isolation in the rat social interaction test. Psychopharmacology 135, 182–193 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Young, J. W., Powell, S. B., Risbrough, V., Marston, H. M. & Geyer, M. A. Using the MATRICS to guide development of a preclinical cognitive test battery for research in schizophrenia. Pharmacol. Ther. 122, 150–202 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thomson, D. M., Mcvie, A., Morris, B. J. & Pratt, J. A. Dissociation of acute and chronic intermittent phencyclidine-induced performance deficits in the 5-choice serial reaction time task: influence of clozapine. Psychopharmacology 213, 681–695 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Amitai, N. & Semenova, S. & Markou, A. Cognitive-disruptive effects of the psychotomimetic phencyclidine and attenuation by atypical antipsychotic medications in rats. Psychopharmacology 193, 521–537 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Thomsen, M. S., Hansen, H. H., Timmerman, D. B. & Mikkelsen, J. D. Cognitive improvement by activation of α7 nicotinic acetylcholine receptors: from animal models to human pathophysiology. Curr. Pharm. Des. 16, 323–343 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Martin, L. F., Kem, W. R. & Freedman, R. α-7 nicotinic receptor agonists: potential new candidates for the treatment of schizophrenia. Psychopharmacology 174, 54–64 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Freedman, R. et al. Initial Phase 2 trial of a nicotinic agonist in schizophrenia. Am. J. Psychiatry 165, 1040–1047 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Morein-Zamir, S., Turner, D. C. & Sahakian, B. J. A review of the effects of modafinil on cognition in schizophrenia. Schizophr. Bull. 33, 1298–1306 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Scoriels, L., Barnett, J. H., Soma, P. K., Sahakian, B. J. & Jones, P. B. Effects of modafinil on cognitive functions in first episode psychosis. Psychopharmacology 220, 249–258 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Goetghebeur, P. & Dias, R. Comparison of haloperidol, risperidone, sertindole, and modafinil to reverse an attentional set-shifting impairment following subchronic PCP administration in the rat — a back translational study. Psychopharmacology 202, 287–293 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Pratt, J. A., Dawson, N., Winchester, C. L., Thomson, D. M. & Morris, B. J. Distinct aspects of prefrontal cortex dysfunction in schizophrenia modelled by acute and repeated PCP treatment: impact of modafinil. Schizophr. Res. 117, 509 (2010).

    Article  Google Scholar 

  37. Rodefer, J. S., Murphy, E. R. & Baxter, M. G. PDE10A inhibition reverses subchronic PCP-induced deficits in attentional set-shifting in rats. Eur. J. Neurosci. 21, 1070–1076 (2005).

    Article  PubMed  Google Scholar 

  38. Hatcher, P. D. et al. 5-HT6 receptor antagonists improve performance in an attentional set shifting task in rats. Psychopharmacology 181, 253–259 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Morris, B. J., Cochran, S. M. & Pratt, J. A. PCP: from pharmacology to modelling schizophrenia. Curr. Opin. Pharmacol. 5, 101–106 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Gonzalez-Burgos, G. & Lewis, D. A. NMDA receptor hypofunction, parvalbumin-positive neurons and cortical γ oscillations in schizophrenia. Schizophr. Bull. 21 Feb 2012 (doi:10.1093/schbul/sbs010).

  41. Lewis, D. A., Hashimoto, T. & Volk, D. W. Cortical inhibitory neurons and schizophrenia. Nature Rev. Neurosci. 6, 312–324 (2005).

    Article  CAS  Google Scholar 

  42. Benes, F. M. & Berretta, S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25, 1–27 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Ellenbroek, B. A. & Cools, A. R. The neurodevelopment hypothesis of schizophrenia: clinical evidence and animal models. Neurosci. Res. Commun. 22, 127–136 (1998).

    Article  Google Scholar 

  44. Hayashi-Takagi, A. & Sawa, A. Disturbed synaptic connectivity in schizophrenia: convergence of genetic risk factors during neurodevelopment. Brain Res. Bull. 83, 140–146 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Charych, E. I., Liu, F., Moss, S. J. & Brandon, N. J. GABAA receptors and their associated proteins: implications in the etiology and treatment of schizophrenia and related disorders. Neuropharmacology 57, 481–495 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim, J. Y. et al. Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell 148, 1051–1064 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Atack, J. R. GABAA receptor α2/α3 subtype-selective modulators as potential nonsedating anxiolytics. Curr. Top. Behav. Neurosci. 2, 331–360 (2011).

    Article  Google Scholar 

  48. Brown, A. S. The environment and susceptibility to schizophrenia. Prog. Neurobiol. 93, 23–58 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Tseng, K. Y., Chambers, R. A. & Lipska, B. K. The neonatal ventral hippocampal lesion as a heuristic neurodevelopmental model of schizophrenia. Behav. Brain Res. 204, 295–305 (2009).

    Article  PubMed  Google Scholar 

  50. SamsDodd, F., Lipska, B. K. & Weinberger, D. R. Neonatal lesions of the rat ventral hippocampus result in hyperlocomotion and deficits in social behaviour in adulthood. Psychopharmacology 132, 303–310 (1997).

    Article  CAS  Google Scholar 

  51. Becker, A., Grecksch, G., Bernstein, H. G., Hollt, V. & Bogerts, B. Social behaviour in rats lesioned with ibotenic acid in the hippocampus: quantitative and qualitative analysis. Psychopharmacology 144, 333–338 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Le Pen, G. et al. Impact of chronic antipsychotic treatments on hypersensitivity to MK-801 in a neurodevelopmental model of schizophrenia. Eur. Neuropsychopharmacol. 17, S480–S481 (2007).

    Article  Google Scholar 

  53. Lodge, D. J. & Grace, A. A. Gestational methylazoxymethanol acetate administration: a developmental disruption model of schizophrenia. Behav. Brain Res. 204, 306–312 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fone, K. C. F. & Porkess, M. V. Behavioural and neurochemical effects of post-weaning social isolation in rodents — relevance to developmental neuropsychiatric disorders. Neurosci. Biobehav. Rev. 32, 1087–1102 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Bitanihirwe, B. K. Y., Peleg-Raibstein, D., Mouttet, F., Feldon, J. & Meyer, U. Late prenatal immune activation in mice leads to behavioral abnormalities relevant to the negative symptoms of schizophrenia. Schizophr. Res. 117, 273–274 (2010).

    Article  Google Scholar 

  56. Ozawa, K. et al. Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia. Biol. Psychiatry 59, 546–554 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Cardno, A. G., Rijsdijk, F. V., Gottesman, I. I. & McGuffin, P. Heritability estimates for psychotic symptom dimensions in twins with psychotic disorders. Am. J. Med. Genet. B Neuropsychiatr. Genet. 156B, 89–98 (2011).

    PubMed  Google Scholar 

  58. Mitchell, K. J. What is complex about complex disorders? Genome Biol. 13, 237 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Purcell, S. M. et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748–752 (2009).

    CAS  PubMed  Google Scholar 

  60. Ayhan, Y., Sawa, A., Ross, C. A. & Pletnikov, M. V. Animal models of gene–environment interactions in schizophrenia. Behav. Brain Res. 204, 274–281 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Arguello, P. A. & Gogos, J. A. Genetic and cognitive windows into circuit mechanisms of psychiatric disease. Trends Neurosci. 35, 3–13 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Allen, N. C. et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nature Genet. 40, 827–834 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Swerdlow, N. R., Geyer, M. A. & Braff, D. L. Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology 156, 194–215 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. van den Buuse, M. Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophr. Bull. 36, 246–270 (2010).

    Article  PubMed  Google Scholar 

  65. Kellendonk, C. et al. Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron 49, 603–615 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Fitzgerald, P. J. et al. Does gene deletion of AMPA GluA1 phenocopy features of schizoaffective disorder? Neurobiol. Dis. 40, 608–621 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bannerman, D. M. et al. NMDA receptor subunit NR2A is required for rapidly acquired spatial working memory but not incremental spatial reference memory. J. Neurosci. 28, 3623–3630 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Inta, D., Monyer, H., Sprengel, R., Meyer-Lindenberg, A. & Gass, P. Mice with genetically altered glutamate receptors as models of schizophrenia: a comprehensive review. Neurosci. Biobehav. Rev. 34, 285–294 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Clapcote, S. J. et al. Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 54, 387–402 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Lipina, T. V. et al. Genetic and pharmacological evidence for schizophrenia-related Disc1 interaction with GSK-3. Synapse 65, 234–248 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Boulay, D. et al. Comparative phenotype in behavioral models related to schizophrenia: Disc1 (L100P) mutant, NMDA Nr1neo−/− hypomorphic and DAT−/− mice. Program No. 766.1 2010 Neuroscience Meeting Planner (San Diego, California; Society for Neuroscience, 2010).

    Google Scholar 

  72. Shoji, H. et al. Comprehensive behavioral analysis of ENU-induced Disc1-Q131L and -L100P mutant mice. BMC Res. Notes 5, 108 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shen, S. et al. Schizophrenia-related neural and behavioral phenotypes in transgenic mice expressing truncated Disc1. J. Neurosci. 28, 10893–10904 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kvajo, M. et al. Altered axonal targeting and short-term plasticity in the hippocampus of Disc1 mutant mice. Proc. Natl Acad. Sci. USA 108, E1349–E1358 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Gainetdinov, R. R. Dopamine transporter mutant mice in experimental neuropharmacology. Naunyn Schmiedebergs Arch. Pharmacol. 377, 301–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Powell, S. B., Young, J. W., Ong, J. C., Caron, M. G. & Geyer, M. A. Atypical antipsychotics clozapine and quetiapine attenuate prepulse inhibition deficits in dopamine transporter knockout mice. Behav. Pharmacol. 19, 562–565 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wen, L. et al. Neuregulin 1 regulates pyramidal neuron activity via ErbB4 in parvalbumin-positive interneurons. Proc. Natl Acad. Sci. USA 107, 1211–1216 (2010).

    Article  PubMed  Google Scholar 

  78. Simpson, E. H. et al. Pharmacologic rescue of motivational deficit in an animal model of the negative symptoms of schizophrenia. Biol. Psychiatry 69, 928–935 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pearlson, G. D. & Calhoun, V. D. Convergent approaches for defining functional imaging endophenotypes in schizophrenia. Front. Hum. Neurosci. 3, 37 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Braff, D. L., Freedman, R., Schork, N. J. & Gottesman, I. I. Deconstructing schizophrenia: an overview of the use of endophenotypes in order to understand a complex disorder. Schizophr. Bull. 33, 21–32 (2007).

    Article  PubMed  Google Scholar 

  81. Callicott, J. H. et al. Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. Am. J. Psychiatry 160, 2209–2215 (2003).

    Article  PubMed  Google Scholar 

  82. Potkin, S. G. et al. Working memory and DLPFC inefficiency in schizophrenia: the FBIRN study. Schizophr. Bull. 35, 19–31 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. McIntosh, A. R., Nyberg, L., Bookstein, F. L. & Tulving, E. Differential functional connectivity of prefrontal and medial temporal cortices during episodic memory retrieval. Hum. Brain Mapp. 5, 323–327 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Friston, K. J. & Frith, C. D. Schizophrenia: a disconnection syndrome. Clin. Neurosci. 3, 89–97 (1995).

    CAS  PubMed  Google Scholar 

  85. Meyer-Lindenberg, A. et al. Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. Am. J. Psychiatry 158, 1809–1817 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Mcintosh, A. R. & Gonzalezlima, F. Structural modeling of functional neural pathways mapped with 2-deoxyglucose: effects of acoustic startle habituation on the auditory-system. Brain Res. 547, 295–302 (1991).

    Article  CAS  PubMed  Google Scholar 

  87. Dawson, N. et al. Modafinil reverses phencyclidine-induced deficits in cognitive flexibility, cerebral metabolism, and functional brain connectivity. Schizophr. Bull. 38, 457–474 (2012).

    Article  PubMed  Google Scholar 

  88. Cochran, S. M. et al. Induction of metabolic hypofunction and neurochemical deficits after chronic intermittent exposure to phencyclidine: differential modulation by antipsychotic drugs. Neuropsychopharmacology 28, 265–275 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Hunter, M., Ganesan, V. S. & Spence, S. A. Effects of modafinil on prefrontal function and voluntary behaviour in chronic schizophrenia. Schizophr. Bull. 31, 511–512 (2005).

    Google Scholar 

  90. Spence, S. A., Green, R. D., Wilkinson, I. D. & Hunter, M. D. Modafinil modulates anterior cingulate function in chronic schizophrenia. Br. J. Psychiatry 187, 55–61 (2005).

    Article  PubMed  Google Scholar 

  91. Minzenberg, M. J. et al. Response to comment on “modafinil shifts human locus coeruleus to low-tonic, high-phasic activity during functional MRI”. Science 328, 309 (2010).

    Article  CAS  Google Scholar 

  92. Pratt, J. A., Winchester, C., Egerton, A., Cochran, S. M. & Morris, B. J. Modelling prefrontal cortex deficits in schizophrenia: implications for treatment. Br. J. Pharmacol. 153, S465–S470 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Egerton, A. et al. Subchronic and chronic PCP treatment produces temporally distinct deficits in attentional set shifting and prepulse inhibition in rats. Psychopharmacology 198, 37–49 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Rev. Neurosci. 10, 186–198 (2009).

    Article  CAS  Google Scholar 

  95. Bullmore, E. et al. Hierarchical organization of human cortical networks in health and schizophrenia. J. Neurosci. 28, 9239–9248 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Micheloyannis, S. et al. Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr. Res. 87, 60–66 (2006).

    Article  PubMed  Google Scholar 

  97. Liu, Y. et al. Disrupted small-world networks in schizophrenia. Brain 131, 945–961 (2008).

    Article  PubMed  Google Scholar 

  98. Dawson, N., Higham, D., Pratt, J. & Morris, B. Alterations in functional brain network structure induced by subchronic phencyclidine (PCP) treatment parallel those seen in schizophrenia. Schizophr. Res. 117, 234–235 (2010).

    Article  Google Scholar 

  99. Fuchs, E. C. et al. Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron 53, 591–604 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Sohal, V. S. Insights into cortical oscillations arising from optogenetic studies. Biol. Psychiatry 71, 1039–1045 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wulff, P. et al. Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons. Proc. Natl Acad. Sci. USA 106, 3561–3566 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Haenschel, C. et al. Cortical oscillatory activity is critical for working memory as revealed by deficits in early-onset schizophrenia. J. Neurosci. 29, 9481–9489 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Uhlhaas, P. J. et al. Impaired γ-band synchrony during dysfunctional gestalt perception in schizophrenia. Biol. Psychiatry 59, 5S (2006).

    Google Scholar 

  104. Jaaro-Peled, H., Ayhan, Y., Pletnikov, M. V. & Sawa, A. Review of pathological hallmarks of schizophrenia: comparison of genetic models with patients and nongenetic models. Schizophr. Bull. 36, 301–313 (2010).

    Article  PubMed  Google Scholar 

  105. Sigurdsson, T., Stark, K. L., Karayiorgou, M., Gogos, J. A. & Gordon, J. A. Impaired hippocampal–prefrontal synchrony in a genetic mouse model of schizophrenia. Nature 464, 763–767 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lawrie, S. M., Hall, J., McIntosh, A. M., Cunningham-Owens, D. G. & Johnstone, E. C. Neuroimaging and molecular genetics of schizophrenia: pathophysiological advances and therapeutic potential. Br. J. Pharmacol. 153, S120–S124 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Weinberger, D. et al. Plenary session — on the matter of neuroimaging in the context of schizophrenia genetics. Schizophr. Res. 117, 109–110 (2010).

    Article  Google Scholar 

  108. Egan, M. F. et al. Effect of COMT Val(108/158) Met genotype on frontal lobe function and risk for schizophrenia. Proc. Natl Acad. Sci. USA 98, 6917–6922 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Egan, M. F. et al. Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc. Natl Acad. Sci. USA 101, 12604–12609 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Weinberger, D. R. et al. A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia. Nature Med. 15, 509–518 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Callicott, J. et al. Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Neuropsychopharmacology 101, 12604–12609 (2004).

    Google Scholar 

  112. Straub, R. E. et al. Allelic variation in GAD1 (GAD67) is associated with schizophrenia and influences cortical function and gene expression. Mol. Psychiatry 12, 854–869 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. McIntosh, A. M. et al. The effects of a neuregulin 1 variant on white matter density and integrity. Mol. Psychiatry 13, 1054–1059 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Esslinger, C. et al. Cognitive state and connectivity effects of the genome-wide significant psychosis variant in ZNF804A. Neuroimage 54, 2514–2523 (2011).

    Article  PubMed  Google Scholar 

  115. Potkin, S. G. et al. Gene discovery through imaging genetics: identification of two novel genes associated with schizophrenia. Mol. Psychiatry 14, 416–428 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Potkin, S. G. et al. A genome-wide association study of schizophrenia using brain activation as a quantitative phenotype. Schizophr. Bull. 35, 96–108 (2009).

    Article  PubMed  Google Scholar 

  117. Weinberger, D. R. et al. No effect of a common allelic variant in the reelin gene on intermediate phenotype measures of brain structure, brain function, and gene expression. Biol. Psychiatry 68, 105–107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bramon, E. et al. Psychosis biological markers and their genetic influences. Schizophr. Res. 117, 217 (2010).

    Article  Google Scholar 

  119. Foussias, G. & Remington, G. Negative symptoms in schizophrenia: avolition and Occam's razor. Schizophr. Bull. 36, 359–369 (2010).

    Article  PubMed  Google Scholar 

  120. Heinrichs, R. W. & Zakzanis, K. K. Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology 12, 426–445 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Seeman, P. Dopamine D2 receptors as treatment targets in schizophrenia. Clin. Schizophr. Relat. Psychoses 4, 56–73 (2010).

    Article  PubMed  Google Scholar 

  122. Nord, M. & Farde, L. Antipsychotic occupancy of dopamine receptors in schizophrenia. CNS Neurosci. Ther. 17, 97–103 (2011).

    Article  PubMed  Google Scholar 

  123. Miyamoto, S., Duncan, G. E., Marx, C. E. & Lieberman, J. A. Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol. Psychiatry 10, 79–104 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Meltzer, H. Y. & Massey, B. W. The role of serotonin receptors in the action of atypical antipsychotic drugs. Curr. Opin. Pharmacol. 11, 59–67 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Meltzer, H. Y. Pre-clinical pharmacology of atypical antipsychotic drugs: a selective review. Br. J. Psychiatry 168, 23–31 (1996).

    Article  Google Scholar 

  126. Geyer, M. A., Krebs-Thomson, K., Braff, D. L. & Swerdlow, N. R. Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156, 117–154 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. O'Tuathaigh, C. M. P., Kirby, B. P., Moran, P. M. & Waddington, J. L. Mutant mouse models: genotype–phenotype relationships to negative symptoms in schizophrenia. Schizophr. Bull. 36, 271–288 (2010).

    Article  PubMed  Google Scholar 

  128. Wise, R. A. Forebrain substrates of reward and motivation. J. Comp. Neurol. 493, 115–121 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Nuechterlein, K. H., Luck, S. J., Lustig, C. & Sarter, M. CNTRICS final task selection: control of attention. Schizophr. Bull. 35, 182–196 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Bari, A., Dalley, J. W. & Robbins, T. W. The application of the 5-choice serial reaction time task for the assessment of visual attentional processes and impulse control in rats. Nature Protoc. 3, 759–767 (2008).

    Article  CAS  Google Scholar 

  131. Joyce, E. et al. Executive dysfunction in first-episode schizophrenia and relationship to duration of untreated psychosis: the West London Study. Br. J. Psychiatry 181, S38–S44 (2002).

    Article  Google Scholar 

  132. Birrell, J. M. & Brown, V. J. Medial frontal cortex mediates perceptual attentional set shifting in the rat. J. Neurosci. 20, 4320–4324 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Arguello, P. A. & Gogos, J. A. Cognition in mouse models of schizophrenia susceptibility genes. Schizophr. Bull. 36, 289–300 (2010).

    Article  PubMed  Google Scholar 

  134. Marighetto, A. et al. Comparative effects of the dopaminergic agonists piribedil and bromocriptine in three different memory paradigms in rodents. J. Psychopharmacol. 22, 511–521 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Crawley, J. N. et al. Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology 132, 107–124 (1997).

    Article  CAS  PubMed  Google Scholar 

  136. Brandon, N. J. et al. Understanding the role of DISC1 in psychiatric disease and during normal development. J. Neurosci. 29, 12768–12775 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Koike, H., Arguello, P. A., Kvajo, M., Karayiorgou, M. & Gogos, J. A. Disc1 is mutated in the 129S6/SvEv strain and modulates working memory in mice. Proc. Natl Acad. Sci. USA 103, 3693–3697 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kvajo, M. et al. A mutation in mouse Disc1 that models a schizophrenia risk allele leads to specific alterations in neuronal architecture and cognition. Proc. Natl Acad. Sci. USA 105, 7076–7081 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Hikida, T. et al. Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc. Natl Acad. Sci. USA 104, 14501–14506 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Niwa, M. et al. Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits. Neuron 65, 480–489 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Abazyan, B. et al. Prenatal interaction of mutant DISC1 and immune activation produces adult psychopathology. Biol. Psychiatry 68, 1172–1181 (2011).

    Article  CAS  Google Scholar 

  142. Pletnikov, M. V. et al. Inducible expression of mutant human DISC1 in mice is associated with brain and behavioral abnormalities reminiscent of schizophrenia. Mol. Psychiatry 13, 173–186 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Li, W. et al. Specific developmental disruption of disrupted-in-schizophrenia-1 function results in schizophrenia-related phenotypes in mice. Proc. Natl Acad. Sci. USA 104, 18280–18285 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Kuroda, K. et al. Behavioral alterations associated with targeted disruption of exons 2 and 3 of the Disc1 gene in the mouse. Hum. Mol. Genet. 20, 4666–4683 (2011).

    Article  CAS  PubMed  Google Scholar 

  145. Stefansson, H. et al. Neuregulin 1 and susceptibility to schizophrenia. Am. J. Hum. Genet. 71, 877–892 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Chen, Y. J. J. et al. Type III neuregulin-1 is required for normal sensorimotor gating, memory-related behaviors, and corticostriatal circuit components. J. Neurosci. 28, 6872–6883 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. O'Tuathaigh, C. M. P. et al. Phenotypic characterization of spatial cognition and social behavior in mice with 'knockout' of the schizophrenia risk gene neuregulin 1. Neuroscience 147, 18–27 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Golub, M. S., Germann, S. L. & Lloyd, K. C. K. Behavioral characteristics of a nervous system-specific erbB4 knock-out mouse. Behav. Brain Res. 153, 159–170 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Barros, C. S. et al. Impaired maturation of dendritic spines without disorganization of cortical cell layers in mice lacking NRG1/ErbB signaling in the central nervous system. Proc. Natl Acad. Sci. USA 106, 4507–4512 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Siuciak, J. A., McCarthy, S. A., Chapin, D. S. & Martin, A. N. Behavioral and neurochemical characterization of mice deficient in the phosphodiesterase-4B (PDE4B) enzyme. Psychopharmacology 197, 115–126 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. Paylor, R. et al. Impaired learning and motor behavior in heterozygous Pafah1b1 (Lis1) mutant mice. Learn. Mem. 6, 521–537 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Long, J. M. et al. Behavior of mice with mutations in the conserved region deleted in velocardiofacial/DiGeorge syndrome. Neurogenetics 7, 247–257 (2006).

    Article  PubMed  Google Scholar 

  153. Paylor, R. et al. Mice deleted for the DiGeorge/velocardiofacial syndrome region show abnormal sensorimotor gating and learning and memory impairments. Hum. Mol. Genet. 10, 2645–2650 (2001).

    Article  CAS  PubMed  Google Scholar 

  154. Drago, J. et al. Altered striatal function in a mutant mouse lacking D1A dopamine receptors. Proc. Natl Acad. Sci. USA 91, 12564–12568 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Xu, M. et al. Dopamine D1 receptor mutant mice are deficient in striatal expression of dynorphin and in dopamine-mediated behavioral responses. Cell 79, 729–742 (1994).

    Article  CAS  PubMed  Google Scholar 

  156. Ralph-Williams, R. J., Lehmann-Masten, V., Otero-Corchon, V., Low, M. J. & Geyer, M. A. Differential effects of direct and indirect dopamine agonists on prepulse inhibition: a study in D1 and D2 receptor knock-out mice. J. Neurosci. 22, 9604–9611 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Clifford, J. J. et al. Topographical evaluation of behavioural phenotype in a line of mice with targeted gene deletion of the D-2 dopamine receptor. Neuropharmacology 39, 382–390 (2000).

    Article  CAS  PubMed  Google Scholar 

  158. Kellendonk, C., Simpson, E. H. & Kandel, E. R. Modeling cognitive endophenotypes of schizophrenia in mice. Trends Neurosci. 32, 347–358 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Gogos, J. A. et al. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc. Natl Acad. Sci. USA 95, 9991–9996 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Babovic, D. et al. Phenotypic characterization of cognition and social behavior in mice with heterozygous versus homozygous deletion of catechol-O-methyltransferase. Neuroscience 155, 1021–1029 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Giros, B., Morice, E., Denis, C. & Nosten-Bertrand, M. Phenotypic expression of the targeted null-mutation in the dopamine transporter gene varies as a function of the genetic background. Eur. J. Neurosci. 20, 120–126 (2004).

    Article  PubMed  Google Scholar 

  162. Morice, E. et al. Parallel loss of hippocampal LTD and cognitive flexibility in a genetic model of hyperdopaminergia. Neuropsychopharmacology 32, 2108–2116 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Mohn, A. R., Gainetdinov, R. R., Caron, M. G. & Koller, B. H. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98, 427–436 (1999).

    Article  CAS  PubMed  Google Scholar 

  164. Duncan, G. E. et al. Deficits in sensorimotor gating and tests of social behavior in a genetic model of reduced NMDA receptor function. Behav. Brain Res. 153, 507–519 (2004).

    Article  CAS  PubMed  Google Scholar 

  165. Miyamoto, Y. et al. Hyperfunction of dopaminergic and serotonergic neuronal systems in mice lacking the NMDA receptor ε1 subunit. J. Neurosci. 21, 750–757 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Boyce-Rustay, J. M. & Holmes, A. Genetic inactivation of the NMDA receptor NR2A subunit has anxiolytic- and antidepressant-like effects in mice. Neuropsychopharmacology 31, 2405–2414 (2006).

    Article  CAS  PubMed  Google Scholar 

  167. Schmitt, W. B., Deacon, R. M. J., Seeburg, P. H., Rawlins, J. N. P. & Bannerman, D. M. A within-subjects, within-task demonstration of intact spatial reference memory and impaired spatial working memory in glutamate receptor-A-deficient mice. J. Neurosci. 23, 3953–3958 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Barkus, C. et al. Do GluA1 knockout mice exhibit behavioral abnormalities relevant to the negative or cognitive symptoms of schizophrenia and schizoaffective disorder? Neuropharmacology 62, 1263–1272 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wiedholz, L. M. et al. Mice lacking the AMPA GluR1 receptor exhibit striatal hyperdopaminergia and 'schizophrenia-related' behaviors. Mol. Psychiatry 13, 631–640 (2008).

    Article  CAS  PubMed  Google Scholar 

  170. Sagata, N. et al. Comprehensive behavioural study of GluR4 knockout mice: implication in cognitive function. Genes Brain Behav. 9, 899–909 (2010).

    Article  CAS  PubMed  Google Scholar 

  171. Belforte, J. E. et al. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nature Neurosci. 13, 76–83 (2010).

    Article  CAS  PubMed  Google Scholar 

  172. Tordera, R. M. et al. Enhanced anxiety, depressive-like behaviour and impaired recognition memory in mice with reduced expression of the vesicular glutamate transporter 1 (VGLUT1). Eur. J. Neurosci. 25, 281–290 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Garcia-Garcia, A. L. et al. Increased vulnerability to depressive-like behavior of mice with decreased expression of VGLUT1. Biol. Psychiatry 66, 275–282 (2009).

    Article  CAS  PubMed  Google Scholar 

  174. Chen, Y. W. & Lai, W. S. Behavioral phenotyping of V-Akt murine thymoma viral oncogene homolog 1-deficient mice reveals a sex-specific prepulse inhibition deficit in females that can be partially alleviated by glycogen synthase kinase-3 inhibitors but not by antipsychotics. Neuroscience 174, 178–189 (2011).

    Article  CAS  PubMed  Google Scholar 

  175. Lai, W. S. et al. Akt1 deficiency affects neuronal morphology and predisposes to abnormalities in prefrontal cortex functioning. Proc. Natl Acad. Sci. USA 103, 16906–16911 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Cox, M. M. et al. Neurobehavioral abnormalities in the dysbindin-1 mutant, sandy, on a C57BL/56J genetic background. Genes Brain Behav. 8, 390–397 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Jentsch, J. D. et al. Dysbindin modulates prefrontal cortical glutamatergic circuits and working memory function in mice. Neuropsychopharmacology 34, 2601–2608 (2009).

    Article  CAS  PubMed  Google Scholar 

  178. Carlson, G. C. et al. Dysbindin-1 mutant mice implicate reduced fast-phasic inhibition as a final common disease mechanism in schizophrenia. Proc. Natl Acad. Sci. USA 108, E962–E970 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Papaleo, F. et al. Dysbindin-1 modulates prefrontal cortical activity and schizophrenia-like behaviors via dopamine/D2 pathways. Mol. Psychiatry 17, 85–98 (2012).

    Article  CAS  PubMed  Google Scholar 

  180. Korotkova, T., Fuchs, E. C., Ponomarenko, A., von Engelhardt, J. & Monyer, H. NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory. Neuron 68, 557–569 (2010).

    Article  CAS  PubMed  Google Scholar 

  181. Lipina, T. V. et al. Enhanced dopamine function in DISC1-L100P mutant mice: implications for schizophrenia. Genes Brain Behav. 9, 777–789 (2010).

    Article  CAS  PubMed  Google Scholar 

  182. Hiroi, N. et al. A 200-kb region of human chromosome 22q11.2 confers antipsychotic-responsive behavioral abnormalities in mice. Proc. Natl Acad. Sci. USA 102, 19132–19137 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Duncan, G. E., Moy, S. S., Lieberman, J. A. & Koller, B. H. Typical and atypical antipsychotic drug effects on locomotor hyperactivity and deficits in sensorimotor gating in a genetic model of NMDA receptor hypofunction. Pharmacol. Biochem. Behav. 85, 481–491 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Duncan, G. E., Moy, S. S., Lieberman, J. A. & Koller, B. H. Effects of haloperidol, clozapine, and quetiapine on sensorimotor gating in a genetic model of reduced NMDA receptor function. Psychopharmacology 184, 190–200 (2006).

    Article  CAS  PubMed  Google Scholar 

  185. Fradley, R. L. et al. STOP knockout and NMDA NR1 hypomorphic mice exhibit deficits in sensorimotor gating. Behav. Brain Res. 163, 257–264 (2005).

    Article  CAS  PubMed  Google Scholar 

  186. Brody, S. A., Conquet, F. & Geyer, M. A. Disruption of prepulse inhibition in mice lacking mGluR1. Eur. J. Neurosci. 18, 3361–3366 (2003).

    Article  CAS  PubMed  Google Scholar 

  187. Brody, S. A., Conquet, F. & Geyer, M. A. Effect of antipsychotic treatment on the prepulse inhibition deficit of mGluR5 knockout mice. Psychopharmacology 172, 187–195 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Pratt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Judith A. Pratt's homepage

Brian Morris's homepage

PsyRING (Psychiatric Research Institute of Neuroscience in Glasgow) website

Centre for Neuroscience University of Strathclyde (CeNsUS) website

CNTRICS website

CNTRICS website

NEWMEDS website

TURNS website

SchizophreniaGene database

Glossary

Avolition

Generalized lack of motivation to perform tasks or undertake activities: probably linked to other negative symptoms such as social withdrawal and anhedonia (inability to take pleasure in activities).

Reduced affect

Loss of emotional responsiveness (for example, when talking); characteristic of schizophrenia and major depressive disorder.

Construct validity

An animal model has construct validity when the experimental mechanisms used to create the model are related to the underlying mechanisms involved in disease aetiology.

Pyramidal cell

A large neuron with a cell body roughly in the shape of a pyramid. These neurons use glutamate as their transmitter, and in many cases send fibres for considerably long distances to stimulate neurons in other parts of the brain.

Prepulse inhibition

(PPI). A reduction in the magnitude of the startle reflex that occurs when an organism is presented with a non-startling stimulus (a prepulse) before being presented with the startling stimulus. Deficits in PPI have been observed in patients with schizophrenia as well as in patients with other psychiatric and neurological disorders.

Predictive validity

An animal model has predictive validity when predictions (for example, of drug efficacy) made using the model are informative for when an equivalent drug is used clinically in patients.

Attentional set-shifting task

A task that is used for assessing rule learning and cognitive flexibility in rodents. Animals learn a set of stimulus–reward associations (for example, a particular odour associated with food reward) while simultaneously ignoring another stimulus (for example, texture). The rules are then changed such that texture is the salient stimulus.

Intradimensional–extradimensional shift

A test of rule acquisition and reversal that is sensitive to frontostriatal regions.

Continuous performance task

A task that measures the ability of a subject to maintain sustained and selective attention and inhibitory control.

Radial arm maze

Usually an eight-armed maze that can be used for various memory tasks. In the context of working memory, a rodent explores the eight arms in search of food. Working memory can be assessed by measuring how often the animal returns to an arm that it has already visited and emptied of food reward.

n-back task

The subject is presented with a series of stimuli and is required to respond when the stimulus on the current trial matches that presented n trials ago. The memory load can be increased by increasing n. The subject has a dual task: to encode the current stimulus and to compare it with that presented on the n-to-last trial.

Sensorimotor gating

A process of filtering redundant or unnecessary stimuli in the brain.

Face validity

An animal model or assay in which the outward signs resemble the human condition but may not necessarily be a result of the same underlying mechanism.

Operant assays

Tasks in which the subject learns to behave in such a way to obtain rewards or avoid punishments.

Parvalbumin

A calcium-binding protein expressed in a subset of GABA (γ-aminobutyric acid)-ergic cells, including cortical and hippocampal basket and chandelier cells as well as reticular thalamic neurons. Levels of parvalbumin in some areas of the cortex and hippocampus are reduced in post-mortem tissue samples taken from patients with schizophrenia.

γ-oscillations

Oscillatory waves detected in human electroencephalography, with a frequency typically around 40 Hz; thought to be related to consciousness.

Basket cells

A class of GABA (γ-aminobutyric acid)-ergic inhibitory interneurons that innervate the perisomatic region of target neurons. The axonal arborization of basket cells often resembles a basket surrounding the target cell body.

Chandelier cells

A class of GABA (γ-aminobutyric acid)-ergic interneurons of the cerebral cortex that ensheathe the axon initial segment of up to 200 pyramidal cells with cartridge synapses to directly control action potential generation.

Working memory

The active maintenance of limited amounts of information for a short period of time to guide thought processes or sequences of behaviour.

High penetrance

A genetic mutation that has a substantial influence on the risk of disease.

Deep re-sequencing

A technique, typically performed using high-throughput next-generation sequencing, used to obtain the complete nucleotide sequence of a gene or genome that has previously been determined. The term 'deep' refers to the depth, coverage or the number of times an individual nucleotide is sequenced.

Global mining

Non-hypothesis-driven screening of an entire set of biological material, such as the use of microarrays to screen all the RNA from a particular cell type.

22q11 syntenic region

Synteny describes the preservation of colocalized genes on chromosomes in different species. Mouse genes that are orthologous to the human genes that map onto human chromosome 22q11 are grouped together on mouse chromosome 16.

Progressive ratio schedule

A schedule in which the number of responses a subject is required to make to obtain a reinforcement (such as a food reward) increases progressively. A typical performance measures the ratio at which responding ceases for a predefined period, which may be related to the subject's motivational state.

Human constructs

In relation to cognition, human constructs are specific elements of mental processes, such as attention, memory, producing and understanding language, solving problems and making decisions.

Reference memory

Also known as long-term memory. In rodents this typically involves reference to external cues, which is needed for succesful completion of tasks such as finding a hidden platform in the Morris water maze.

L100P mutation

A genetic modification induced by N-ethyl N-nitrosourea mutagenesis in the mouse disrupted in schizophrenia 1 (Disc1) gene, whereby an adenine to thymine nucleotide transition causes the amino acid at position 100 of the DISC1 peptide to change from a leucine to a proline.

Q31L mutation

A genetic modification induced by N-ethyl N-nitrosourea mutagenesis in the mouse disrupted in schizophrenia 1 (Disc1) gene, whereby a thymine to cytosine nucleotide transition causes the amino acid at position 31 of the DISC1 peptide to change from a glutamine to a leucine.

Partial least squares regression

A multivariate modelling method that is useful for quantitatively defining the relationship between several collinear predictors and response variables. In neuroimaging it has been used to define functional connectivity between regions of the brain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pratt, J., Winchester, C., Dawson, N. et al. Advancing schizophrenia drug discovery: optimizing rodent models to bridge the translational gap. Nat Rev Drug Discov 11, 560–579 (2012). https://doi.org/10.1038/nrd3649

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3649

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research