Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The fractal heart — embracing mathematics in the cardiology clinic

Abstract

For clinicians grappling with quantifying the complex spatial and temporal patterns of cardiac structure and function (such as myocardial trabeculae, coronary microvascular anatomy, tissue perfusion, myocyte histology, electrical conduction, heart rate, and blood-pressure variability), fractal analysis is a powerful, but still underused, mathematical tool. In this Perspectives article, we explain some fundamental principles of fractal geometry and place it in a familiar medical setting. We summarize studies in the cardiovascular sciences in which fractal methods have successfully been used to investigate disease mechanisms, and suggest potential future clinical roles in cardiac imaging and time series measurements. We believe that clinical researchers can deploy innovative fractal solutions to common cardiac problems that might ultimately translate into advancements for patient care.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of natural fractal phenomena.
Figure 2: Theoretical fractal dimension (FD).
Figure 3: Traditional geometry and spatial fractals.
Figure 4: Cardiology is replete with examples of fractal structures.
Figure 5: Omic-level complexity in the human heart.
Figure 6: Monofractal and multifractal analyses applied to heart-rate variability.

Similar content being viewed by others

References

  1. Falconer, K. J. Fractal Geometry: Mathematical Foundations and Applications (John Wiley & Sons, 2014).

    Google Scholar 

  2. Vallejo, L. E., Lobo-Guerrero, S. & Chik, Z. Fractals in Engineering (Springer-Verlag, 2005).

    Google Scholar 

  3. Grönlund, A. et al. Fractal profit landscape of the stock market. PLoS ONE 7, e33960 (2012).

    Article  Google Scholar 

  4. Shao, Z. & Ditlevsen, P. D. Contrasting scaling properties of interglacial and glacial climates. Nat. Commun. 7, 10951 (2016).

    Article  CAS  Google Scholar 

  5. Wu, K. K. S., Lahav, O. & Rees, M. J. The large-scale smoothness of the universe. Nature 397, 225–230 (1999).

    Article  CAS  Google Scholar 

  6. Turcotte, D. L., Smalley, R. F. & Solla, S. A. Collapse of loaded fractal trees. Nature 313, 671–672 (1985).

    Article  Google Scholar 

  7. Parent, R. Computer Animation: Algorithms and Techniques (Newnes, 2012).

    Google Scholar 

  8. Dewdney, A. K. Computer recreations: of fractal mountains, graftal plants and other computer graphics at Pixar. Sci. Am. 255, 14–20 (1986).

    Article  Google Scholar 

  9. Cipra, B. A. A healthy heart is a fractal heart. SIAM News 36, 1–2 (2003).

    Google Scholar 

  10. Ivanov, P. C. et al. Multifractality in human heartbeat dynamics. Nature 399, 461–465 (1999).

    Article  CAS  Google Scholar 

  11. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93, 1043–1065 (1996).

  12. Sassi, R. et al. Advances in heart rate variability signal analysis: Joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace 17, 1341–1353 (2015).

    Article  Google Scholar 

  13. Mandelbrot, B. B. The Fractal Geometry of Nature (W.H. Freeman and Company, 1982).

    Google Scholar 

  14. Yaniv, Y., Lyashkov, A. E. & Lakatta, E. G. The fractal-like complexity of heart rate variability beyond neurotransmitters and autonomic receptors: signaling intrinsic to sinoatrial node pacemaker cells. Cardiovasc. Pharm. Open Access 2, 1–11 (2013).

    Article  Google Scholar 

  15. Sturmberg, J. P., Bennett, J. M., Picard, M. & Seely, A. J. E. The trajectory of life. Decreasing physiological network complexity through changing fractal patterns. Front. Physiol. 6, 1–11 (2015).

    Article  Google Scholar 

  16. Hughes, A. D. Optimality, cost minimization and the design of arterial networks. Artery Res. 10, 1–10 (2015).

    Article  Google Scholar 

  17. Zamir, M. Fractal dimensions and multifractility in vascular branching. J. Theor. Biol. 212, 183–190 (2001).

    Article  CAS  Google Scholar 

  18. West, G. B. et al. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).

    Article  CAS  Google Scholar 

  19. Fernández, E. & Jelinek, H. F. Use of fractal theory in neuroscience: methods, advantages, and potential problems. Methods 24, 309–321 (2001).

    Article  Google Scholar 

  20. Jelinek, H. F. et al. Understanding fractal analysis? The case of fractal linguistics. ComPlexUs 3, 66–73 (2006).

    Article  Google Scholar 

  21. Francis, D. P. et al. Physiological basis of fractal complexity properties of heart rate variability in man. J. Physiol. 542, 619–629 (2002).

    Article  CAS  Google Scholar 

  22. Hsu, L. Y., Groves, D. W., Aletras, A. H., Kellman, P. & Arai, A. E. A quantitative pixel-wise measurement of myocardial blood flow by contrast-enhanced first-pass CMR perfusion imaging: microsphere validation in dogs and feasibility study in humans. JACC Cardiovasc. Imaging 5, 154–166 (2012).

    Article  Google Scholar 

  23. Yipintsoi, T., Kroll, K. & Bassingthwaighte, J. B. Fractal regional myocardial blood flows pattern according to metabolism, not vascular anatomy. Am. J. Physiol. Heart Circ. Physiol. 310, H351–H364 (2015).

    Article  Google Scholar 

  24. Buldyrev, S. V. et al. Fractal landscapes and molecular evolution: modelling the myosin heavy chain gene family. Biophys. J. 65, 2673–2679 (1993).

    Article  CAS  Google Scholar 

  25. Darja Kanduc, G. C. The fractal dimension of protein information. Adv. Stud. Biol. 2, 53–62 (2010).

    Google Scholar 

  26. Zouein, F. A., Kurdi, M., Booz, G. W. & Fuseler, J. W. Applying fractal dimension and image analysis to quantify fibrotic collagen deposition and organization in the normal and hypertensive heart. Microsc. Microanal. 20, 1134–1144 (2014).

    Article  CAS  Google Scholar 

  27. Captur, G. et al. Abnormal cardiac formation in hypertrophic cardiomyopathy: fractal analysis of trabeculae and preclinical gene expression. Circ. Cardiovasc. Genet. 7, 241–248 (2014).

    Article  CAS  Google Scholar 

  28. Sharma, V. Deterministic chaos and fractal complexity in the dynamics of cardiovascular behavior: perspectives on a new frontier. Open Cardiovasc. Med. J. 3, 110–123 (2009).

    Article  CAS  Google Scholar 

  29. Bassingthwaighte, J. B., King, R. B. & Roger, S. A. Fractal nature of regional myocardial blood flow heterogeneity. Circ. Res. 65, 578–590 (1989).

    Article  CAS  Google Scholar 

  30. Losa, G. Fractals in Biology and Medicine (Birkhäuser, 2005).

    Book  Google Scholar 

  31. Marshall, W. F. et al. What determines cell size? BMC Biol. 10, 101 (2012).

    Article  Google Scholar 

  32. Kilian, H. G., Bartkowiak, D., Kaufmann, D. & Kemkemer, R. The general growth logistics of cell populations. Cell Biochem. Biophys. 51, 51–66 (2008).

    Article  CAS  Google Scholar 

  33. Del Monte, U. Does the cell number 109 still really fit one gram of tumor tissue? Cell Cycle 8, 505–506 (2009).

    Article  CAS  Google Scholar 

  34. Prothero, J. W. The Design of Mammals: A Scaling Approach (Cambridge Univ. Press, 2015).

    Book  Google Scholar 

  35. Moody, S. A. Principles of Developmental Genetics (Academic Press, 2014).

    Google Scholar 

  36. Vandewalle, N., Ausloos, M. & Cloots, R. Fractal grain boundaries in growth competition. J. Cryst. Growth 169, 79–82 (1996).

    Article  CAS  Google Scholar 

  37. Peng, C. K. et al. Non-equilibrium dynamics as an indispensable characteristic of a healthy biological system. Integr. Physiol. Behav. Sci. 29, 283–293 (1994).

    Article  CAS  Google Scholar 

  38. Ho, C. Y. et al. Genetic advances in sarcomeric cardiomyopathies: state of the art. Cardiovasc. Res. 105, 397–408 (2015).

    Article  CAS  Google Scholar 

  39. Carrier, L., Mearini, G., Stathopoulou, K. & Cuello, F. Cardiac myosin-binding protein C (MYBPC3) in cardiac pathophysiology. Gene 573, 188–197 (2015).

    Article  CAS  Google Scholar 

  40. Coto, E. et al. Resequencing the whole MYH7 gene (including the intronic, promoter, and 3′ UTR sequences) in hypertrophic cardiomyopathy. J. Mol. Diagn. 14, 518–524 (2012).

    Article  CAS  Google Scholar 

  41. Kong, S. W. et al. Heart failure-associated changes in RNA splicing of sarcomere genes. Circ. Cardiovasc. Genet. 3, 138–146 (2010).

    Article  CAS  Google Scholar 

  42. Gao, K. & Miller, J. Algebraic distribution of segmental duplication lengths in whole-genome sequence self-alignments. PLoS ONE 6, e18464 (2011).

    Article  CAS  Google Scholar 

  43. Wright, M. W. & Bruford, E. A. Naming 'junk': human non-protein coding RNA (ncRNA) gene nomenclature. Hum. Genomics 5, 90–98 (2011).

    Article  CAS  Google Scholar 

  44. Fuseler, J. W., Millette, C. F., Davis, J. M. & Carver, W. Fractal and image analysis of morphological changes in the actin cytoskeleton of neonatal cardiac fibroblasts in response to mechanical stretch. Microsc. Microanal. 13, 133–143 (2007).

    Article  CAS  Google Scholar 

  45. Pijet, M. et al. Fractal analysis of heart graft acute rejection microscopic images. Transplant. Proc. 46, 2864–2866 (2014).

    Article  CAS  Google Scholar 

  46. Sahli Costabal, F., Hurtado, D. E. & Kuhl, E. Generating purkinje networks in the human heart. J. Biomech. http://dx.doi.org/10.1016/j.jbiomech.2015.12.025 (2015).

  47. Sudarshan, V. K. et al. An integrated index for automated detection of infarcted myocardium from cross-sectional echocardiograms using texton-based features (part 1). Comput. Biol. Med. 71, 231–240 (2016).

    Article  Google Scholar 

  48. Julesz, B. Textons, the elements of texture perception, and their interactions. Nature 290, 91–97 (1981).

    Article  CAS  Google Scholar 

  49. Captur, G. et al. Quantification of left ventricular trabeculae using fractal analysis. J. Cardiovasc. Magn. Reson. 15, 36 (2013).

    Article  Google Scholar 

  50. Rosset, A., Spadola, L. & Ratib, O. OsiriX: an open-source software for navigating in multidimensional DICOM images. J. Digit. Imaging 17, 205–216 (2004).

    Article  Google Scholar 

  51. Captur, G. et al. Morphogenesis of myocardial trabeculae in the mouse embryo. J. Anat. 1, 100–105 (2016).

    Google Scholar 

  52. Captur, G. et al. Fractal analysis of myocardial trabeculations in 2547 subjects: the Multi-Ethnic Study of Atherosclerosis. Radiology 707–715 (2015).

  53. Lin, L. Y. et al. Endocardial remodeling in heart failure patients with impaired and preserved left ventricular systolic function-a magnetic resonance image study. Sci. Rep. 6, 1–8 (2016).

    Article  Google Scholar 

  54. Captur, G. et al. Prediction of sarcomere mutations in subclinical hypertrophic cardiomyopathy. Circ. Cardiovasc. Imaging 7, 863–867 (2014).

    Article  Google Scholar 

  55. Captur, G. et al. The embryological basis of subclinical hypertrophic cardiomyopathy. Sci. Rep. 8, 1–10 (2016).

    Google Scholar 

  56. Huikuri, H. V. et al. Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation 101, 47–53 (2000).

    Article  CAS  Google Scholar 

  57. Doret, M., Spilka, J., Chudác̆ek, V., Gonçalves, P. & Abry, P. Fractal analysis and Hurst parameter for intrapartum fetal heart rate variability analysis: a versatile alternative to frequency bands and LF/HF ratio. PLoS ONE 10, e0136661 (2015).

    Article  Google Scholar 

  58. Eke, A., Herman, P., Kocsis, L. & Kozak, L. R. Fractal characterization of complexity in temporal physiological signals. Physiol. Meas. 23, R1–R38 (2002).

    Article  CAS  Google Scholar 

  59. Roy, B. & Ghatak, S. Nonlinear methods to assess changes in heart rate variability in type 2 diabetic patients. Arq. Bras. Cardiol. 101, 317–327 (2013).

    PubMed  Google Scholar 

  60. Makikallio, T. H. et al. Prediction of sudden cardiac death by fractal analysis of heart rate variability in elderly subjects. J. Am. Coll. Cardiol. 37, 1395–1402 (2001).

    Article  CAS  Google Scholar 

  61. Mahon, N. G. et al. Fractal correlation properties of R-R interval dynamics in asymptomatic relatives of patients with dilated cardiomyopathy. Eur. J. Heart Fail. 4, 151–158 (2002).

    Article  Google Scholar 

  62. Au-Yeung, W. T. M. et al. SCD-HeFT: Use of R-R interval statistics for long-term risk stratification for arrhythmic sudden cardiac death. Heart Rhythm 12, 2058–2066 (2015).

    Article  Google Scholar 

  63. Bardy, G. H. et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N. Engl. J. Med. 352, 225–237 (2005).

    Article  CAS  Google Scholar 

  64. Chiu, K.-M., Chan, H.-L., Chu, S.-H. & Lin, T.-Y. Carvedilol can restore the multifractal properties of heart beat dynamics in patients with advanced congestive heart failure. Auton. Neurosci. 132, 76–80 (2007).

    Article  CAS  Google Scholar 

  65. Kneževic´, A., Martinis, M., Krstac˘ic´, G. & Vargovic´, E. Changes in multifractal properties for stable angina pectoris. Phys. A Stat. Mech. Appl. 358, 505–515 (2005).

    Article  Google Scholar 

  66. Ksela, J., Avbelj, V. & Kalisnik, J. M. Multifractality in heartbeat dynamics in patients undergoing beating-heart myocardial revascularization. Comput. Biol. Med. 60, 66–73 (2015).

    Article  Google Scholar 

  67. Fractals and medicine. Lancet 338, 1425–1426 (1991).

  68. Bartsch, R., Hennig, T., Heinen, A., Heinrichs, S. & Maass, P. Statistical analysis of fluctuations in the ECG morphology. Phys. A Stat. Mech. Appl. 354, 415–431 (2005).

    Article  Google Scholar 

  69. Bornas, X., Balle, M., De la Torre-Luque, A., Fiol-Veny, A. & Llabres, J. Ecological assessment of heart rate complexity: differences between high- and low-anxious adolescents. Int. J. Psychophysiol. 98, 112–118 (2015).

    Article  Google Scholar 

  70. Billman, G. E. Heart rate variability - A historical perspective. Front. Physiol. 2, 86 (2011).

    Article  Google Scholar 

  71. Heydari, B. & Kwong, R. Y. Fractal dimension of hypertrophic cardiomyopathy trabeculation: a window to an unpredictable future? Circ. Cardiovasc. Genet. 7, 228–229 (2014).

    Article  Google Scholar 

  72. Adams, D., Pozzi, F., Carroll, A., Rombach, A. & Zeni, J. Validity and reliability of a commercial fitness watch for measuring running dynamics. J. Orthop. Sports Phys. Ther. 46, 471–476 (2016).

    Article  Google Scholar 

  73. Rumsfeld, J. S., Joynt, K. E. & Maddox, T. M. Big data analytics to improve cardiovascular care: promise and challenges. Nat. Rev. Cardiol. 13, 350–359 (2016).

    Article  CAS  Google Scholar 

  74. Richardella, A. et al. Visualizing critical correlations near the metal-insulator transition in Ga1-XMnXAs. Science 327, 665–669 (2010).

    Article  CAS  Google Scholar 

  75. Song, Y. Q., Liu, J. L., Yu, Z. G. & Li, B. G. Multifractal analysis of weighted networks by a modified sandbox algorithm. Sci. Rep. 5, 17628 (2015).

    Article  CAS  Google Scholar 

  76. Orchard, S. et al. The MIntAct project–IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 42, 358–363 (2014).

    Article  Google Scholar 

  77. Castiglioni, P. et al. Effects of autonomic ganglion blockade on fractal and spectral components of blood pressure and heart rate variability in free-moving rats. Auton. Neurosci. 178, 44–49 (2013).

    Article  Google Scholar 

  78. Kantelhardt, J. W. et al. Multifractal detrended fluctuation analysis of nonstationary time series. Phys. A Stat. Mech. Appl. 316, 87–114 (2002).

    Article  Google Scholar 

  79. Ihlen, E. A. F. Introduction to multifractal detrended fluctuation analysis in Matlab. Front. Physiol. 3, 141 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

G.C. is supported by the National Institute for Health Research (NIHR) Rare Diseases Translational Research Collaboration for the study of LMNA dilated cardiomyopathy (NIHR RD-TRC, #171603), by the European Society of Cardiology (ESC, EACVI), and by NIHR University College London Hospitals Biomedical Research Centre. A.D.H. received support from the University College London Hospitals NIHR Biomedical Research Centre and the British Heart Foundation relevant to this publication (PG/12/29/29497, CS/15/6/31468, and CS/13/1/30327). J.C.M. is directly and indirectly supported by the University College London Hospitals NIHR Biomedical Research Centre and Biomedical Research Unit at Barts Hospital, respectively.

Author information

Authors and Affiliations

Authors

Contributions

G.C., A.L.K., and J.C.M. researched data for the article. All the authors discussed the content, wrote the manuscript, and reviewed/edited the article before submission.

Corresponding author

Correspondence to James C. Moon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (spreadsheet)

Supplementary information (XLSX 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Captur, G., Karperien, A., Hughes, A. et al. The fractal heart — embracing mathematics in the cardiology clinic. Nat Rev Cardiol 14, 56–64 (2017). https://doi.org/10.1038/nrcardio.2016.161

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2016.161

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing