Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nutraceutical therapies for atherosclerosis

Key Points

  • Atherosclerosis is a chronic inflammatory disease of the arterial walls and is the primary cause of cardiovascular disease

  • Statin therapy is not effective in reducing cholesterol levels in a small proportion of users and prolonged use of statins can increase the risk of adverse effects

  • Nutraceuticals are natural compounds derived from food sources that are known to be beneficial against disease

  • Several nutraceuticals have been shown to have anti-inflammatory and antioxidative properties, and are therefore promising compounds to explore as novel antiatherogenic preventive therapies

  • Although some nutraceuticals have shown promise in observational studies, large, robust clinical trials are required to determine their efficacy in attenuating atherosclerotic disease progression

Abstract

Atherosclerosis is a chronic inflammatory disease affecting large and medium arteries and is considered to be a major underlying cause of cardiovascular disease (CVD). Although the development of pharmacotherapies to treat CVD has contributed to a decline in cardiac mortality in the past few decades, CVD is estimated to be the cause of one-third of deaths globally. Nutraceuticals are natural nutritional compounds that are beneficial for the prevention or treatment of disease and, therefore, are a possible therapeutic avenue for the treatment of atherosclerosis. The purpose of this Review is to highlight potential nutraceuticals for use as antiatherogenic therapies with evidence from in vitro and in vivo studies. Furthermore, the current evidence from observational and randomized clinical studies into the role of nutraceuticals in preventing atherosclerosis in humans will also be discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Formation of an atherosclerotic plaque.
Figure 2: Benefits of nutraceuticals at different stages of the development of atherosclerosis.

Similar content being viewed by others

References

  1. World Health Organization. Cardiovascular diseases (CVDs). http://www.who.int/mediacentre/factsheets/fs317/en/ (2015).

  2. McLaren, J. E., Michael, D. R., Ashlin, T. G. & Ramji, D. P. Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy. Prog. Lipid Res. 50, 331–347 (2011).

    CAS  PubMed  Google Scholar 

  3. Vogel, R. A. Coronary risk factors, endothelial function, and atherosclerosis: a review. Clin. Cardiol. 20, 426–432 (1997).

    CAS  PubMed  Google Scholar 

  4. Ramji, D. P. & Davies, T. S. Cytokines in atherosclerosis: key players in all stages of disease and promising therapeutic targets. Cytokine Growth Factor Rev. 26, 673–685 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Buckley, M. L. & Ramji, D. P. The influence of dysfunctional signaling and lipid homeostasis in mediating the inflammatory responses during atherosclerosis. Biochim. Biophys. Acta 1852, 1498–1510 (2015).

    CAS  PubMed  Google Scholar 

  6. Chistiakov, D. A., Bobryshev, Y. V. & Orekhov, A. N. Macrophage-mediated cholesterol handling in atherosclerosis. J. Cell. Mol. Med. 20, 17–28 (2016).

    CAS  PubMed  Google Scholar 

  7. McLaren, J. E. & Ramji, D. P. Interferon gamma: a master regulator of atherosclerosis. Cytokine Growth Factor Rev. 20, 125–135 (2009).

    CAS  PubMed  Google Scholar 

  8. Moss, J. W. E. & Ramji, D. P. Interferon-γ: promising therapeutic target in atherosclerosis. World J. Exp. Med. 5, 154–159 (2015).

    PubMed  PubMed Central  Google Scholar 

  9. Chistiakov, D. A., Orekhov, A. N. & Bobryshev, Y. V. Vascular smooth muscle cell in atherosclerosis. Acta Physiol. 214, 33–50 (2015).

    CAS  Google Scholar 

  10. Katsuda, S. & Kaji, T. Atherosclerosis and extracellular matrix. J. Atheroscler. Thromb. 10, 267–274 (2003).

    CAS  PubMed  Google Scholar 

  11. Newby, A. Matrix metallproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc. Res. 69, 614–624 (2006).

    CAS  PubMed  Google Scholar 

  12. Haslinger-Loffler, B. Multiple effects of HMG-CoA reductase inhibitors (statins) besides their lipid-lowering function. Kidney Int. 74, 553–555 (2008).

    PubMed  Google Scholar 

  13. Leitersdorf, E. Cholesterol absorption inhibition: filling an unmet need in lipid-lowering management. Eur. Heart J. Suppl. 3, E17–E23 (2001).

    CAS  Google Scholar 

  14. Parker, B. A. et al. Effect of statins on skeletal muscle function. Circulation 127, 96–103 (2013).

    CAS  PubMed  Google Scholar 

  15. Calderon, R. M., Cubeddu, L. X., Goldberg, R. B. & Schiff, E. R. Statins in the treatment of dyslipidemia in the presence of elevated liver aminotransferase levels: a therapeutic dilemma. Mayo Clin. Proc. 85, 349–356 (2010).

    PubMed  PubMed Central  Google Scholar 

  16. Cannon, C. P. et al. Ezetimibe added to statin therapy after acute coronary syndromes. N. Engl. J. Med. 372, 2387–2397 (2015).

    CAS  PubMed  Google Scholar 

  17. Tsujita, K. et al. Impact of dual lipid-lowering strategy with ezetimibe and atorvastatin on coronary plaque regression in patients with percutaneous coronary intervention the multicenter randomized controlled PRECISE-IVUS trial. J. Am. Coll. Cardiol. 66, 495–507 (2015).

    PubMed  Google Scholar 

  18. Patel, A. Y., Pillarisetti, J., Marr, J. & Vacek, J. L. Ezetimibe in combination with a statin does not reduce all-cause mortality. J. Clin. Med. Res. 5, 275–280 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. US National Library of Science. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT01764633 (2016).

  20. US National Library of Science. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT01663402 (2016).

  21. US National Library of Science. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT01975376 (2016).

  22. US National Library of Science. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/results/NCT01975389 (2016).

  23. Ridker, P. M. From C-reactive protein to interleukin-6 to interleukin-1: moving upstream to identify novel targets for atheroprotection. Circ. Res. 118, 145–156 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Slavin, J. L. & Lloyd, B. Health benefits of fruits and vegetables. Adv. Nutr. 3, 506–516 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wall, R., Ross, R. P., Fitzgerald, G. F. & Stanton, C. Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr. Rev. 68, 280–289 (2010).

    PubMed  Google Scholar 

  26. Granados-Principal, S., Quiles, J. L., Ramirez-Tortosa, C. L., Sanchez-Rovira, P. & Ramirez-Tortosa, M. C. Hydroxytyrosol: from laboratory investigations to future clinical trials. Nutr. Rev. 68, 191–206 (2010).

    PubMed  Google Scholar 

  27. Lee, J. H., O'Keefe, J. H., Lavie, C. J., Marchioli, R. & Harris, W. S. Omega-3 fatty acids for cardioprotection. Mayo Clin. Proc. 83, 324–332 (2008).

    CAS  PubMed  Google Scholar 

  28. Lavie, C. J., Milani, R. V., Mehra, M. R. & Ventura, H. O. Omega-3 polyunsaturated fatty acids and cardiovascular diseases. J. Am. Coll. Cardiol. 54, 585–594 (2009).

    CAS  PubMed  Google Scholar 

  29. American Heart Association. Fish and omega-3 fatty acids. http://www.heart.org/HEARTORG/HealthyLiving/HealthyEating/HealthyDietGoals/Fish-and-Omega-3-Fatty-Acids_UCM_303248_Article.jsp# (2015).

  30. Bang, H. & Dyerberg, J. Lipid metabolism and ischemic heart disease in Greenland Eskimos. Adv. Food Nutr. Res. 3, 1–22 (1980).

    CAS  Google Scholar 

  31. Sanders, T. A. Polyunsaturated fatty acids in the food chain in Europe. Am. J. Clin. Nutr. 71, 176S–178S (2000).

    CAS  PubMed  Google Scholar 

  32. Simopoulos, A. P. Importance of the ratio of omega- 6/omega-3 essential fatty acids: evolutionary aspects. World Rev. Nutr. Diet 92, 1–22 (2003).

    CAS  PubMed  Google Scholar 

  33. James, M. J., Gibson, R. A. & Cleland, L. G. Dietary polyunsaturated fatty acids and inflammatory mediator production. Am. J. Clin. Nutr. 71, 343S–348S (2000).

    CAS  PubMed  Google Scholar 

  34. Tsimikas, S. et al. LDL isolated from Greek subjects on a typical diet or from American subjects on an oleate-supplemented diet induces less monocyte chemotaxis and adhesion when exposed to oxidative stress. Arterioscler. Thromb. Vasc. Biol. 19, 122–130 (1999).

    CAS  PubMed  Google Scholar 

  35. Das, U. N. Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules. Lipids Health Dis. 7, 37 (2008).

    PubMed  PubMed Central  Google Scholar 

  36. Hughes, D. A., Southon, S. & Pinder, A. C. (n-3) Polyunsaturated fatty acids modulate the expression of functionally associated molecules on human monocytes in vitro. J. Nutr. 126, 603–610 (1996).

    CAS  PubMed  Google Scholar 

  37. Miles, E. A., Wallace, F. A. & Calder, P. C. Dietary fish oil reduces intercellular adhesion molecule 1 and scavenger receptor expression on murine macrophages. Atherosclerosis 152, 43–50 (2000).

    CAS  PubMed  Google Scholar 

  38. Brown, A. L. et al. Omega-3 fatty acids ameliorate atherosclerosis by favorably altering monocyte subsets and limiting monocyte recruitment to aortic lesions. Arterioscler. Thromb. Vasc. Biol. 32, 2122–2130 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Song, Y. et al. Polyunsaturated fatty acid relatively decreases cholesterol content in THP-1 macrophage-derived foam cell: partly correlates with expression profile of CIDE and PAT members. Lipids Health Dis. 12, 111 (2013).

    PubMed  PubMed Central  Google Scholar 

  40. McLaren, J. E., Michael, D. R., Guschina, I. A., Harwood, J. L. & Ramji, D. P. Eicosapentaenoic acid and docosahexaenoic acid regulate modified LDL uptake and macropinocytosis in human macrophages. Lipids 46, 1053–1061 (2011).

    CAS  PubMed  Google Scholar 

  41. Lada, A. T., Rudel, L. L. & St Clair, R. W. Effects of LDL enriched with different dietary fatty acids on cholesteryl ester accumulation and turnover in THP-1 macrophages. J. Lipid Res. 44, 770–779 (2003).

    CAS  PubMed  Google Scholar 

  42. Nakajima, K. et al. Orally administered eicosapentaenoic acid induces rapid regression of atherosclerosis via modulating the phenotype of dendritic cells in LDL receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 31, 1963–1972 (2011).

    CAS  PubMed  Google Scholar 

  43. Wan, J.-B. et al. Endogenously decreasing tissue n-6/ n-3 fatty acid ratio reduces atherosclerotic lesions in apolipoprotein E-deficient mice by inhibiting systemic and vascular inflammation. Arterioscler. Thromb. Vasc. Biol. 30, 2487–2494 (2010).

    CAS  PubMed  Google Scholar 

  44. Leslie, M. A., Cohen, D. J. A., Liddle, D. M., Robinson, L. E. & Ma, D. W. L. A review of the effect of omega-3 polyunsaturated fatty acids on blood triacylglycerol levels in normolipidemic and borderline hyperlipidemic individuals. Lipids Health Dis. 14, 53 (2015).

    PubMed  PubMed Central  Google Scholar 

  45. Ito, M. K. Long-chain omega-3 fatty acids, fibrates and niacin as therapeutic options in the treatment of hypertriglyceridemia: a review of the literature. Atherosclerosis 242, 647–656 (2015).

    CAS  PubMed  Google Scholar 

  46. Franzese, C. J. et al. Relation of fish oil supplementation to markers of atherothrombotic risk in patients with cardiovascular disease not receiving lipid-lowering therapy. Am. J. Cardiol. 115, 1204–1211 (2015).

    CAS  PubMed  Google Scholar 

  47. Yagi, S. et al. Effects of docosahexaenoic acid on the endothelial function in patients with coronary artery disease. J. Atheroscler. Thromb. 22, 447–454 (2015).

    CAS  PubMed  Google Scholar 

  48. Tousoulis, D. et al. Omega-3 PUFAs improved endothelial function and arterial stiffness with a parallel antiinflammatory effect in adults with metabolic syndrome. Atherosclerosis 232, 10–16 (2014).

    CAS  PubMed  Google Scholar 

  49. Burr, M. L. et al. Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART). Lancet 2, 757–761 (1989).

    CAS  PubMed  Google Scholar 

  50. GISSI-Prevenzione Investigators. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto miocardico. Lancet 354, 447–455 (1999).

  51. Yokoyama, M., Origasa, H. & Matsuzaki, M. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet 369, 1090–1098 (2007); erratum 370, 220 (2007).

    CAS  PubMed  Google Scholar 

  52. Niki, T. et al. Effects of the addition of eicosapentaenoic acid to strong statin therapy on inflammatory cytokines and coronary plaque components assessed by integrated backscatter intravascular ultrasound. Circ. J. 80, 450–460 (2016).

    CAS  PubMed  Google Scholar 

  53. Enns, J. et al. The impact of omega-3 polyunsaturated fatty acid supplementation on the incidence of cardiovascular events and complications in peripheral arterial disease: a systematic review and meta-analysis. BMC Cardiovasc. Disord. 14, 70 (2014).

    PubMed  PubMed Central  Google Scholar 

  54. Hooper, L. et al. Risks and benefits of omega 3 fats for mortality, cardiovascular disease, and cancer: systematic review. BMJ 332, 752–760 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kwak, S. M., Myung, S. K., Lee, Y. J., Seo, H. G. & Korean Meta-analysis Study Group. Efficacy of omega-3 fatty acid supplements (eicosapentaenoic acid and docosahexaenoic acid) in the secondary prevention of cardiovascular disease: a meta-analysis of randomized, double-blind, placebo-controlled trials. Arch. Intern. Med. 172, 686–694 (2012).

    CAS  PubMed  Google Scholar 

  56. Rizos, E. C., Ntzani, E. E., Bika, E., Kostapanos, M. S. & Elisaf, M. S. Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: a systematic review and meta-analysis. JAMA 308, 1024–1033 (2012).

    CAS  PubMed  Google Scholar 

  57. Iso, H. et al. Intake of fish and n3 fatty acids and risk of coronary heart disease among Japanese: the Japan Public Health Center-Based (JPHC) Study Cohort I. Circulation 113, 195–202 (2006).

    CAS  PubMed  Google Scholar 

  58. Kobayashi, M., Sasaki, S., Kawabata, T., Hasegawa, K. & Tsugane, S. Validity of a self-administered food frequency questionnaire used in the 5-year follow-up survey of the JPHC Study Cohort I to assess fatty acid intake: comparison with dietary records and serum phospholipid level. J. Epidemiol. 13, S64–S81 (2003).

    PubMed  Google Scholar 

  59. US National Library of Science. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT01492361 (2016).

  60. US National Library of Science. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02104817 (2016).

  61. Harris, W. S. et al. Omega-6 fatty acids and risk for cardiovascular disease: a science advisory from the American Heart Association Nutrition Subcommittee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention. Circulation 119, 902–907 (2009).

    PubMed  Google Scholar 

  62. Kakutani, S., Kawashima, H., Tanaka, T., Shiraishi-Tateishi, A. & Kiso, Y. Uptake of dihomo-γ-linolenic acid by murine macrophages increases series-1 prostaglandin release following lipopolysaccharide treatment. Prostaglandins Leukot. Essent. Fatty Acids 83, 23–29 (2010).

    CAS  PubMed  Google Scholar 

  63. Bai, W., Zheng, X., Zhou, L. & Li, H. Prostaglandin E1 dose-dependently promotes stability of atherosclerotic plaque in a rabbit model. Can. J. Physiol. Pharmacol. 90, 131–139 (2012).

    CAS  PubMed  Google Scholar 

  64. Juan, H. & Sametz, W. Dihomo-δ-linolenic acid increases the metabolism of eicosapentaenoic acid in perfused vascular tissue. Prostaglandins Leukot. Med. 19, 79–86 (1985).

    CAS  PubMed  Google Scholar 

  65. Takai, S. et al. Anti-atherosclerotic effects of dihomo-γ-linolenic acid in ApoE-deficient mice. J. Atheroscler. Thromb. 16, 480–489 No430 (2009).

    CAS  PubMed  Google Scholar 

  66. Engler, M. M. Comparative study of diets enriched with evening primrose, black currant, borage or fungal oils on blood pressure and pressor responses in spontaneously hypertensive rats. Prostaglandins Leukot. Essent. Fatty Acids 49, 809–814 (1993).

    CAS  PubMed  Google Scholar 

  67. Luostarinene, R., Boberg, M. & Saldeen, T. Fatty acid composition in total phospholipids of human coronary arteries in sudden cardiac death. Atherosclerosis 99, 187–193 (1993).

    Google Scholar 

  68. Felton, C. V., Crook, D., Davies, M. J. & Oliver, M. F. Relation of plaque lipid composition and morphology to the stability of human aortic plaques. Arterioscler. Thromb. Vasc. Biol. 17, 1337–1345 (1997).

    CAS  PubMed  Google Scholar 

  69. Gautam, M. et al. Importance of fatty acid compositions in patients with peripheral arterial disease. PLoS ONE 9, e107003 (2014).

    PubMed  PubMed Central  Google Scholar 

  70. Leng, G. C. et al. Randomized controlled trial of gamma-linolenic acid and eicosapentaenoic acid in peripheral arterial disease. Clin. Nutr. 17, 265–271 (1998).

    CAS  PubMed  Google Scholar 

  71. Guivernau, M., Meza, N., Barja, P. & Roman, O. Clinical and experimental study on the long-term effect of dietary gamma-linolenic acid on plasma lipids, platelet aggregation, thromboxane formation, and prostacyclin production. Prostaglandins Leukot. Essent. Fatty Acids 51, 311–316 (1994).

    CAS  PubMed  Google Scholar 

  72. Tomiyama, H. et al. Relationships among the serum omega fatty acid levels, serum C-reactive protein levels and arterial stiffness/wave reflection in Japanese men. Atherosclerosis 217, 433–436 (2011).

    CAS  PubMed  Google Scholar 

  73. Reinders, I. et al. Higher plasma phospholipid n-3 PUFAs, but lower n-6 PUFAs, are associated with lower pulse wave velocity among older adults. J. Nutr. 145, 2317–2324 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Szczeklik, A., Gryglewski, R. J., Sladek, K., Kostaka-Trabka, E. & Zmuda, A. Dihomo-γ-linolenic acid in patients with atherosclerosis: effects on platelet aggregation, plasma lipids and low-density lipoprotein-induced inhibition of prostacyclin generation. Thromb. Haemost. 51, 186–188 (1984).

    CAS  PubMed  Google Scholar 

  75. Sluijs, I., Plantinga, Y., de Roos, B., Mennen, L. I. & Bots, M. L. Dietary supplementation with cis-9,trans-11 conjugated linoleic acid and aortic stiffness in overweight and obese adults. Am. J. Clin. Nutr. 91, 175–183 (2010).

    CAS  PubMed  Google Scholar 

  76. Ramsden, C. E. et al. Re-evaluation of the traditional diet-heart hypothesis: analysis of recovered data from Minnesota Coronary Experiment (1968–73). BMJ 353, i1246 (2016).

    PubMed  PubMed Central  Google Scholar 

  77. Smit, L. A., Baylin, A. & Campos, H. Conjugated linoleic acid in adipose tissue and risk of myocardial infarction. Am. J. Clin. Nutr. 92, 34–40 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kromhout, D. et al. Food consumption patterns in the 1960s in seven countries. Am. J. Clin. Nutr. 49, 889–894 (1989).

    CAS  PubMed  Google Scholar 

  79. Keys, A. Coronary heart disease in seven countries. Nutrition 13, 250–252; discussion 249, 253 (1997).

    CAS  PubMed  Google Scholar 

  80. Scoditti, E. et al. Mediterranean diet polyphenols reduce inflammatory angiogenesis through MMP-9 and COX-2 inhibition in human vascular endothelial cells: a potentially protective mechanism in atherosclerotic vascular disease and cancer. Arch. Biochem. Biophys. 527, 81–89 (2012).

    CAS  PubMed  Google Scholar 

  81. Carluccio, M. A. et al. Olive oil and red wine antioxidant polyphenols inhibit endothelial activation: antiatherogenic properties of mediterranean diet phytochemicals. Arterioscler. Thromb. Vasc. Biol. 23, 622–629 (2003).

    CAS  PubMed  Google Scholar 

  82. Soler-Rivas, C., Espín, J. C. & Wichers, H. J. Oleuropein and related compounds. J. Sci. Food Agric. 80, 1013–1023 (2000).

    CAS  Google Scholar 

  83. Dell'Agli, M. et al. Minor components of olive oil modulate proatherogenic adhesion molecules involved in endothelial activation. J. Agric. Food Chem. 54, 3259–3264 (2006).

    CAS  PubMed  Google Scholar 

  84. Rosignoli, P., Fuccelli, R., Fabiani, R., Servili, M. & Morozzi, G. Effect of olive oil phenols on the production of inflammatory mediators in freshly isolated human monocytes. J. Nutr. Biochem. 24, 1513–1519 (2013).

    CAS  PubMed  Google Scholar 

  85. Mangas-Cruz, M. A. et al. Effects of minor constituents (non-glyceride compounds) of virgin olive oil on plasma lipid concentrations in male Wistar rats. Clin. Nutr. 20, 211–215 (2001).

    CAS  PubMed  Google Scholar 

  86. Gorinstein, S. et al. Olive oils improve lipid metabolism and increase antioxidant potential in rats fed diets containing cholesterol. J. Agric. Food Chem. 50, 6102–6108 (2002).

    CAS  PubMed  Google Scholar 

  87. González-Santiago, M. et al. One-month administration of hydroxytyrosol, a phenolic antioxidant present in olive oil, to hyperlipemic rabbits improves blood lipid profile, antioxidant status and reduces atherosclerosis development. Atherosclerosis 188, 35–42 (2006).

    PubMed  Google Scholar 

  88. Acin, S. et al. Hydroxytyrosol administration enhances atherosclerotic lesion development in apo E deficient mice. J. Biochem. 140, 383–391 (2006).

    CAS  PubMed  Google Scholar 

  89. Covas, M. et al. The effect of polyphenols in olive oil on heart disease risk factors: a randomized trial. Ann. Intern. Med. 145, 333–341 (2006).

    CAS  PubMed  Google Scholar 

  90. Fito, M. et al. Antioxidant effect of virgin olive oil in patients with stable coronary heart disease: a randomized, crossover, controlled, clinical trial. Atherosclerosis 181, 149–158 (2005).

    CAS  PubMed  Google Scholar 

  91. Gimeno, E. et al. Changes in the phenolic content of low density lipoprotein after olive oil consumption in men. A randomized crossover controlled trial. Br. J. Nutr. 98, 1243–1250 (2007).

    CAS  PubMed  Google Scholar 

  92. Fito, M. et al. Anti-inflammatory effect of virgin olive oil in stable coronary disease patients: a randomized, crossover, controlled trial. Eur. J. Clin. Nutr. 62, 570–574 (2008).

    CAS  PubMed  Google Scholar 

  93. Valls, R.-M. et al. Effects of functional olive oil enriched with its own phenolic compounds on endothelial function in hypertensive patients. A randomised controlled trial. Food Chem. 167, 30–35 (2015).

    CAS  PubMed  Google Scholar 

  94. Estruch, R. et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N. Engl. J. Med. 368, 1279–1290 (2013).

    CAS  PubMed  Google Scholar 

  95. Murie-Fernandez, M. et al. Carotid intima-media thickness changes with Mediterranean diet: a randomized trial (PREDIMED-Navarra). Atherosclerosis 219, 158–162 (2011).

    CAS  PubMed  Google Scholar 

  96. Konstantinidou, V. et al. In vivo nutrigenomic effects of virgin olive oil polyphenols within the frame of the Mediterranean diet: a randomized controlled trial. FASEB J. 24, 2546–2557 (2010).

    CAS  PubMed  Google Scholar 

  97. Widmer, R. J. et al. Beneficial effects of polyphenol-rich olive oil in patients with early atherosclerosis. Eur. J. Nutr. 52, 1223–1231 (2013).

    CAS  PubMed  Google Scholar 

  98. Wang, R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol. Rev. 92, 791–896 (2012).

    CAS  PubMed  Google Scholar 

  99. Lee, D. Y. et al. Anti-inflammatory activity of sulfur-containing compounds from garlic. J. Med. Food 15, 992–999 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Zanardo, R. C. O. et al. Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J. 20, 2118–2120 (2006).

    CAS  PubMed  Google Scholar 

  101. Rinaldi, L. et al. Hydrogen sulfide prevents apoptosis of human PMN via inhibition of p38 and caspase 3. Lab. Invest. 86, 391–397 (2006).

    CAS  PubMed  Google Scholar 

  102. Muzaffar, S. et al. Exogenous hydrogen sulfide inhibits superoxide formation, NOX-1 expression and Rac1 activity in human vascular smooth muscle cells. J. Vasc. Res. 45, 521–528 (2008).

    CAS  PubMed  Google Scholar 

  103. Zhao, Z. Z. et al. Hydrogen sulfide inhibits macrophage-derived foam cell formation. Exp. Biol. Med. (Maywood) 236, 169–176 (2011).

    CAS  Google Scholar 

  104. Zhang, H. et al. Effect of S-aspirin, a novel hydrogen-sulfide-releasing aspirin (ACS14), on atherosclerosis in apoE-deficient mice. Eur. J. Pharmacol. 697, 106–116 (2012).

    CAS  PubMed  Google Scholar 

  105. Gonen, A. et al. The antiatherogenic effect of allicin: possible mode of action. Pathobiology 72, 325–334 (2005).

    CAS  PubMed  Google Scholar 

  106. Koscienly, J. et al. The antiatherosclerotic effect of Allium sativum. Atherosclerosis 144, 237–249 (1999).

    Google Scholar 

  107. Budoff, M. et al. Inhibiting progression of coronary calcification using Aged Garlic Extract in patients receiving statin therapy: a preliminary study. Prev. Med. 39, 985–991 (2004).

    PubMed  Google Scholar 

  108. Ackermann, R. T. et al. Garlic shows promise for improving some cardiovascular risk factors. Arch. Intern. Med. 161, 813 (2001).

    CAS  PubMed  Google Scholar 

  109. Gardner, C. et al. Effect of raw garlic versus commercial garlic supplements on plasma lipid concentrations in adults with moderate hypercholesterolemia: a randomized clinical trial. Arch. Intern. Med. 167, 346–353 (2007).

    CAS  PubMed  Google Scholar 

  110. Katan, M. B. et al. Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. Mayo Clin. Proc. 78, 965–978 (2003).

    CAS  PubMed  Google Scholar 

  111. Andersson, S. W. et al. Intake of dietary plant sterols is inversely related to serum cholesterol concentration in men and women in the EPIC Norfolk population: a cross-sectional study. Eur. J. Clin. Nutr. 58, 1378–1385 (2004).

    CAS  PubMed  Google Scholar 

  112. Sabeva, N. S. et al. Phytosterols differentially influence ABC transporter expression, cholesterol efflux and inflammatory cytokine secretion in macrophage foam cells. J. Nutr. Biochem. 22, 777–783 (2011).

    CAS  PubMed  Google Scholar 

  113. Nashed, B., Yeganeh, B., HayGlass, K. & Moghadasian, M. Anti-atherogenic effects of dietary plant sterols are associated with inhibition of proinflammatory cytokine production in Apo E-KO mice. J. Nutr. 135, 2438–2444 (2005).

    CAS  PubMed  Google Scholar 

  114. Xu, Z., Le, K. & Moghadasian, M. H. Long-term phytosterol treatment alters gene expression in the liver of apo E-deficient mice. J. Nutr. Biochem. 19, 545–554 (2008).

    CAS  PubMed  Google Scholar 

  115. Moghadasian, M. H., McManus, B. M., Godin, D. V., Rodrigues, B. & Frohlich, J. J. Proatherogenic and antiatherogenic effects of probucol and phytosterols in apolipoprotein E-deficient mice: possible mechanisms of action. Circulation 99, 1733–1739 (1999).

    CAS  PubMed  Google Scholar 

  116. Yeganeh, B., Moshtaghi-Kashanian, G. R., Declercq, V. & Moghadasian, M. H. Combination of dietary phytosterols plus niacin or fenofibrate: effects on lipid profile and atherosclerosis in apo E-KO mice. J. Nutr. Biochem. 16, 222–228 (2005).

    CAS  PubMed  Google Scholar 

  117. Moghadasian, M. H. Dietary phytosterols reduce cyclosporine-induced hypercholesterolemia in apolipoprotein E-knockout mice. Transplantation 81, 207–213 (2006).

    CAS  PubMed  Google Scholar 

  118. Ras, R. T. et al. The effect of a low-fat spread with added plant sterols on vascular function markers: results of the Investigating Vascular Function Effects of Plant Sterols (INVEST) study. Am. J. Clin. Nutr. 101, 733–741 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Rocha, V. Z. et al. Effects of phytosterols on markers of inflammation: a systematic review and meta-analysis. Atherosclerosis 248, 76–83 (2016).

    CAS  PubMed  Google Scholar 

  120. Gylling, H. et al. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis 232, 346–360 (2014).

    CAS  PubMed  Google Scholar 

  121. Stock, J. Focus on lifestyle: EAS Consensus Panel position statement on phytosterol-added foods. Atherosclerosis 234, 142–145 (2014).

    CAS  PubMed  Google Scholar 

  122. Ottestad, I. et al. Phytosterol capsules and serum cholesterol in hypercholesterolemia: a randomized controlled trial. Atherosclerosis 228, 421–425 (2013).

    CAS  PubMed  Google Scholar 

  123. Amir Shaghaghi, M., Abumweis, S. S. & Jones, P. J. H. Cholesterol-lowering efficacy of plant sterols/stanols provided in capsule and tablet formats: results of a systematic review and meta-analysis. J. Acad. Nutr. Diet. 113, 1494–1503 (2013).

    PubMed  Google Scholar 

  124. Chan, Y. et al. Plasma concentrations of plant sterols: physiology and relationship with coronary heart disease. Nutr. Rev. 64, 385–402 (2006).

    PubMed  Google Scholar 

  125. Rajaratnam, R. A., Gylling, H. & Miettinen, T. A. Independent association of serum squalene and noncholesterol sterols with coronary artery disease in postmenopausal women. J. Am. Coll. Cardiol. 35, 1185–1191 (2000).

    CAS  PubMed  Google Scholar 

  126. Assmann, G. et al. Plasma sitosterol elevations are associated with an increased incidence of coronary events in men: results of a nested case-control analysis of the Prospective Cardiovascular Munster (PROCAM) study. Nutr. Metab. Cardiovasc. Dis. 16, 13–21 (2006).

    CAS  PubMed  Google Scholar 

  127. Falcone Ferreyra, M. L., Rius, S. P. & Casati, P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci. 3, 222 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Yamakuchi, M., Bao, C., Ferlito, M. & Lowenstein, C. J. Epigallocatechin gallate inhibits endothelial exocytosis. Biol. Chem. 389, 935–941 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Morrison, M. et al. Epicatechin attenuates atherosclerosis and exerts anti-inflammatory effects on diet-induced human-CRP and NFκB in vivo. Atherosclerosis 233, 149–156 (2014).

    CAS  PubMed  Google Scholar 

  130. Fisher, N., Hughes, M., Gerhard-Herman, M. & Hollenberg, N. Flavanol-rich cocoa induces nitric-oxide-dependent vasodilation in healthy humans. J. Hypertens. 21, 2281–2286 (2003).

    CAS  PubMed  Google Scholar 

  131. Velayutham, P., Babu, A. & Liu, D. M. Green tea catechins and cardiovascular health: an update. Curr. Med. Chem. 15, 1840–1850 (2008).

    PubMed Central  Google Scholar 

  132. Tinahones, F. et al. Green tea reduces LDL oxidability and improves vascular function. J. Am. Coll. Nutr. 27, 209–213 (2008).

    CAS  PubMed  Google Scholar 

  133. Matsuyama, T., Tanaka, Y., Kamimaki, I., Nagao, T. & Tokimitsu, I. Catechin safely improved higher levels of fatness, blood pressure, and cholesterol in children. Obesity 101, 1338–1348 (2008).

    Google Scholar 

  134. Rassaf, T. et al. Vasculoprotective effects of dietary cocoa flavanols in patients on hemodialysis: a double-blind, randomized, placebo-controlled trial. Clin. J. Am. Soc. Nephrol. 11, 108–118 (2016).

    CAS  PubMed  Google Scholar 

  135. Flammer, A. J. et al. Cardiovascular effects of flavanol-rich chocolate in patients with heart failure. Eur. Heart J. 33, 2172–2180 (2012).

    CAS  PubMed  Google Scholar 

  136. Sansone, R. et al. Cocoa flavanol intake improves endothelial function and Framingham Risk Score in healthy men and women: a randomised, controlled, double-masked trial: the Flaviola Health Study. Br. J. Nutr. 114, 1246–1255 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Heiss, C. et al. Impact of cocoa flavanol intake on age-dependent vascular stiffness in healthy men: a randomized, controlled, double-masked trial. Age 37, 9794 (2015).

    PubMed  Google Scholar 

  138. Hsu, S. et al. Chronic green tea extract supplementation reduces hemodialysis-enhanced production of hydrogen peroxide and hypochlorous acid, atherosclerotic factors, and proinflammatory cytokines. Am. J. Clin. Nutr. 86, 539–547 (2007).

    Google Scholar 

  139. Frank, J. et al. Daily consumption of an aqueous green tea extract supplement does not impair liver function or alter cardiovascular disease risk biomarkers in healthy men. J. Nutr. 139, 58–62 (2009).

    CAS  PubMed  Google Scholar 

  140. West, S. G. et al. Effects of dark chocolate and cocoa consumption on endothelial function and arterial stiffness in overweight adults. Br. J. Nutr. 111, 653–661 (2014).

    CAS  PubMed  Google Scholar 

  141. Osganian, S. K. et al. Vitamin C and risk of coronary heart disease in women. J. Am. Coll. Cardiol. 42, 246–252 (2003).

    CAS  PubMed  Google Scholar 

  142. d'Uscio, L. V. Long-term vitamin C treatment increases vascular tetrahydrobiopterin levels and nitric oxide synthase activity. Circ. Res. 92, 88–95 (2002).

    Google Scholar 

  143. Matsumoto, T. et al. Protective effect of chronic vitamin C treatment on endothelial function of apolipoprotein E-deficient mouse carotid artery. J. Pharm. Exp. Ther. 306, 103–108 (2003).

    CAS  Google Scholar 

  144. Averill, M. M. et al. Neither antioxidants nor genistein inhibit the progression of established atherosclerotic lesions in older apoE deficient mice. Atherosclerosis 203, 82–88 (2009).

    CAS  PubMed  Google Scholar 

  145. Jiang, F., Jones, G. T. & Dusting, G. J. Failure of antioxidants to protect against angiotensin II-induced aortic rupture in aged apolipoprotein(E)-deficient mice. Br. J. Pharmacol. 152, 880–890 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Gavrila, D. et al. Vitamin E inhibits abdominal aortic aneurysm formation in angiotensin II-infused apolipoprotein E-deficient mice. Atheroscler. Thromb. Vasc. Biol. 25, 1671–1677 (2005).

    CAS  Google Scholar 

  147. Khaw, K. et al. Relation between plasma ascorbic acid and mortality in men and women in EPIC-Norfolk prospective study: a prospective population study. European prospective investigation into cancer and nutrition. Lancet 357, 657–663 (2001).

    CAS  PubMed  Google Scholar 

  148. Ghanim, H. et al. Orange juice neutralizes the proinflammatory effect of a high-fat, high-carbohydrate meal and prevents endotoxin increase and Toll-like receptor expression. Am. J. Clin. Nutr. 91, 940–949 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Levine, G. N. et al. Ascorbic acid reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation 93, 1107–1113 (1996).

    CAS  PubMed  Google Scholar 

  150. Heitzer, T., Just, H. & Munzel, T. Antioxidant vitamin C improves endothelial dysfunction in chronic smokers. Circulation 94, 6–9 (1996).

    CAS  PubMed  Google Scholar 

  151. Ashor, A. W., Lara, J., Mathers, J. C. & Siervo, M. Effect of vitamin C on endothelial function in health and disease: a systematic review and meta-analysis of randomised controlled trials. Atherosclerosis 235, 9–20 (2014).

    CAS  PubMed  Google Scholar 

  152. Salonen, J. T. et al. Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) study: a randomized trial of the effect of vitamins E and C on 3-year progression of carotid atherosclerosis. J. Intern. Med. 248, 377–386 (2000).

    CAS  PubMed  Google Scholar 

  153. Knekt, P. et al. Antioxidant vitamins and coronary heart disease risk: a pooled analysis of 9 cohorts. Am. J. Clin. Nutr. 80, 1508–1520 (2004).

    CAS  PubMed  Google Scholar 

  154. Stephens, N. G. et al. Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 347, 781–786 (1996).

    CAS  PubMed  Google Scholar 

  155. Plantinga, Y. et al. Supplementation with vitamins C and E improves arterial stiffness and endothelial function in essential hypertensive patients. Am. J. Hypertens. 20, 392–397 (2007).

    CAS  PubMed  Google Scholar 

  156. Raitakari, O. T. et al. Oral vitamin C and endothelial function in smokers: short-term improvement, but no sustained beneficial effect. J. Am. Coll. Cardiol. 35, 1616–1621 (2000).

    CAS  PubMed  Google Scholar 

  157. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360, 23–33 (2002).

  158. Yusuf, S., Dagenais, G., Pogue, J., Bosch, J. & Sleight, P. Vitamin E supplementation and cardiovascular events in high-risk patients. N. Engl. J. Med. 342, 154–160 (2000).

    CAS  PubMed  Google Scholar 

  159. Hodis, H. N. Alpha-tocopherol supplementation in healthy individuals reduces low-density lipoprotein oxidation but not atherosclerosis: The Vitamin E Atherosclerosis Prevention Study (VEAPS). Circulation 106, 1453–1459 (2002).

    CAS  PubMed  Google Scholar 

  160. Kris-Etherton, P. M., Lichtenstein, A. H., Howard, B. V., Steinberg, D. & Witztum, J. L. Antioxidant vitamin supplements and cardiovascular disease. Circulation 110, 637–641 (2004).

    CAS  PubMed  Google Scholar 

  161. Topping, D. L. & Clifton, P. M. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81, 1031–1064 (2001).

    CAS  PubMed  Google Scholar 

  162. Liu, T. et al. Short-chain fatty acids suppress lipopolysaccharide-induced production of nitric oxide and proinflammatory cytokines through inhibition of NF-κB pathway in RAW264.7 cells. Inflammation 35, 1676–1684 (2012).

    CAS  PubMed  Google Scholar 

  163. Miller, S. J., Zaloga, G. P., Hoggatt, A. M., Labarrere, C. & Faulk, W. P. Short-chain fatty acids modulate gene expression for vascular endothelial cell adhesion molecules. Nutrition 21, 740–748 (2005).

    CAS  PubMed  Google Scholar 

  164. Menzel, T. et al. Butyrate inhibits leukocyte adhesion to endothelial cells via modulation of VCAM-1. Inflamm. Bowel Dis. 10, 122–128 (2004).

    PubMed  Google Scholar 

  165. Aguilar, E. C. et al. Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFκB activation. Nutr. Metab. Cardiovasc. Dis. 24, 606–613 (2014).

    CAS  PubMed  Google Scholar 

  166. Liu, S. et al. A prospective study of dietary fiber intake and risk of cardiovascular disease among women. J. Am. Coll. Cardiol. 39, 49–56 (2002).

    PubMed  Google Scholar 

  167. Merchant, A. et al. Dietary fiber reduces peripheral arterial disease risk in men. J. Nutr. 133, 3658–3663 (2003).

    CAS  PubMed  Google Scholar 

  168. Oh, K. et al. Carbohydrate intake, glycemic index, glycemic load, and dietary fiber in relation to risk of stroke in women. Am. J. Epidemiol. 161, 161–169 (2005).

    PubMed  Google Scholar 

  169. Pereira, M. et al. Dietary fiber and risk of coronary heart disease: a pooled analysis of cohort studies. Arch. Intern. Med. 164, 370–376 (2004).

    PubMed  Google Scholar 

  170. Ramos, S. C. et al. The role of soluble fiber intake in patients under highly effective lipid-lowering therapy. Nutr. J. 10, 1–8 (2011).

    Google Scholar 

  171. Kohen, R., Yamamoto, Y., Cundy, K. C. & Ames, B. N. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc. Natl Acad. Sci. USA 85, 3175–3179 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Rashid, I., van Reyk, D. & Davies, M. Carnosine and its constituents inhibit glycation of low-density lipoproteins that promotes foam cell formation in vitro. FEBS Lett. 581, 1067–1070 (2007).

    CAS  PubMed  Google Scholar 

  173. Brown, B. et al. Supplementation with carnosine decreases plasma triglycerides and modulates atherosclerotic plaque composition in diabetic apo E−/− mice. Atherosclerosis 232, 403–409 (2014).

    CAS  PubMed  Google Scholar 

  174. Kim, M. Y., Kim, E. J., Kim, Y.-N., Choi, C. & Lee, B.-H. Effects of α-lipoic acid and L-carnosine supplementation on antioxidant activities and lipid profiles in rats. Nutr. Res. Pract. 5, 421–428 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. de Courten, B. et al. Effects of carnosine supplementation on glucose metabolism: pilot clinical trial. Obesity 24, 1027–1034 (2016).

    CAS  PubMed  Google Scholar 

  176. Ghirlanda, G. et al. Evidence of plasma coq10-lowering effect by HMG-CoA reductase inhibitors: a double-blind, placebo-controlled study. J. Clin. Pharmacol. 33, 226–229 (1993).

    CAS  PubMed  Google Scholar 

  177. Wang, D. et al. Coenzyme Q10 promotes macrophage cholesterol efflux by regulation of the activator protein-1/miR-378/ATP-binding cassette transporter G1-signaling pathway. Arterioscler. Thromb. Vasc. Biol. 34, 1860–1870 (2014).

    PubMed  Google Scholar 

  178. Gairola, C. G., Howatt, D. A. & Daugherty, A. Dietary coenzyme Q10 does not protect against cigarette smoke-augmented atherosclerosis in apoE-deficient mice. Free Radic. Biol. Med. 48, 1535–1539 (2010).

    CAS  PubMed  Google Scholar 

  179. Yan, X. et al. Coenzyme Q10 consumption promotes ABCG1-mediated macrophage cholesterol efflux: a randomized, double-blind, placebo-controlled, cross-over study in healthy volunteers. Mol. Nutr. Food Res. 59, 1725–1734 (2015).

    CAS  PubMed  Google Scholar 

  180. Sanoobar, M. et al. Coenzyme Q10 supplementation ameliorates inflammatory markers in patients with multiple sclerosis: a double blind, placebo, controlled randomized clinical trial. Nutr. Neurosci. 18, 169–176 (2015).

    CAS  PubMed  Google Scholar 

  181. Gao, L. et al. Effects of coenzyme Q10 on vascular endothelial function in humans: a meta-analysis of randomized controlled trials. Atherosclerosis 221, 311–316 (2012).

    CAS  PubMed  Google Scholar 

  182. Dai, Y.-L. et al. Reversal of mitochondrial dysfunction by coenzyme Q10 supplement improves endothelial function in patients with ischaemic left ventricular systolic dysfunction: a randomized controlled trial. Atherosclerosis 216, 395–401 (2011).

    CAS  PubMed  Google Scholar 

  183. Lee, Y. J., Cho, W. J., Kim, J. K. & Lee, D. C. Effects of coenzyme Q10 on arterial stiffness, metabolic parameters, and fatigue in obese subjects: a double-blind randomized controlled study. J. Med. Food 14, 386–390 (2011).

    CAS  PubMed  Google Scholar 

  184. Zeb, I. et al. Aged garlic extract and coenzyme Q10 have favorable effect on inflammatory markers and coronary atherosclerosis progression: a randomized clinical trial. J. Cardiovasc. Dis. Res. 3, 185–190 (2012).

    PubMed  PubMed Central  Google Scholar 

  185. Larijani, V. N. et al. Beneficial effects of aged garlic extract and coenzyme Q10 on vascular elasticity and endothelial function: the FAITH randomized clinical trial. Nutrition 29, 71–75 (2013).

    CAS  PubMed  Google Scholar 

  186. Abe, Y., Hashimoto, S. & Horie, T. Curcumin inhibitor of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages. Pharmacol. Res. 39, 41–47 (1999).

    CAS  PubMed  Google Scholar 

  187. Gao, S. et al. Curcumin induces M2 macrophage polarization by secretion IL-4 and/or IL-13. J. Mol. Cell. Cardiol. 85, 131–139 (2015).

    CAS  PubMed  Google Scholar 

  188. Ramirez-Torosa, M. et al. Oral administration of a turmeric extract inhibits LDL oxidation and has hypocholesterolemic effects in rabbits with experimental atherosclerosis. Atherosclerosis 147, 371–378 (1999).

    Google Scholar 

  189. Quiles, J. L. et al. Curcuma longa extract supplementation reduces oxidative stress and attenuates aortic fatty streak development in rabbits. Arterioscler. Thromb. Vasc. Biol. 22, 1225–1231 (2002).

    CAS  PubMed  Google Scholar 

  190. Olszanecki, R. et al. Effect of curcumin on atherosclerosis in apoE/LDLR-double knockout mice. J. Physiol. Pharmacol. 56, 627–635 (2005).

    CAS  PubMed  Google Scholar 

  191. Chuengsamarn, S., Rattanamongkolgul, S., Phonrat, B., Tungtrongchitr, R. & Jirawatnotai, S. Reduction of atherogenic risk in patients with type 2 diabetes by curcuminoid extract: a randomized controlled trial. J. Nutr. Biochem. 25, 144–150 (2014).

    CAS  PubMed  Google Scholar 

  192. Akazawa, N. et al. Curcumin ingestion and exercise training improve vascular endothelial function in postmenopausal women. Nutr. Res. 32, 795–799 (2012).

    CAS  PubMed  Google Scholar 

  193. Anand, P., Kunnumakkara, A. B., Newman, R. A. & Aggarwal, B. B. Bioavailability of curcumin: problems and promises. Mol. Pharm. 4, 807–818 (2007).

    CAS  PubMed  Google Scholar 

  194. Arab, L. & Steck, S. Lycopene and cardiovascular disease. Am J. Clin. Nutr. 71, 1691S–1695S; discussion 1696S–1697S (2000).

    CAS  PubMed  Google Scholar 

  195. Rao, A. V. & Agarwal, S. Role of antioxidant lycopene in cancer and heart disease. J. Am. Coll. Nutr. 19, 563–569 (2000).

    CAS  PubMed  Google Scholar 

  196. Fuhrman, B., Elis, A. & Aviram, M. Hypercholesterolemic effect of lycopene and β-carotene is related to suppression of cholesterol synthesis and augmentation of LDL receptor activity in macrophage. Biochem. Biophys. Res. Commun. 233, 658–662 (1997).

    CAS  PubMed  Google Scholar 

  197. Dugas, T. R., Morel, D. W. & Harrison, E. H. Impact of LDL carotenoid and α-tocopherol content on LDL oxidation by endothelial cells in culture. J. Lipid Res. 39, 999–1007 (1998).

    CAS  PubMed  Google Scholar 

  198. Zou, Z.-Y. et al. Effects of lutein and lycopene on carotid intima-media thickness in Chinese subjects with subclinical atherosclerosis: a randomised, double-blind, placebo-controlled trial. Br. J. Nutr. 111, 474–480 (2014).

    CAS  PubMed  Google Scholar 

  199. Kim, O. Y. et al. Independent inverse relationship between serum lycopene concentration and arterial stiffness. Atherosclerosis 208, 581–586 (2010).

    CAS  PubMed  Google Scholar 

  200. Gajendragadkar, P. R. et al. Effects of oral lycopene supplementation on vascular function in patients with cardiovascular disease and healthy volunteers: a randomised controlled trial. PLoS ONE 9, e99070 (2014).

    PubMed  PubMed Central  Google Scholar 

  201. Thies, F. et al. Effect of a tomato-rich diet on markers of cardiovascular disease risk in moderately overweight, disease-free, middle-aged adults: a randomized controlled trial. Am. J. Clin. Nutr. 95, 1013–1022 (2012).

    CAS  PubMed  Google Scholar 

  202. Richard, J. L. Coronary risk factors. The French paradox. Arch. Mal. Coeur Vaiss. 80, 17–21 (in French) (1987).

    PubMed  Google Scholar 

  203. Voloshyna, I., Hai, O., Littlefield, M., Carsons, S. & Reiss, A. Resveratrol mediates anti-atherogenic effects on cholesterol flux in human macrophages and endothelium via PPARγ and adenosine. Eur. J. Pharmacol. 698, 299–309 (2013).

    CAS  PubMed  Google Scholar 

  204. Berbée, J. F. P. et al. Resveratrol protects against atherosclerosis, but does not add to the antiatherogenic effect of atorvastatin, in APOE*3-Leiden.CETP mice. J. Nutr. Biochem. 24, 1423–1430 (2013).

    PubMed  Google Scholar 

  205. Levantesi, G. et al. Wine consumption and risk of cardiovascular events after myocardial infarction: results from the GISSI-Prevenzione trial. Int. J. Cardiol. 163, 282–287 (2013).

    PubMed  Google Scholar 

  206. Pirillo, A. & Catapano, A. L. Berberine, a plant alkaloid with lipid- and glucose-lowering properties: from in vitro evidence to clinical studies. Atherosclerosis 243, 449–461 (2015).

    CAS  PubMed  Google Scholar 

  207. Jeong, H. W. et al. Berberine suppresses proinflammatory responses through AMPK activation in macrophages. Am. J. Physiol. Endocrinol. Metab. 296, E955–E964 (2009).

    CAS  PubMed  Google Scholar 

  208. Cheng, W.-E. et al. Berberine reduces Toll-like receptor-mediated macrophage migration by suppression of Src enhancement. Eur. J. Pharmacol. 757, 1–10 (2015).

    CAS  PubMed  Google Scholar 

  209. Lee, T.-S. et al. Anti-atherogenic effect of berberine on LXRα-ABCA1-dependent cholesterol efflux in macrophages. J. Cell. Biochem. 111, 104–110 (2010).

    CAS  PubMed  Google Scholar 

  210. Wang, Q. et al. Activation of AMP-activated protein kinase is required for berberine-induced reduction of atherosclerosis in mice: the role of uncoupling protein 2. PLoS ONE 6, e25436 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Hu, Y. & Davies, G. E. Berberine inhibits adipogenesis in high-fat diet-induced obesity mice. Fitoterapia 81, 358–366 (2010).

    CAS  PubMed  Google Scholar 

  212. Li, H. et al. Hepatocyte nuclear factor 1α plays a critical role in PCSK9 gene transcription and regulation by the natural hypocholesterolemic compound berberine. J. Biol. Chem. 284, 28885–28895 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Kong, W. et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat. Med. 10, 1344–1351 (2004).

    CAS  PubMed  Google Scholar 

  214. Derosa, G. et al. Effects of berberine on lipid profile in subjects with low cardiovascular risk. Expert Opin. Biol. Ther. 13, 475–482 (2013).

    CAS  PubMed  Google Scholar 

  215. Kong, W.-J. et al. Combination of simvastatin with berberine improves the lipid-lowering efficacy. Metabolism 57, 1029–1037 (2008).

    CAS  PubMed  Google Scholar 

  216. Affuso, F., Ruvolo, A., Micillo, F., Saccà, L. & Fazio, S. Effects of a nutraceutical combination (berberine, red yeast rice and policosanols) on lipid levels and endothelial function randomized, double-blind, placebo-controlled study. Nutr. Metab. Cardiovasc. Dis. 20, 656–661 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our research was supported by grants from the British Heart Foundation (PG/07/031/22716, PG/08/073/25520, PG/10/55/28467 and PG/12/50/29691). We apologize to all the authors whose work could not be cited because of space limitations, and thank Daryn R. Michael (Cultech Limited, UK) for his valuable input.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, discussed its content, and wrote, reviewed, and edited the manuscript before submission.

Corresponding author

Correspondence to Dipak P. Ramji.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moss, J., Ramji, D. Nutraceutical therapies for atherosclerosis. Nat Rev Cardiol 13, 513–532 (2016). https://doi.org/10.1038/nrcardio.2016.103

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2016.103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing