Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Strategies to avoid treatment-induced lineage crisis in advanced prostate cancer

Key Points

  • Potent androgen receptor (AR)-targeted therapies have increased survival rates for metastatic castration-resistant prostate cancer (mCRPC), but correlate with the emergence of 'treatment-induced lineage crisis' characterized by visceral and bulky metastases and low PSA secretion

  • In prostate cancer, lineage crisis can occur either in the form of treatment-induced neuroendocrine differentiation, which results in a neuroendocrine phenotype, or in the form of treatment-induced epithelial-to-mesenchymal transition

  • Regardless of the mechanism responsible for lineage crisis, a proposed common checkpoint that precedes such crisis is the loss of expression and/or activity of AR pathway (AR-lo prostate cancer)

  • Drug-cycling designs used to prevent multidrug resistance (or 'superbugs') in infectious diseases might delay treatment-induced lineage crisis in prostate cancer, owing to the partial similarities between both phenomena

  • The PRINT protocol is a phase II trial designed to alternate administration of FDA-approved drugs in rapid cycles of 3 months to prevent treatment-induced lineage crisis for mCRPC, which might provide a rationale for testing drug cycling in the setting of first-line treatment for mCRPC

  • Collateral sensitivity might result in increased cytotoxic effects compared with standard approaches for mCRPC (a heterogeneous disease); this treatment strategy uses synergistic drug pairs because drug resistance results in competitive fitness

Abstract

The increasing potency of therapies that target the androgen receptor (AR) signalling axis has correlated with a rise in the proportion of patients with prostate cancer harbouring an adaptive phenotype, termed treatment-induced lineage crisis. This phenotype is characterized by features that include soft-tissue metastasis and/or resistance to standard anticancer therapies. Potent anticancer treatments might force cancer cells to evolve and develop alternative cell lineages that are resistant to primary therapies, a mechanism similar to the generation of multidrug- resistant microorganisms after continued antibiotic use. Herein, we assess the hypothesis that treatment-adapted phenotypes harbour reduced AR expression and/or activity, and acquire compensatory strategies for cell survival. We highlight the striking similarities between castration-resistant prostate cancer and triple-negative breast cancer, another poorly differentiated endocrine malignancy. Alternative treatment paradigms are needed to avoid therapy-induced resistance. Herein, we present a new clinical trial strategy designed to evaluate the potential of rapid drug cycling as an approach to delay the onset of resistance and treatment-induced lineage crisis in patients with metastatic castration-resistant prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Treatment-induced resistance and evolution to lineage crisis.
Figure 2: Treatment cycling to prevent progression to treatment-induced mCRPC.
Figure 3: Drug cycling with collateral sensitivity.

Similar content being viewed by others

References

  1. de Bono, J. S. et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ryan, C. J. et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N. Engl. J. Med. 368, 138–148 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Scher, H. I. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367, 1187–1197 (2012).

    CAS  PubMed  Google Scholar 

  4. Beer, T. M. et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N. Engl. J. Med. 371, 424–433 (2014).

    PubMed  PubMed Central  Google Scholar 

  5. Beltran, H. et al. Challenges in recognizing treatment-related neuroendocrine prostate cancer. J. Clin. Oncol. 30, e386–e389 (2012).

    PubMed  Google Scholar 

  6. Sun, Y. et al. Androgen deprivation causes epithelial–mesenchymal transition in the prostate: implications for androgen-deprivation therapy. Cancer Res. 72, 527–536 (2012).

    CAS  PubMed  Google Scholar 

  7. Martin, S. K. et al. Multinucleation and mesenchymal-to-epithelial transition alleviate resistance to combined cabazitaxel and antiandrogen therapy in advanced prostate cancer. Cancer Res. 76, 912–926 (2016).

    CAS  PubMed  Google Scholar 

  8. Aparicio, A. M. et al. Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin. Cancer Res. 19, 3621–3630 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Aparicio, A. & Tzelepi, V. Neuroendocrine (small-cell) carcinomas: why they teach us essential lessons about prostate cancer. Oncology (Williston Park) 28, 831–838 (2014).

    Google Scholar 

  10. Beltran, H. et al. Aggressive variants of castration-resistant prostate cancer. Clin. Cancer Res. 20, 2846–2850 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, H. T. et al. Neuroendocrine Prostate Cancer (NEPC) progressing from conventional prostatic adenocarcinoma: factors associated with time to development of NEPC and survival from NEPC diagnosis — a systematic review and pooled analysis. J. Clin. Oncol. 32, 3383–3390 (2014).

    PubMed  Google Scholar 

  12. Tsao, C. K., Galsky, M. D. & Oh, W. K. Is metastatic prostate cancer changing, and how will we know it? It's time for standard nomenclature for nonosseous metastases in clinical trials of patients with metastatic castration resistant prostate cancer. Eur. Urol. 66, 184–185 (2014).

    PubMed  Google Scholar 

  13. Berglund, R. K. et al. Comparison of observed biochemical recurrence-free survival in patients with low PSA values undergoing radical prostatectomy and predictions of preoperative nomogram. Urology 73, 1098–1103 (2009).

    PubMed  Google Scholar 

  14. McGuire, B. B. et al. Outcomes in patients with Gleason score 8–10 prostate cancer: relation to preoperative PSA level. BJU Int. 109, 1764–1769 (2012).

    PubMed  Google Scholar 

  15. Beltran, H. et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat. Med. 22, 298–305 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mahal, B. A., Aizer, A. A., Efstathiou, J. A. & Nguyen, P. L. Association of very low prostate-specific antigen levels with increased cancer-specific death in men with high-grade prostate cancer. Cancer 122, 78–83 (2016).

    CAS  PubMed  Google Scholar 

  17. Pezaro, C. J. et al. Visceral disease in castration-resistant prostate cancer. Eur. Urol. 65, 270–273 (2014).

    CAS  PubMed  Google Scholar 

  18. Small, E. J. et al. Characterization of neuroendocrine prostate cancer (NEPC) in patients with metastatic castration resistant prostate cancer (mCRPC) resistant to abiraterone (Abi) or enzalutamide (Enz): Preliminary results from the SU2C/PCF/AACR West Coast Prostate Cancer Dream Team (WCDT) [abstract]. J. Clin. Oncol. 33 (Suppl.), 5003 (2015).

    Google Scholar 

  19. Bianchini, G., Balko, J. M., Mayer, I. A., Sanders, M. E. & Gianni, L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol. 13, 674–690 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Terry, S. & Beltran, H. The many faces of neuroendocrine differentiation in prostate cancer progression. Front. Oncol. 4, 60 (2014).

    PubMed  PubMed Central  Google Scholar 

  21. Dolgin, E. 'Game changer' antibiotic and others in works for superbug. Nat. Med. 17, 10 (2011).

    CAS  PubMed  Google Scholar 

  22. Lowy, F. D. Secrets of a superbug. Nat. Med. 13, 1418–1420 (2007).

    CAS  PubMed  Google Scholar 

  23. US National Library of Medicine. ClinicalTrials.gov, https://www.clinicaltrials.gov/ct2/show/NCT02903160?term=NCT02903160&rank=1 (2016)

  24. Nikaido, H. Multidrug resistance in bacteria. Annu. Rev. Biochem. 78, 119–146 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Niederman, M. S. Appropriate use of antimicrobial agents: challenges and strategies for improvement. Crit. Care Med. 31, 608–616 (2003).

    PubMed  Google Scholar 

  26. Gillessen, S. et al. Management of patients with advanced prostate cancer: recommendations of the St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) 2015. Ann. Oncol. 26, 1589–1604 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tomlins, S. A. et al. Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci. Transl Med. 3, 94ra72 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Beltran, H. et al. The initial detection and partial characterization of circulating tumor cells in neuroendocrine prostate cancer. Clin. Cancer Res. 22, 1510–1519 (2016).

    CAS  PubMed  Google Scholar 

  29. Simanainen, U. et al. Disruption of prostate epithelial androgen receptor impedes prostate lobe-specific growth and function. Endocrinology 148, 2264–2272 (2007).

    CAS  PubMed  Google Scholar 

  30. Vander Griend, D. J., Litvinov, I. V. & Isaacs, J. T. Conversion of androgen receptor signaling from a growth suppressor in normal prostate epithelial cells to an oncogene in prostate cancer cells involves a gain of function in c-Myc regulation. Int. J. Biol. Sci. 10, 627–642 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu, C. T. et al. Increased prostate cell proliferation and loss of cell differentiation in mice lacking prostate epithelial androgen receptor. Proc. Natl Acad. Sci. USA 104, 12679–12684 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Xin, L. et al. Progression of prostate cancer by synergy of AKT with genotropic and nongenotropic actions of the androgen receptor. Proc. Natl Acad. Sci. USA 103, 7789–7794 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Cunha, G. R., Chung, L. W., Shannon, J. M., Taguchi, O. & Fujii, H. Hormone-induced morphogenesis and growth: role of mesenchymal–epithelial interactions. Recent Prog. Horm. Res. 39, 559–598 (1983).

    CAS  PubMed  Google Scholar 

  34. Niu, Y. et al. Differential androgen receptor signals in different cells explain why androgen-deprivation therapy of prostate cancer fails. Oncogene 29, 3593–3604 (2010).

    CAS  PubMed  Google Scholar 

  35. Scher, H. I. et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J. Clin. Oncol. 26, 1148–1159 (2008).

    PubMed  Google Scholar 

  36. Scher, H. I., Morris, M. J., Basch, E. & Heller, G. End points and outcomes in castration-resistant prostate cancer: from clinical trials to clinical practice. J. Clin. Oncol. 29, 3695–3704 (2011).

    PubMed  PubMed Central  Google Scholar 

  37. Huang, J. et al. Immunohistochemical characterization of neuroendocrine cells in prostate cancer. Prostate 66, 1399–1406 (2006).

    CAS  PubMed  Google Scholar 

  38. Fleischmann, A. et al. Androgen receptors are differentially expressed in Gleason patterns of prostate cancer and down-regulated in matched lymph node metastases. Prostate 71, 453–460 (2011).

    CAS  PubMed  Google Scholar 

  39. Pouessel, D. et al. Liver metastases in prostate carcinoma: clinical characteristics and outcome. BJU Int. 99, 807–811 (2007).

    CAS  PubMed  Google Scholar 

  40. Falchook, A. D. et al. Stage at presentation and survival outcomes of patients with Gleason 8–10 prostate cancer and low prostate-specific antigen. Urol. Oncol. 34, 119.e19–119.e26 (2016).

    Google Scholar 

  41. Cinar, B. et al. Androgen receptor mediates the reduced tumor growth, enhanced androgen responsiveness, and selected target gene transactivation in a human prostate cancer cell line. Cancer Res. 61, 7310–7317 (2001).

    CAS  PubMed  Google Scholar 

  42. Bonaccorsi, L. et al. Androgen receptor expression in prostate carcinoma cells suppresses α6β4 integrin-mediated invasive phenotype. Endocrinology 141, 3172–3182 (2000).

    CAS  PubMed  Google Scholar 

  43. Chuu, C. P., Hiipakka, R. A., Fukuchi, J., Kokontis, J. M. & Liao, S. Androgen causes growth suppression and reversion of androgen-independent prostate cancer xenografts to an androgen-stimulated phenotype in athymic mice. Cancer Res. 65, 2082–2084 (2005).

    CAS  PubMed  Google Scholar 

  44. Moehren, U. et al. Wild-type but not mutant androgen receptor inhibits expression of the hTERT telomerase subunit: a novel role of AR mutation for prostate cancer development. FASEB J. 22, 1258–1267 (2008).

    CAS  PubMed  Google Scholar 

  45. Akashi, T., Koizumi, K., Nagakawa, O., Fuse, H. & Saiki, I. Androgen receptor negatively influences the expression of chemokine receptors (CXCR4, CCR1) and ligand-mediated migration in prostate cancer DU-145. Oncol. Rep. 16, 831–836 (2006).

    CAS  PubMed  Google Scholar 

  46. Joly-Pharaboz, M. O. et al. Inhibition of growth and induction of apoptosis by androgens of a variant of LNCaP cell line. J. Steroid Biochem. Mol. Biol. 73, 237–249 (2000).

    CAS  PubMed  Google Scholar 

  47. Cheng, H., Snoek, R., Ghaidi, F., Cox, M. E. & Rennie, P. S. Short hairpin RNA knockdown of the androgen receptor attenuates ligand-independent activation and delays tumor progression. Cancer Res. 66, 10613–10620 (2006).

    CAS  PubMed  Google Scholar 

  48. Qin, J. et al. The PSA−/lo prostate cancer cell population harbors self-renewing long-term tumor-propagating cells that resist castration. Cell Stem Cell 10, 556–569 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mucci, N. R., Akdas, G., Manely, S. & Rubin, M. A. Neuroendocrine expression in metastatic prostate cancer: evaluation of high throughput tissue microarrays to detect heterogeneous protein expression. Hum. Pathol. 31, 406–414 (2000).

    CAS  PubMed  Google Scholar 

  50. Shah, R. B. et al. Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program. Cancer Res. 64, 9209–9216 (2004).

    CAS  PubMed  Google Scholar 

  51. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mendiratta, P. et al. Genomic strategy for targeting therapy in castration-resistant prostate cancer. J. Clin. Oncol. 27, 2022–2029 (2009).

    CAS  PubMed  Google Scholar 

  53. Sharma, N. L. et al. The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man. Cancer Cell 23, 35–47 (2013).

    CAS  PubMed  Google Scholar 

  54. Tomlins, S. A. et al. Integrative molecular concept modeling of prostate cancer progression. Nat. Genet. 39, 41–51 (2007).

    CAS  PubMed  Google Scholar 

  55. Wang, Q. et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138, 245–256 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. van Soest, R. J. et al. Cross-resistance between taxanes and new hormonal agents abiraterone and enzalutamide may affect drug sequence choices in metastatic castration-resistant prostate cancer. Eur. J. Cancer 49, 3821–3830 (2013).

    CAS  PubMed  Google Scholar 

  57. Zhu, M. L. et al. Tubulin-targeting chemotherapy impairs androgen receptor activity in prostate cancer. Cancer Res. 70, 7992–8002 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Mezynski, J. et al. Antitumour activity of docetaxel following treatment with the CYP17A1 inhibitor abiraterone: clinical evidence for cross-resistance? Ann. Oncol. 23, 2943–2947 (2012).

    CAS  PubMed  Google Scholar 

  59. Schweizer, M. T. et al. The influence of prior abiraterone treatment on the clinical activity of docetaxel in men with metastatic castration-resistant prostate cancer. Eur. Urol. 66, 646–652 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. de Bono, J. S. et al. Subsequent chemotherapy and treatment patterns after abiraterone acetate in patients with metastatic castration-resistant prostate cancer: post hoc analysis of COU-AA-302. Eur. Urol. http://dx.doi.org/10.1016/j.eururo.2016.06.033 (2016).

  61. Chakraborty, P. S. et al. Metastatic poorly differentiated prostatic carcinoma with neuroendocrine differentiation: negative on 68Ga-PSMA PET/CT. Clin. Nucl. Med. 40, e163–e166 (2015).

    PubMed  Google Scholar 

  62. Sheridan, T., Herawi, M., Epstein, J. I. & Illei, P. B. The role of P501S and PSA in the diagnosis of metastatic adenocarcinoma of the prostate. Am. J. Surg. Pathol. 31, 1351–1355 (2007).

    PubMed  Google Scholar 

  63. Schelling, L. A. et al. Frequent TMPRSS2-ERG rearrangement in prostatic small cell carcinoma detected by fluorescence in situ hybridization: the superiority of fluorescence in situ hybridization over ERG immunohistochemistry. Hum. Pathol. 44, 2227–2233 (2013).

    CAS  PubMed  Google Scholar 

  64. Mosquera, J. M. et al. Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatment-related neuroendocrine prostate cancer. Neoplasia 15, 1–10 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Williamson, S. R. et al. ERG-TMPRSS2 rearrangement is shared by concurrent prostatic adenocarcinoma and prostatic small cell carcinoma and absent in small cell carcinoma of the urinary bladder: evidence supporting monoclonal origin. Mod. Pathol. 24, 1120–1127 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lotan, T. L. et al. ERG gene rearrangements are common in prostatic small cell carcinomas. Mod. Pathol. 24, 820–828 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Guo, C. C. et al. TMPRSS2-ERG gene fusion in small cell carcinoma of the prostate. Hum. Pathol. 42, 11–17 (2011).

    CAS  PubMed  Google Scholar 

  68. Mulholland, D. J. et al. Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res. 72, 1878–1889 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ruscetti, M., Quach, B., Dadashian, E. L., Mulholland, D. J. & Wu, H. Tracking and functional characterization of epithelial–mesenchymal transition and mesenchymal tumor cells during prostate cancer metastasis. Cancer Res. 75, 2749–2759 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ruscetti, M. et al. HDAC inhibition impedes epithelial-mesenchymal plasticity and suppresses metastatic, castration-resistant prostate cancer. Oncogene 35, 3781–3795 (2016).

    CAS  PubMed  Google Scholar 

  71. Zhao, H. et al. Patient-derived tissue slice grafts accurately depict response of high-risk primary prostate cancer to androgen deprivation therapy. J. Transl Med. 11, 199 (2013).

    PubMed  PubMed Central  Google Scholar 

  72. Weinstein, M. H., Partin, A. W., Veltri, R. W. & Epstein, J. I. Neuroendocrine differentiation in prostate cancer: enhanced prediction of progression after radical prostatectomy. Hum. Pathol. 27, 683–687 (1996).

    CAS  PubMed  Google Scholar 

  73. Sauer, C. G., Roemer, A. & Grobholz, R. Genetic analysis of neuroendocrine tumor cells in prostatic carcinoma. Prostate 66, 227–234 (2006).

    CAS  PubMed  Google Scholar 

  74. Grasso, C. S. et al. Integrative molecular profiling of routine clinical prostate cancer specimens. Ann. Oncol. 26, 1110–1118 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Leong, K. G., Wang, B. E., Johnson, L. & Gao, W. Q. Generation of a prostate from a single adult stem cell. Nature 456, 804–808 (2008).

    CAS  PubMed  Google Scholar 

  76. Simon, R. A. et al. CD44 expression is a feature of prostatic small cell carcinoma and distinguishes it from its mimickers. Hum. Pathol. 40, 252–258 (2009).

    CAS  PubMed  Google Scholar 

  77. Lee, J. K. et al. N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells. Cancer Cell 29, 536–547 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Goldstein, A. S., Huang, J., Guo, C., Garraway, I. P. & Witte, O. N. Identification of a cell of origin for human prostate cancer. Science 329, 568–571 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Stoyanova, T. et al. Prostate cancer originating in basal cells progresses to adenocarcinoma propagated by luminal-like cells. Proc. Natl Acad. Sci. USA 110, 20111–20116 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Beltran, H. et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov. 1, 487–495 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Tan, H. L. et al. Rb loss is characteristic of prostatic small cell neuroendocrine carcinoma. Clin. Cancer Res. 20, 890–903 (2014).

    CAS  PubMed  Google Scholar 

  82. Kadakia, K. C. et al. Comprehensive serial molecular profiling of an “N of 1” exceptional non-responder with metastatic prostate cancer progressing to small cell carcinoma on treatment. J. Hematol. Oncol. 8, 109 (2015).

    PubMed  PubMed Central  Google Scholar 

  83. Epstein, J. I. et al. Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am. J. Surg. Pathol. 38, 756–767 (2014).

    PubMed  PubMed Central  Google Scholar 

  84. Cerasuolo, M. et al. Neuroendocrine transdifferentiation in human prostate cancer cells: an integrated approach. Cancer Res. 75, 2975–2986 (2015).

    CAS  PubMed  Google Scholar 

  85. Burchardt, T. et al. Transdifferentiation of prostate cancer cells to a neuroendocrine cell phenotype in vitro and in vivo. J. Urol. 162, 1800–1805 (1999).

    CAS  PubMed  Google Scholar 

  86. Zhang, X. Q. et al. Receptor protein tyrosine phosphatase alpha signaling is involved in androgen depletion-induced neuroendocrine differentiation of androgen-sensitive LNCaP human prostate cancer cells. Oncogene 22, 6704–6716 (2003).

    CAS  PubMed  Google Scholar 

  87. Lin, D. et al. High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 74, 1272–1283 (2014).

    CAS  PubMed  Google Scholar 

  88. Ballas, N., Grunseich, C., Lu, D. D., Speh, J. C. & Mandel, G. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121, 645–657 (2005).

    CAS  PubMed  Google Scholar 

  89. Zhang, X. et al. SRRM4 expression and the loss of REST activity may promote the emergence of the neuroendocrine phenotype in castration-resistant prostate cancer. Clin. Cancer Res. 21, 4698–4708 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Lapuk, A. V. et al. From sequence to molecular pathology, and a mechanism driving the neuroendocrine phenotype in prostate cancer. J. Pathol. 227, 286–297 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Li, Y. et al. SRRM4 drives neuroendocrine transdifferentiation of prostate adenocarcinoma under androgen receptor pathway inhibition. Eur. Urol. http://dx.doi.org/10.1016/j.eururo.2016.04.028 (2016).

  92. Aggarwal, R. R. et al. Persistence of androgen receptor (AR) expression in patients (pts) with small cell prostate cancer (SCPC): Preliminary results from the SU2C/PCF/AACR West Coast Prostate Cancer Dream Team (WCDT). J. Clin. Oncol. 34 (Suppl. 2S), 288 (2016).

    Google Scholar 

  93. Puls, L. N., Eadens, M. & Messersmith, W. Current status of SRC inhibitors in solid tumor malignancies. Oncologist 16, 566–578 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Chu, I. et al. Src promotes estrogen-dependent estrogen receptor α proteolysis in human breast cancer. J. Clin. Invest. 117, 2205–2215 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Yu, E. Y. et al. Once-daily dasatinib: expansion of phase II study evaluating safety and efficacy of dasatinib in patients with metastatic castration-resistant prostate cancer. Urology 77, 1166–1171 (2011).

    PubMed  Google Scholar 

  96. Araujo, J. C. et al. Dasatinib combined with docetaxel for castration-resistant prostate cancer: results from a phase 1–2 study. Cancer 118, 63–71 (2012).

    CAS  PubMed  Google Scholar 

  97. Spreafico, A. et al. A randomized phase II study of cediranib alone versus cediranib in combination with dasatinib in docetaxel resistant, castration resistant prostate cancer patients. Invest. New Drugs 32, 1005–1016 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Araujo, J. C. et al. Docetaxel and dasatinib or placebo in men with metastatic castration-resistant prostate cancer (READY): a randomised, double-blind phase 3 trial. Lancet Oncol. 14, 1307–1316 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang, X. D. et al. Identification of candidate predictive and surrogate molecular markers for dasatinib in prostate cancer: rationale for patient selection and efficacy monitoring. Genome Biol. 8, R255 (2007).

    PubMed  PubMed Central  Google Scholar 

  100. Siu, M. K. et al. Androgen receptor regulates SRC expression through microRNA-203. Oncotarget 7, 25726–25741 (2016).

    PubMed  PubMed Central  Google Scholar 

  101. Kumar, A. et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat. Med. 22, 369–378 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Mulholland, D. J. et al. Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth. Cancer Cell 19, 792–804 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Carver, B. S. et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 19, 575–586 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Jia, S. et al. Opposing effects of androgen deprivation and targeted therapy on prostate cancer prevention. Cancer Discov. 3, 44–51 (2013).

    CAS  PubMed  Google Scholar 

  105. Toren, P. et al. Combination AZD5363 with enzalutamide significantly delays enzalutamide-resistant prostate cancer in preclinical models. Eur. Urol. 67, 986–990 (2015).

    CAS  PubMed  Google Scholar 

  106. Arora, V. K. et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 155, 1309–1322 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ndibe, C., Wang, C. G. & Sonpavde, G. Corticosteroids in the management of prostate cancer: a critical review. Curr. Treat. Options Oncol. 16, 6 (2015).

    PubMed  Google Scholar 

  108. Isikbay, M. et al. Glucocorticoid receptor activity contributes to resistance to androgen-targeted therapy in prostate cancer. Horm. Cancer 5, 72–89 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Yemelyanov, A. et al. Differential targeting of androgen and glucocorticoid receptors induces ER stress and apoptosis in prostate cancer cells: a novel therapeutic modality. Cell Cycle 11, 395–406 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Pham, L. K. et al. Contextual effect of repression of bone morphogenetic protein activity in prostate cancer. Endocr. Relat. Cancer 20, 861–874 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Scher, H. I. et al. Impact of on-study corticosteroid use on efficacy and safety in the phase III AFFIRM study of enzalutamide (ENZA), an androgen receptor inhibitor [abstract]. J. Clin. Oncol. 31 (Suppl. 6), 6 (2013).

    Google Scholar 

  112. Morgan, C. J., Oh, W. K., Naik, G., Galsky, M. D. & Sonpavde, G. Impact of prednisone on toxicities and survival in metastatic castration-resistant prostate cancer: a systematic review and meta-analysis of randomized clinical trials. Crit. Rev. Oncol. Hematol. 90, 253–261 (2014).

    PubMed  Google Scholar 

  113. Montgomery, B. et al. Impact of baseline corticosteroids on survival and steroid androgens in metastatic castration-resistant prostate cancer: exploratory analysis from COU-AA-301. Eur. Urol. 67, 866–873 (2015).

    CAS  PubMed  Google Scholar 

  114. Efstathiou, E. et al. Biological heterogeneity in localized high-risk prostate cancer (LHRPC) from a study of neoadjuvant abiraterone acetate plus leuprolide acetate (LHRHa) versus LHRHa [abstract]. J. Clin. Oncol. 33 (Suppl.), 5005 (2015).

    Google Scholar 

  115. Sartor, O., Parker, C. C. & de Bono, J. Reappraisal of glucocorticoids in castrate-resistant prostate cancer. Asian J. Androl. 16, 666 (2014).

    PubMed  PubMed Central  Google Scholar 

  116. Klokk, T. I. et al. Ligand-specific dynamics of the androgen receptor at its response element in living cells. Mol. Cell. Biol. 27, 1823–1843 (2007).

    CAS  PubMed  Google Scholar 

  117. US National Library of Medicine. ClinicalTrials.gov, https://www.clinicaltrials.gov/ct2/show/NCT02012296?term=NCT02012296&rank=1 (2016).

  118. Omoto, Y. & Iwase, H. Clinical significance of estrogen receptor β in breast and prostate cancer from biological aspects. Cancer Sci. 106, 337–343 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Fixemer, T., Remberger, K. & Bonkhoff, H. Differential expression of the estrogen receptor beta (ERβ) in human prostate tissue, premalignant changes, and in primary, metastatic, and recurrent prostatic adenocarcinoma. Prostate 54, 79–87 (2003).

    CAS  PubMed  Google Scholar 

  120. Mak, P. et al. Prostate tumorigenesis induced by PTEN deletion involves estrogen receptor beta repression. Cell Rep. 10, 1982–1991 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Lukacs, R. U., Memarzadeh, S., Wu, H. & Witte, O. N. Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation. Cell Stem Cell 7, 682–693 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Goel, H. L. et al. VEGF/neuropilin-2 regulation of Bmi-1 and consequent repression of IGF-IR define a novel mechanism of aggressive prostate cancer. Cancer Discov. 2, 906–921 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Mak, P. et al. ERβ impedes prostate cancer EMT by destabilizing HIF-1α and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell 17, 319–332 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Yuan, B. et al. A phosphotyrosine switch determines the antitumor activity of ERβ. J. Clin. Invest. 124, 3378–3390 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Jia, M., Dahlman-Wright, K. & Gustafsson, J. A. Estrogen receptor alpha and beta in health and disease. Best Pract. Res. Clin. Endocrinol. Metab. 29, 557–568 (2015).

    CAS  PubMed  Google Scholar 

  126. Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353–357 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Manson-Bahr, D. et al. Mutation detection in formalin-fixed prostate cancer biopsies taken at the time of diagnosis using next-generation DNA sequencing. J. Clin. Pathol. 68, 212–217 (2015).

    CAS  PubMed  Google Scholar 

  128. Sole, X. et al. Biological convergence of cancer signatures. PLoS ONE 4, e4544 (2009).

    PubMed  PubMed Central  Google Scholar 

  129. Hoadley, K. A. et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 158, 929–944 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Honeth, G. et al. The CD44+/CD24 phenotype is enriched in basal-like breast tumors. Breast Cancer Res. 10, R53 (2008).

    PubMed  PubMed Central  Google Scholar 

  131. Foulkes, W. D., Smith, I. E. & Reis-Filho, J. S. Triple-negative breast cancer. N. Engl. J. Med. 363, 1938–1948 (2010).

    CAS  PubMed  Google Scholar 

  132. Garay, J. P. & Park, B. H. Androgen receptor as a targeted therapy for breast cancer. Am. J. Cancer Res. 2, 434–445 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Niemeier, L. A., Dabbs, D. J., Beriwal, S., Striebel, J. M. & Bhargava, R. Androgen receptor in breast cancer: expression in estrogen receptor-positive tumors and in estrogen receptor-negative tumors with apocrine differentiation. Mod. Pathol. 23, 205–212 (2010).

    CAS  PubMed  Google Scholar 

  134. Gucalp, A. et al. Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic breast cancer. Clin. Cancer Res. 19, 5505–5512 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Proverbs-Singh, T., Feldman, J. L., Morris, M. J., Autio, K. A. & Traina, T. A. Targeting the androgen receptor in prostate and breast cancer: several new agents in development. Endocr. Relat. Cancer 22, R87–R106 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Collins, L. C. et al. Androgen receptor expression in breast cancer in relation to molecular phenotype: results from the Nurses' Health Study. Mod. Pathol. 24, 924–931 (2011).

    PubMed  PubMed Central  Google Scholar 

  137. Mrklic, I., Pogorelic, Z., Capkun, V. & Tomic, S. Expression of androgen receptors in triple negative breast carcinomas. Acta Histochem. 115, 344–348 (2013).

    CAS  PubMed  Google Scholar 

  138. Thike, A. A. et al. Loss of androgen receptor expression predicts early recurrence in triple-negative and basal-like breast cancer. Mod. Pathol. 27, 352–360 (2014).

    CAS  PubMed  Google Scholar 

  139. Safarpour, D., Pakneshan, S. & Tavassoli, F. A. Androgen receptor (AR) expression in 400 breast carcinomas: is routine AR assessment justified? Am. J. Cancer Res. 4, 353–368 (2014).

    PubMed  PubMed Central  Google Scholar 

  140. Barton, V. N. et al. Multiple molecular subtypes of triple-negative breast cancer critically rely on androgen receptor and respond to enzalutamide in vivo. Mol. Cancer Ther. 14, 769–778 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Lehmann, B. D. et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest. 121, 2750–2767 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Peters, K. M. et al. Androgen receptor expression predicts breast cancer survival: the role of genetic and epigenetic events. BMC Cancer 12, 132 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Hickey, T. E. et al. Expression of androgen receptor splice variants in clinical breast cancers. Oncotarget 6, 44728–44744 (2015).

    PubMed  PubMed Central  Google Scholar 

  144. Barton, V. N. et al. Androgen receptor biology in triple negative breast cancer: a case for classification as AR+ or quadruple negative disease. Horm. Cancer 6, 206–213 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Louie, T. J. et al. Fidaxomicin versus vancomycin for Clostridium difficile infection. N. Engl. J. Med. 364, 422–431 (2011).

    CAS  PubMed  Google Scholar 

  146. Nichol, D. et al. Steering evolution with sequential therapy to prevent the emergence of bacterial antibiotic resistance. PLoS Comput. Biol. 11, e1004493 (2015).

    PubMed  PubMed Central  Google Scholar 

  147. Gatenby, R. A., Silva, A. S., Gillies, R. J. & Frieden, B. R. Adaptive therapy. Cancer Res. 69, 4894–4903 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Goldie, J. H. & Coldman, A. J. Quantitative model for multiple levels of drug resistance in clinical tumors. Cancer Treat. Rep. 67, 923–931 (1983).

    CAS  PubMed  Google Scholar 

  149. Day, R. S. Treatment sequencing, asymmetry, and uncertainty: protocol strategies for combination chemotherapy. Cancer Res. 46, 3876–3885 (1986).

    CAS  PubMed  Google Scholar 

  150. Goulart, C. P. et al. Designing antibiotic cycling strategies by determining and understanding local adaptive landscapes. PLoS ONE 8, e56040 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Kublin, J. G. et al. Reemergence of chloroquine-sensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi. J. Infect. Dis. 187, 1870–1875 (2003).

    PubMed  Google Scholar 

  152. Martinez, J. A. et al. Comparison of antimicrobial cycling and mixing strategies in two medical intensive care units. Crit. Care Med. 34, 329–336 (2006).

    PubMed  Google Scholar 

  153. Bennett, K. M. et al. Implementation of antibiotic rotation protocol improves antibiotic susceptibility profile in a surgical intensive care unit. J. Trauma 63, 307–311 (2007).

    PubMed  Google Scholar 

  154. Cheng, L. et al. Evidence of independent origin of multiple tumors from patients with prostate cancer. J. Natl Cancer Inst. 90, 233–237 (1998).

    CAS  PubMed  Google Scholar 

  155. Macintosh, C. A., Stower, M., Reid, N. & Maitland, N. J. Precise microdissection of human prostate cancers reveals genotypic heterogeneity. Cancer Res. 58, 23–28 (1998).

    CAS  PubMed  Google Scholar 

  156. Liu, W. et al. Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat. Med. 15, 559–565 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Madan, R. A., Pal, S. K., Sartor, O. & Dahut, W. L. Overcoming chemotherapy resistance in prostate cancer. Clin. Cancer Res. 17, 3892–3902 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Kantarjian, H. M. et al. Results of treatment with hyper-CVAD, a dose-intensive regimen, in adult acute lymphocytic leukemia. J. Clin. Oncol. 18, 547–561 (2000).

    CAS  PubMed  Google Scholar 

  159. Thomas, D. A. et al. Outcome with the hyper-CVAD regimens in lymphoblastic lymphoma. Blood 104, 1624–1630 (2004).

    CAS  PubMed  Google Scholar 

  160. Horning, S. J. et al. Assessment of the Stanford V regimen and consolidative radiotherapy for bulky and advanced Hodgkin's disease: Eastern Cooperative Oncology Group pilot study E1492. J. Clin. Oncol. 18, 972–980 (2000).

    CAS  PubMed  Google Scholar 

  161. Goldie, J. H. & Coldman, A. J. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat. Rep. 63, 1727–1733 (1979).

    CAS  PubMed  Google Scholar 

  162. Havemann, K. et al. Alternating versus sequential chemotherapy in small cell lung cancer. A randomized German multicenter trial. Cancer 59, 1072–1082 (1987).

    CAS  PubMed  Google Scholar 

  163. Ettinger, D. S. et al. A randomized comparison of standard chemotherapy versus alternating chemotherapy and maintenance versus no maintenance therapy for extensive-stage small-cell lung cancer: a phase III study of the Eastern Cooperative Oncology Group. J. Clin. Oncol. 8, 230–240 (1990).

    CAS  PubMed  Google Scholar 

  164. Evans, W. K. et al. Superiority of alternating non-cross-resistant chemotherapy in extensive small cell lung cancer. A multicenter, randomized clinical trial by the National Cancer Institute of Canada. Ann. Intern. Med. 107, 451–458 (1987).

    CAS  PubMed  Google Scholar 

  165. Wampler, G. L., Heim, W. J., Ellison, N. M., Ahlgren, J. D. & Fryer, J. G. Comparison of cyclophosphamide, doxorubicin, and vincristine with an alternating regimen of methotrexate, etoposide, and cisplatin/cyclophosphamide, doxorubicin, and vincristine in the treatment of extensive-disease small-cell lung carcinoma: a Mid-Atlantic Oncology Program study. J. Clin. Oncol. 9, 1438–1445 (1991).

    CAS  PubMed  Google Scholar 

  166. Feld, R. et al. Canadian multicenter randomized trial comparing sequential and alternating administration of two non-cross-resistant chemotherapy combinations in patients with limited small-cell carcinoma of the lung. J. Clin. Oncol. 5, 1401–1409 (1987).

    CAS  PubMed  Google Scholar 

  167. de Bono, J. S. et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 376, 1147–1154 (2010).

    CAS  PubMed  Google Scholar 

  168. Parker, C. et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med. 369, 213–223 (2013).

    CAS  PubMed  Google Scholar 

  169. Tran, C. et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324, 787–790 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Loriot, Y. et al. Antitumour activity of abiraterone acetate against metastatic castration-resistant prostate cancer progressing after docetaxel and enzalutamide (MDV3100). Ann. Oncol. 24, 1807–1812 (2013).

    CAS  PubMed  Google Scholar 

  171. Noonan, K. L. et al. Clinical activity of abiraterone acetate in patients with metastatic castration-resistant prostate cancer progressing after enzalutamide. Ann. Oncol. 24, 1802–1807 (2013).

    CAS  PubMed  Google Scholar 

  172. Schrader, A. J. et al. Enzalutamide in castration-resistant prostate cancer patients progressing after docetaxel and abiraterone. Eur. Urol. 65, 30–36 (2014).

    CAS  PubMed  Google Scholar 

  173. Corn, P. G. et al. A multi-institutional randomized phase II study (NCT01505868) of cabazitaxel (CAB) plus or minus carboplatin (CARB) in men with metastatic castration-resistant prostate cancer (mCRPC) [abstract]. J. Clin. Oncol. 33 (Suppl.), 5010 (2015).

    Google Scholar 

  174. Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    CAS  PubMed  Google Scholar 

  175. Schellhammer, P. F. et al. Lower baseline prostate-specific antigen is associated with a greater overall survival benefit from sipuleucel-T in the Immunotherapy for Prostate Adenocarcinoma Treatment (IMPACT) trial. Urology 81, 1297–1302 (2013).

    PubMed  Google Scholar 

  176. Ross, R. W. et al. A whole-blood RNA transcript-based prognostic model in men with castration-resistant prostate cancer: a prospective study. Lancet Oncol. 13, 1105–1113 (2012).

    CAS  PubMed  Google Scholar 

  177. Antonarakis, E. S. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371, 1028–1038 (2014).

    PubMed  PubMed Central  Google Scholar 

  178. Gagneux, S. et al. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 312, 1944–1946 (2006).

    CAS  PubMed  Google Scholar 

  179. Imamovic, L. & Sommer, M. O. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Sci. Transl Med. 5, 204ra132 (2013).

    PubMed  Google Scholar 

  180. Munck, C., Gumpert, H. K., Wallin, A. I., Wang, H. H. & Sommer, M. O. Prediction of resistance development against drug combinations by collateral responses to component drugs. Sci. Transl Med. 6, 262ra156 (2014).

    PubMed  PubMed Central  Google Scholar 

  181. Lehar, J. et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat. Biotechnol. 27, 659–666 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Gillet, J. P., Varma, S. & Gottesman, M. M. The clinical relevance of cancer cell lines. J. Natl Cancer Inst. 105, 452–458 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. O'Neill, A. J. et al. Characterisation and manipulation of docetaxel resistant prostate cancer cell lines. Mol. Cancer 10, 126 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Zhang, B. et al. Telomere and microtubule targeting in treatment-sensitive and treatment-resistant human prostate cancer cells. Mol. Pharmacol. 82, 310–321 (2012).

    CAS  PubMed  Google Scholar 

  185. van Soest, R. J. et al. Targeting the androgen receptor confers in vivo cross-resistance between enzalutamide and docetaxel, but not cabazitaxel, in castration-resistant prostate cancer. Eur. Urol. 67, 981–985 (2015).

    CAS  PubMed  Google Scholar 

  186. Al Nakouzi, N. et al. Cabazitaxel remains active in patients progressing after docetaxel followed by novel androgen receptor pathway targeted therapies. Eur. Urol. 68, 228–235 (2015).

    CAS  PubMed  Google Scholar 

  187. van Soest, R. J. et al. The influence of prior novel androgen receptor targeted therapy on the efficacy of cabazitaxel in men with metastatic castration-resistant prostate cancer. Eur. J. Cancer 51, 2562–2569 (2015).

    CAS  PubMed  Google Scholar 

  188. Pezaro, C. J. et al. Activity of cabazitaxel in castration-resistant prostate cancer progressing after docetaxel and next-generation endocrine agents. Eur. Urol. 66, 459–465 (2014).

    CAS  PubMed  Google Scholar 

  189. Mita, A. C. et al. Phase I and pharmacokinetic study of XRP6258 (RPR 116258A), a novel taxane, administered as a 1-hour infusion every 3 weeks in patients with advanced solid tumors. Clin. Cancer Res. 15, 723–730 (2009).

    CAS  PubMed  Google Scholar 

  190. Zhu, Y. et al. Antiandrogens inhibit ABCB1 efflux and ATPase activity and reverse docetaxel resistance in advanced prostate cancer. Clin. Cancer Res. 21, 4133–4142 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Carracedo, A., Baselga, J. & Pandolfi, P. P. Deconstructing feedback-signaling networks to improve anticancer therapy with mTORC1 inhibitors. Cell Cycle 7, 3805–3809 (2008).

    CAS  PubMed  Google Scholar 

  192. Carracedo, A. & Pandolfi, P. P. The PTEN–PI3K pathway: of feedbacks and cross-talks. Oncogene 27, 5527–5541 (2008).

    CAS  PubMed  Google Scholar 

  193. Schwartz, S. et al. Feedback suppression of PI3Kα signaling in PTEN-mutated tumors is relieved by selective inhibition of PI3Kβ. Cancer Cell 27, 109–122 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors want to thank M. Galsky, J. Sfakianos, A. Wolfe and M. Ruscetti for constructive advice. This work was supported in part by a grant from the Fondation de France to G.R. and an NIH grant (R01CA197910) to D.J.M.

Author information

Authors and Affiliations

Authors

Contributions

G.R. and D.J.M researched data and wrote the manuscript. All authors discussed the article's contents, revised and edited the manuscript before submission. B.C.L. and W.K.O. designed the PRINT clinical protocol.

Corresponding author

Correspondence to David J. Mulholland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roubaud, G., Liaw, B., Oh, W. et al. Strategies to avoid treatment-induced lineage crisis in advanced prostate cancer. Nat Rev Clin Oncol 14, 269–283 (2017). https://doi.org/10.1038/nrclinonc.2016.181

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2016.181

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer