Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Update on hypertrophic cardiomyopathy and a guide to the guidelines

Key Points

  • Although the ACC Foundation (ACCF)/AHA and ESC guidelines show widespread concordance, the ESC definition of hypertrophic cardiomyopathy (HCM) includes nonsarcomeric disease states associated with load-independent left ventricular hypertrophy (LVH)

  • Relatives of patients with HCM should be offered screening; autosomal dominant inheritance is typical, and a range of electrocardiographic and imaging features are recognized to precede the development of LVH

  • Prognostic assessment at baseline and follow-up is recommended for all patients with HCM; despite recognizing many of the same predictors of sudden death, the ACCF/AHA and ESC adopt distinct approaches to risk profiling

  • Specialist HCM centres promote implementation of best-practice guidelines by offering facilities and skills for investigations such as exercise stress echocardiography, cardiovascular magnetic resonance (CMR), and genetic analysis, in addition to high-volume programmes for invasive septal reduction

  • Patients referred to specialist HCM centres also benefit from multidisciplinary support systems and clinical experience in interpreting equivocal clinical findings, adjudicating borderline risk profiles, and managing complex cases

  • Advances in the evaluation of HCM include CMR-based T1 mapping for demonstrating diffuse and interstitial fibrosis; in the therapeutic arena, several putative substrate-modulating agents are progressing from preclinical to clinical trials

Abstract

Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disorder, affecting 1 in 500 individuals worldwide. Existing epidemiological studies might have underestimated the prevalence of HCM, however, owing to limited inclusion of individuals with early, incomplete phenotypic expression. Clinical manifestations of HCM include diastolic dysfunction, left ventricular outflow tract obstruction, ischaemia, atrial fibrillation, abnormal vascular responses and, in 5% of patients, progression to a 'burnt-out' phase characterized by systolic impairment. Disease-related mortality is most often attributable to sudden cardiac death, heart failure, and embolic stroke. The majority of individuals with HCM, however, have normal or near-normal life expectancy, owing in part to contemporary management strategies including family screening, risk stratification, thromboembolic prophylaxis, and implantation of cardioverter–defibrillators. The clinical guidelines for HCM issued by the ACC Foundation/AHA and the ESC facilitate evaluation and management of the disease. In this Review, we aim to assist clinicians in navigating the guidelines by highlighting important updates, current gaps in knowledge, differences in the recommendations, and challenges in implementing them, including aids and pitfalls in clinical and pathological evaluation. We also discuss the advances in genetics, imaging, and molecular research that will underpin future developments in diagnosis and therapy for HCM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cine cardiovascular magnetic resonance (CMR) images of hypertrophic cardiomyopathy (HCM) cases with TNNI3 mutations.
Figure 2: Apical hypertrophy missed by echocardiography.
Figure 3: T1 mapping and late gadolinium enhancement (LGE) in differentiating archetypal hypertrophic cardiomyopathy (HCM) from phenotypic mimics.
Figure 4: Doppler echocardiographic assessment of left ventricular outflow tract obstruction (LVOTO)93,94,95,96.
Figure 5: Genotype-positive hypertrophic cardiomyopathy (HCM) without left ventricular hypertrophy (LVH)116,117,118,119,120,121,122,123,124.
Figure 6: Risk stratification in hypertrophic cardiomyopathy (HCM)13,14,15,134,135.
Figure 7: Calcium handling and the actin myosin crossbridge cycle in cardiac muscle.
Figure 8: Relationship between calcium concentration (pCa) and active force generation in hypertrophic cardiomyopathy (HCM).
Figure 9: Assessing force production, velocity, and power output of the cardiac sarcomere.
Figure 10: The energy depletion hypothesis.

Similar content being viewed by others

References

  1. Maron, B. J. et al. Hypertrophic cardiomyopathy in adulthood associated with low cardiovascular mortality with contemporary management strategies. J. Am. Coll. Cardiol. 65, 1915–1928 (2015).

    Article  PubMed  Google Scholar 

  2. Maron, B. J. et al. Hypertrophic cardiomyopathy in children, adolescents, and young adults associated with low cardiovascular mortality with contemporary management strategies. Circulation 133, 62–73 (2016).

    Article  PubMed  Google Scholar 

  3. Colan, S. D. et al. Epidemiology and cause-specific outcome of hypertrophic cardiomyopathy in children: findings from the Pediatric Cardiomyopathy Registry. Circulation 115, 773–781 (2007).

    Article  PubMed  Google Scholar 

  4. McKenna, W. J. & Sen-Chowdhry, S. From Teare to the present day: a fifty year odyssey in hypertrophic cardiomyopathy, a paradigm for the logic of the discovery process. Rev. Esp. Cardiol. 61, 1239–1244 (2008).

    Article  PubMed  Google Scholar 

  5. Sen-Chowdhry, S. & McKenna, W. J. Standing on the shoulders of giants: J. A. P. Paré and the birth of cardiovascular genetics. Can. J. Cardiol. 31, 1305–1308 (2015).

    Article  PubMed  Google Scholar 

  6. Maron, B. J. et al. Asymetric septal hypertrophy in childhood. Circulation 53, 9–19 (1976).

    Article  CAS  PubMed  Google Scholar 

  7. McKenna, W. et al. Prognosis in hypertrophic cardiomyopathy: role of age and clinical, electrocardiographic and hemodynamic features. Am. J. Cardiol. 47, 532–538 (1981).

    Article  CAS  PubMed  Google Scholar 

  8. Ziółkowska, L., Turska-Kmiec, A., Petryka, J. & Kawalec, W. Predictors of long-term outcome in children with hypertrophic cardiomyopathy. Pediatr. Cardiol. 37, 448–458 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Spirito, P. et al. Clinical course and prognosis of hypertrophic cardiomyopathy in an outpatient population. N. Engl. J. Med. 320, 749–755 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Maron, B. J. et al. Clinical course of hypertrophic cardiomyopathy in a regional United States cohort. JAMA 281, 650–655 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Elliott, P. M. et al. Historical trends in reported survival rates in patients with hypertrophic cardiomyopathy. Heart 92, 785–791 2006).

    Article  CAS  PubMed  Google Scholar 

  12. Ellenbogen, K. A. et al. Are implantable cardioverter defibrillator shocks a surrogate for sudden cardiac death in patients with nonischemic cardiomyopathy? Circulation 113, 776–782 (2006).

    Article  PubMed  Google Scholar 

  13. Maron, B. J. et al. American College of Cardiology/European Society of Cardiology clinical expert consensus document on hypertrophic cardiomyopathy: a report of the American College of Cardiology foundation task force on clinical expert consensus documents and the European Society of Cardiology committee for practice guidelines. J. Am. Coll. Cardiol. 42, 1687–1713 (2003).

    Article  PubMed  Google Scholar 

  14. Gersh, B. J. et al. 2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy : a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines developed in collaboration with the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 58, e212–e260 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Elliott, P. M. et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart J. 35, 2733–2779 (2014).

    Article  PubMed  Google Scholar 

  16. Elliott, P. M. et al. Left ventricular outflow tract obstruction and sudden death risk in patients with hypertrophic cardiomyopathy. Eur. Heart J. 27, 1933–1941 (2006).

    Article  PubMed  Google Scholar 

  17. Thaman, R. et al. Reversal of inappropriate peripheral vascular responses in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 46, 883–892 (2005).

    Article  PubMed  Google Scholar 

  18. Ammirati, E. et al. Pharmacological treatment of hypertrophic cardiomyopathy: current practice and novel perspectives. Eur. J. Heart Fail. http://dx.doi.org/10.1002/ejhf.541 (2016).

  19. Corrado, D. et al. Trends in sudden cardiovascular death in young competitive athletes after implementation of a preparticipation screening program. JAMA 296, 1593–1601 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Biagini, E. et al. Dilated-hypokinetic evolution of hypertrophic cardiomyopathy: prevalence, incidence, risk factors, and prognostic implications in pediatric and adult patients. J. Am. Coll. Cardiol. 46, 1543–1550 (2005).

    Article  PubMed  Google Scholar 

  22. Levine, R. A. et al. Papillary muscle displacement causes systolic anterior motion of the mitral valve. Experimental validation and insights into the mechanism of subaortic obstruction. Circulation 91, 1189–1195 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Elliott, P. et al. Prevalence of Anderson-Fabry disease in patients with hypertrophic cardiomyopathy: the European Anderson-Fabry Disease survey. Heart 97, 1957–1960 (2011).

    Article  PubMed  Google Scholar 

  24. Sachdev, B. et al. Prevalence of Anderson-Fabry disease in male patients with late onset hypertrophic cardiomyopathy. Circulation 105, 1407–1411 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Monserrat, L. et al. Prevalence of fabry disease in a cohort of 508 unrelated patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 50, 2399–2403 (2007).

    Article  PubMed  Google Scholar 

  26. Vitale, G., Pivonello, R., Lombardi, G. & Colao, A. Cardiac abnormalities in acromegaly. Pathophysiology and implications for management. Treat. Endocrinol. 3, 309–318 (2004).

    Article  PubMed  Google Scholar 

  27. Kampmann, C. in Fabry Disease: Perspectives from 5 Years of FOSCh. 37 (eds Mehta, A., Beck, M. & Sunder-Plassmann, G.) (Oxford: Oxford PharmaGenesis, 2006).

    Google Scholar 

  28. Ramaswami, U. Update on role of agalsidase alfa in management of Fabry disease. Drug Des. Devel. Ther. 5, 155–173 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mariotti, C. et al. Idebenone treatment in Friedreich patients: one-year-long randomized placebo-controlled trial. Neurology 60, 1676–1679 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Maron, B. J. et al. Clinical outcome and phenotypic expression in LAMP2 cardiomyopathy. JAMA 301, 1253–1259 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Feriozzi, S., Schwarting, A., Sunder-Plassmann, G., West, M. & Cybulla, M. Agalsidase alfa slows the decline in renal function in patients with Fabry disease. Am. J. Nephrol. 29, 353–361 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Murphy, R. T. et al. Adenosine monophosphate-activated protein kinase disease mimicks hypertrophic cardiomyopathy and Wolff-Parkinson-White syndrome: natural history. J. Am. Coll. Cardiol. 45, 922–930 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Richards, D. B. et al. Therapeutic clearance of amyloid by antibodies to serum amyloid p component. N. Engl. J. Med. 373, 1106–1114 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Hawkins, P. N. et al. Evolving landscape in the management of transthyretin amyloidosis. Ann. Med. 47, 625–638 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gutgesell, H. P., Speer, M. E. & Rosenberg, H. S. Characterization of the cardiomyopathy in infants of diabetic mothers. Circulation 61, 441–450 (1980).

    Article  CAS  PubMed  Google Scholar 

  36. Atkison, P. et al. Hypertrophic cardiomyopathy associated with tacrolimus in paediatric transplant patients. Lancet 345, 894–896 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Yang, C. et al. Very early treatment for infantile-onset Pompe disease contributes to better outcomes. J. Pediatr. 169, 174.e1–180.e1 (2016).

    Google Scholar 

  38. Güngör, D. et al. Quality of life and participation in daily life of adults with Pompe disease receiving enzyme replacement therapy: 10 years of international follow-up. J. Inherit. Metab. Dis. 39, 253–260 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. McKenna, W. J., Stewart, J. T., Nihoyannopoulos, P., McGinty, F. & Davies, M. J. Hypertrophic cardiomyopathy without hypertrophy: two families with myocardial disarray in the absence of increased myocardial mass. Br. Heart J. 63, 287–290 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Varnava, A. et al. A new mutation of the cardiac troponin T gene causing familial hypertrophic cardiomyopathy without left ventricular hypertrophy. Heart 82, 621–624 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Varnava, A. M. et al. Hypertrophic cardiomyopathy: histopathological features of sudden death in cardiac troponin T disease. Circulation 104, 1380–1384 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Pasquale, F. et al. Long-term outcomes in hypertrophic cardiomyopathy caused by mutations in the cardiac troponin T gene. Circ. Cardiovasc. Genet. 5, 10–17 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Coppini, R. et al. Clinical phenotype and outcome of hypertrophic cardiomyopathy associated with thin-filament gene mutations. J. Am. Coll. Cardiol. 64, 2589–2600 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sheppard, M. N. et al. A detailed pathologic examination of heart tissue from three older patients with Anderson-Fabry disease on enzyme replacement therapy. Cardiovasc. Pathol. 19, 293–301 (2010).

    Article  PubMed  Google Scholar 

  45. Burch, M. et al. Myocardial disarray in Noonan syndrome. Br. Heart J. 68, 586–588 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Arad, M. et al. Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J. Clin. Invest. 109, 357–362 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Varnava, A. M., Elliott, P. M., Mahon, N., Davies, M. J. & McKenna, W. J. Relation between myocyte disarray and outcome in hypertrophic cardiomyopathy. Am. J. Cardiol. 88, 275–279 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Mogensen, J. et al. Frequency and clinical expression of cardiac troponin I mutations in 748 consecutive families with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 44, 2315–2325 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Mogensen, J. et al. Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J. Clin. Invest. 111, 209–216 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sen-Chowdhry, S., Syrris, P. & McKenna, W. J. Genetics of restrictive cardiomyopathy. Heart Fail. Clin. 6, 179–186 (2010).

    Article  PubMed  Google Scholar 

  51. Sen-Chowdhry, S., Tomé Esteban, M. T. & McKenna, W. J. Insights and challenges in hypertrophic cardiomyopathy, 2012. Herzschrittmacherther. Elektrophysiol. 23, 174–185 (2012).

    Article  PubMed  Google Scholar 

  52. Ashrafian, H., Redwood, C., Blair, E. & Watkins, H. Hypertrophic cardiomyopathy:a paradigm for myocardial energy depletion. Trends Genet. 19, 263–268 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Rickers, C. et al. Utility of cardiac magnetic resonance imaging in the diagnosis of hypertrophic cardiomyopathy. Circulation 112, 855–861 (2005).

    Article  PubMed  Google Scholar 

  54. Flett, A. S. et al. Diagnosis of apical hypertrophic cardiomyopathy: T-wave inversion and relative but not absolute apical left ventricular hypertrophy. Int. J. Cardiol. 183, 143–148 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Moon, J. C. C., Fisher, N. G., McKenna, W. J. & Pennell, D. J. Detection of apical hypertrophic cardiomyopathy by cardiovascular magnetic resonance in patients with non-diagnostic echocardiography. Heart 90, 645–649 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Maron, M. S. et al. Prevalence, clinical significance, and natural history of left ventricular apical aneurysms in hypertrophic cardiomyopathy. Circulation 118, 1541–1549 (2008).

    Article  PubMed  Google Scholar 

  57. Maron, M. S. et al. Right ventricular involvement in hypertrophic cardiomyopathy. Am. J. Cardiol. 100, 1293–1298 (2007).

    Article  PubMed  Google Scholar 

  58. Rosca, M. et al. Right ventricular remodeling, its correlates, and its clinical impact in hypertrophic cardiomyopathy. J. Am. Soc. Echocardiogr. 28, 1329–1338 (2015).

    Article  PubMed  Google Scholar 

  59. Fikrle, M. et al. The diagnostic performance of cardiac magnetic resonance in detection of myocardial involvement in AL amyloidosis. Clin. Physiol. Funct. Imaging 36, 218–224 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Fontana, M. et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 132, 1570–1579 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kozor, R. et al. Cardiac involvement in genotype-positive Fabry disease patients assessed by cardiovascular MR. Heart 102, 298–302 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Flett, A. S. et al. Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance. JACC Cardiovasc. Imaging 4, 150–156 (2011).

    Article  PubMed  Google Scholar 

  63. Burt, J. R., Zimmerman, S. L., Kamel, I. R., Halushka M. & Bluemke, D. A. Myocardial T1 mapping: techniques and potential applications. Radiographics 34, 377–395 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Miller, C. A. et al. Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ. Cardiovasc. Imaging 6, 373–383 (2013).

    Article  PubMed  Google Scholar 

  65. Kammerlander, A. A. et al. T1 Mapping by CMR imaging: from histological validation to clinical implication. JACC Cardiovasc. Imaging 9, 14–23 (2016).

    Article  PubMed  Google Scholar 

  66. Moon, J. C. C. et al. Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium. Eur. Heart J. 24, 2151–2155 (2003).

    Article  PubMed  Google Scholar 

  67. Vucicevic, D. et al. The incremental value of magnetic resonance imaging for identification of apical pouch in patients with apical variant of hypertrophic cardiomyopathy. Echocardiography 33, 572–578 (2016).

    Article  PubMed  Google Scholar 

  68. Maron, M. S. et al. Hypertrophic cardiomyopathy phenotype revisited after 50 years with cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 54, 220–228 (2009).

    Article  PubMed  Google Scholar 

  69. Kawel, N. et al. Normal left ventricular myocardial thickness for middle-aged and older subjects with steady-state free precession cardiac magnetic resonance: the multi-ethnic study of atherosclerosis. Circ. Cardiovasc. Imaging 5, 500–508 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Colan, S. D. Hypertrophic cardiomyopathy in childhood. Heart Fail. Clin. 6, 433–444 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lipshultz, S. E. et al. Risk stratification at diagnosis for children with hypertrophic cardiomyopathy: an analysis of data from the Pediatric Cardiomyopathy Registry. Lancet 382, 1889–1897 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Mohamed, S. et al. Tyrosinemia type 1: a rare and forgotten cause of reversible hypertrophic cardiomyopathy in infancy. BMC Res. Notes 6, 362 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Morita, H. et al. Shared genetic causes of cardiac hypertrophy in children and adults. N. Engl. J. Med. 358, 1899–1908 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kaski, J. P. et al. Prevalence of sarcomere protein gene mutations in preadolescent children with hypertrophic cardiomyopathy. Circ. Cardiovasc. Genet. 2, 436–441 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Maron, B. J. et al. Prevention of sudden cardiac death with implantable cardioverter-defibrillators in children and adolescents with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 61, 1527–1535 (2013).

    Article  PubMed  Google Scholar 

  76. Nugent, A. W. et al. Clinical features and outcomes of childhood hypertrophic cardiomyopathy: results from a national population-based study. Circulation 112, 1332–1338 (2005).

    Article  PubMed  Google Scholar 

  77. Decker, J. A. et al. Risk factors and mode of death in isolated hypertrophic cardiomyopathy in children. J. Am. Coll. Cardiol. 54, 250–254 (2009).

    Article  PubMed  Google Scholar 

  78. Biagini, E. et al. Prognostic implications of the Doppler restrictive filling pattern in hypertrophic cardiomyopathy. Am. J. Cardiol. 104, 1727–1731 (2009).

    Article  PubMed  Google Scholar 

  79. Maddukuri, P. V. et al. What is the best approach for the assessment of left atrial size? Comparison of various unidimensional and two-dimensional parameters with three-dimensional echocardiographically determined left atrial volume. J. Am. Soc. Echocardiogr. 19, 1026–1032 (2006).

    Article  PubMed  Google Scholar 

  80. Tsang, T. S. M. et al. Prediction of cardiovascular outcomes with left atrial size: is volume superior to area or diameter? J. Am. Coll. Cardiol. 47, 1018–1023 (2006).

    Article  PubMed  Google Scholar 

  81. Lang, R. M. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 28, 1–39.e14 (2015).

    Article  PubMed  Google Scholar 

  82. Guttmann, O. P. et al. Prediction of thrombo-embolic risk in patients with hypertrophic cardiomyopathy (HCM Risk-CVA). Eur. J. Heart Fail. 17, 837–845 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  83. O'Mahony, C. et al. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD). Eur. Heart J. 35, 2010–2020 (2014).

    Article  PubMed  Google Scholar 

  84. Guttmann, O. P., Rahman, M. S., O'Mahony, C., Anastasakis, A. & Elliott, P. M. Atrial fibrillation and thromboembolism in patients with hypertrophic cardiomyopathy: systematic review. Heart 100, 465–472 (2014).

    Article  PubMed  Google Scholar 

  85. Maron, B. J. et al. Left atrial remodeling in hypertrophic cardiomyopathy and susceptibility markers for atrial fibrillation identified by cardiovascular magnetic resonance. Am. J. Cardiol. 113, 1394–1400 (2014).

    Article  PubMed  Google Scholar 

  86. Nistri, S. et al. Prognostic significance of left atrial size in patients with hypertrophic cardiomyopathy (from the Italian Registry for Hypertrophic Cardiomyopathy). Am. J. Cardiol. 98, 960–965 (2006).

    Article  PubMed  Google Scholar 

  87. Kramer, C. M. et al. Regional heterogeneity of function in hypertrophic cardiomyopathy. Circulation 90, 186–194 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. Serri, K. et al. Global and regional myocardial function quantification by two-dimensional strain: application in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 47, 1175–1181 (2006).

    Article  PubMed  Google Scholar 

  89. Urbano-Moral, J. A., Rowin, E. J., Maron, M. S., Crean, A. & Pandian, N. G. Investigation of global and regional myocardial mechanics with 3-dimensional speckle tracking echocardiography and relations to hypertrophy and fibrosis in hypertrophic cardiomyopathy. Circ. Cardiovasc. Imaging 7, 11–19 (2014).

    Article  PubMed  Google Scholar 

  90. Maciver, D. H. A new method for quantification of left ventricular systolic function using a corrected ejection fraction. Eur. J. Echocardiogr. 12, 228–234 (2011).

    Article  PubMed  Google Scholar 

  91. Maron, M. S. et al. Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy. N. Engl. J. Med. 348, 295–303 (2003).

    Article  PubMed  Google Scholar 

  92. Maron, M. S. et al. Hypertrophic cardiomyopathy is predominantly a disease of left ventricular outflow tract obstruction. Circulation 114, 2232–2239 (2006).

    Article  PubMed  Google Scholar 

  93. Sherrid, M. V., Wever-Pinzon, O., Shah, A. & Chaudhry, F. A. Reflections of inflections in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 54, 212–219 (2009).

    Article  PubMed  Google Scholar 

  94. Sherrid, M. V., Gunsburg, D. Z. & Pearle, G. Mid-systolic drop in left ventricular ejection velocity in obstructive hypertrophic cardiomyopathy—the lobster claw abnormality. J. Am. Soc. Echocardiogr. 10, 707–712 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Nishimura, R. A. & Ommen, S. R. Hypertrophic cardiomyopathy: the search for obstruction. Circulation 114, 2200–2202 (2006).

    Article  PubMed  Google Scholar 

  96. Aurigemma, G. et al. Abnormal left ventricular intracavitary flow acceleration in patients undergoing aortic valve replacement for aortic stenosis. A marker for high postoperative morbidity and mortality. Circulation 86, 926–936 (1992).

    Article  CAS  PubMed  Google Scholar 

  97. Ingles, J., Burns, C., Barratt, A. & Semsarian, C. Application of genetic testing in hypertrophic cardiomyopathy for preclinical disease detection. Circ. Cardiovasc. Genet. 8, 852–859 (2015).

    Article  PubMed  Google Scholar 

  98. Bottillo, I. et al. Molecular analysis of sarcomeric and non-sarcomeric genes in patients with hypertrophic cardiomyopathy. Gene 577, 227–235 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Lopes, L. R. et al. Use of high-throughput targeted exome-sequencing to screen for copy number variation in hypertrophic cardiomyopathy. Eur. J. Med. Genet. 58, 611–616 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Pan, S. et al. Cardiac structural and sarcomere genes associated with cardiomyopathy exhibit marked intolerance of genetic variation. Circ. Cardiovasc. Genet. 5, 602–610 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Lopes, L. R. et al. Genetic complexity in hypertrophic cardiomyopathy revealed by high-throughput sequencing. J. Med. Genet. 50, 228–239 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Richard, P. et al. Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 107, 2227–2232 (2003).

    Article  PubMed  Google Scholar 

  103. Girolami, F. et al. Clinical features and outcome of hypertrophic cardiomyopathy associated with triple sarcomere protein gene mutations. J. Am. Coll. Cardiol. 55, 1444–1453 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Maron, B. J., Maron, M. S. & Semsarian, C. Double or compound sarcomere mutations in hypertrophic cardiomyopathy: a potential link to sudden death in the absence of conventional risk factors. Heart Rhythm 9, 57–63 (2012).

    Article  PubMed  Google Scholar 

  105. Ortlepp, J. R. et al. Genetic polymorphisms in the renin-angiotensin-aldosterone system associated with expression of left ventricular hypertrophy in hypertrophic cardiomyopathy: a study of five polymorphic genes in a family with a disease causing mutation in the myosin binding protein C gene. Heart 87, 270–275 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kaufman, B. D. et al. RAAS gene polymorphisms influence progression of pediatric hypertrophic cardiomyopathy. Hum. Genet. 122, 515–523 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Lopes, L. R. et al. Novel genotype-phenotype associations demonstrated by high-throughput sequencing in patients with hypertrophic cardiomyopathy. Heart 101, 294–301 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Friedrich, F. W. et al. A new polymorphism in human calmodulin III gene promoter is a potential modifier gene for familial hypertrophic cardiomyopathy. Eur. Heart J. 30, 1648–1655 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Bick, A. G. et al. Burden of rare sarcomere gene variants in the Framingham and Jackson Heart Study cohorts. Am. J. Hum. Genet. 91, 513–519 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Semsarian, C., Ingles, J., Maron, M. S. & Maron, B. J. New perspectives on the prevalence of hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 65, 1249–1254 (2015).

    Article  PubMed  Google Scholar 

  111. Charron, P. et al. Penetrance of familial hypertrophic cardiomyopathy. Genet. Couns. 8, 107–114 (1997).

    CAS  PubMed  Google Scholar 

  112. Elliott, P. M., D'Cruz, L. & McKenna, W. J. Late-onset hypertrophic cardiomyopathy caused by a mutation in the cardiac troponin T gene. N. Engl. J. Med. 341, 1855–1856 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Andersen, P. S. et al. A novel myosin essential light chain mutation causes hypertrophic cardiomyopathy with late onset and low expressivity. Biochem. Res. Int. 2012, 685108 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Niimura, H. et al. Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. N. Engl. J. Med. 338, 1248–1257 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. McKenna, W. J., Spirito, P., Desnos, M., Dubourg, O. & Komajda, M. Experience from clinical genetics in hypertrophic cardiomyopathy: proposal for new diagnostic criteria in adult members of affected families. Heart 77, 130–132 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kauer, F. et al. Diastolic abnormalities in normal phenotype hypertrophic cardiomyopathy gene carriers: a study using speckle tracking echocardiography. Echocardiography 30, 558–563 (2013).

    Article  PubMed  Google Scholar 

  117. Captur, G. et al. Abnormal cardiac formation in hypertrophic cardiomyopathy: fractal analysis of trabeculae and preclinical gene expression. Circ. Cardiovasc. Genet. 7, 241–248 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Deva, D. P. et al. Deep basal inferoseptal crypts occur more commonly in patients with hypertrophic cardiomyopathy due to disease-causing myofilament mutations. Radiology 269, 68–76 (2013).

    Article  PubMed  Google Scholar 

  119. Brouwer, W. P. et al. Multiple myocardial crypts on modified long-axis view are a specific finding in pre-hypertrophic HCM mutation carriers. Eur. Heart J. Cardiovasc. Imaging 13, 292–297 (2012).

    Article  PubMed  Google Scholar 

  120. Captur, G. et al. Prediction of sarcomere mutations in subclinical hypertrophic cardiomyopathy. Circ. Cardiovasc. Imaging 7, 863–871 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Petryka, J., Baksi, A. J., Prasad, S. K., Pennell, D. J. & Kilner, P. J. Prevalence of inferobasal myocardial crypts among patients referred for cardiovascular magnetic resonance. Circ. Cardiovasc. Imaging 7, 259–264 (2014).

    Article  PubMed  Google Scholar 

  122. Basso, C., Marra, M. P. & Thiene, G. Myocardial clefts, crypts, or crevices: once again, you see only what you look for. Circ. Cardiovasc. Imaging 7, 217–219 (2014).

    Article  PubMed  Google Scholar 

  123. Maron, M. S. et al. Mitral valve abnormalities identified by cardiovascular magnetic resonance represent a primary phenotypic expression of hypertrophic cardiomyopathy. Circulation 124, 40–47 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Reant, P. et al. Abnormal septal convexity into the left ventricle occurs in subclinical hypertrophic cardiomyopathy. J. Cardiovasc. Magn. Reson. 17, 64 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Ho, C. Y. et al. Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N. Engl. J. Med. 363, 552–563 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ho, C. Y. et al. T1 measurements identify extracellular volume expansion in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy. Circ. Cardiovasc. Imaging 6, 415–422 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Lopes, L. R. et al. Left ventricular outflow tract obstruction as a primary phenotypic expression of hypertrophic cardiomyopathy in mutation carriers without hypertrophy. Int. J. Cardiol. 176, 1264–1267 (2014).

    Article  PubMed  Google Scholar 

  128. Ranasinghe, I., Ayoub, C., Cheruvu, C., Freedman, S. B. & Yiannikas, J. Isolated hypertrophy of the basal ventricular septum: characteristics of patients with and without outflow tract obstruction. Int. J. Cardiol. 173, 487–493 (2014).

    Article  PubMed  Google Scholar 

  129. Kelshiker, M. A., Mayet, J., Unsworth, B. & Okonko, D. O. Basal septal hypertrophy. Curr. Cardiol. Rev. 9, 325–330 (2013).

    Article  PubMed  Google Scholar 

  130. Binder, J. et al. Echocardiography-guided genetic testing in hypertrophic cardiomyopathy: septal morphological features predict the presence of myofilament mutations. Mayo Clin. Proc. 81, 459–467 (2006).

    Article  PubMed  Google Scholar 

  131. Maron, B. J. et al. Relationship of race to sudden cardiac death in competitive athletes with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 41, 974–980 (2003).

    Article  PubMed  Google Scholar 

  132. Papadakis, M. et al. The prevalence, distribution, and clinical outcomes of electrocardiographic repolarization patterns in male athletes of African/Afro-Caribbean origin. Eur. Heart J. 32, 2304–2313 (2011).

    Article  PubMed  Google Scholar 

  133. Sheikh, N. et al. Cardiac adaptation to exercise in adolescent athletes of African ethnicity: an emergent elite athletic population. Br. J. Sports Med. 47, 585–592 (2013).

    Article  PubMed  Google Scholar 

  134. ten Cate, F. J. et al. Long-term outcome of alcohol septal ablation in patients with obstructive hypertrophic cardiomyopathy: a word of caution. Circ. Heart Fail. 3, 362–369 (2010).

    Article  PubMed  Google Scholar 

  135. Saumarez, R. C. et al. Paced ventricular electrogram fractionation predicts sudden cardiac death in hypertrophic cardiomyopathy. Eur. Heart J. 29, 1653–1661 (2008).

    Article  PubMed  Google Scholar 

  136. Maron, B. J. et al. Implantable cardioverter-defibrillators and prevention of sudden cardiac death in hypertrophic cardiomyopathy. JAMA 298, 405–412 (2007).

    CAS  PubMed  Google Scholar 

  137. O'Mahony, C. et al. A validation study of the 2003 American College of Cardiology/European Society of Cardiology and 2011 American College of Cardiology Foundation/American Heart Association risk stratification and treatment algorithms for sudden cardiac death in patients with hypertrophic cardiomyopathy. Heart 99, 534–541 (2013).

    Article  PubMed  Google Scholar 

  138. Vriesendorp, P. A. et al. Validation of the 2014 European Society of Cardiology guidelines risk prediction model for the primary prevention of sudden cardiac death in hypertrophic cardiomyopathy. Circ. Arrhythm. Electrophysiol. 8, 829–835 (2015).

    Article  PubMed  Google Scholar 

  139. Ruiz-Salas, A. et al. Comparison of the new risk prediction model (HCM Risk-SCD) and classic risk factors for sudden death in patients with hypertrophic cardiomyopathy and defibrillator. Europace 18, 773–777 (2015).

    Article  PubMed  Google Scholar 

  140. Maron, B. J. et al. Independent assessment of the European Society of Cardiology sudden death risk model for hypertrophic cardiomyopathy. Am. J. Cardiol. 116, 757–764 (2015).

    Article  PubMed  Google Scholar 

  141. Ommen, S. R. et al. Long-term effects of surgical septal myectomy on survival in patients with obstructive hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 46, 470–476 (2005).

    Article  PubMed  Google Scholar 

  142. Olivotto, I. et al. Prognostic value of systemic blood pressure response during exercise in a community-based patient population with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 33, 2044–2051 (1999).

    Article  CAS  PubMed  Google Scholar 

  143. Maron, B. J. & Nishimura, R. A. Surgical septal myectomy versus alcohol septal ablation: assessing the status of the controversy in 2014. Circulation 130, 1617–1624 (2014).

    Article  PubMed  Google Scholar 

  144. Kim, L. et al. Hospital volume outcomes after septal myectomy and alcohol septal ablation for treatment of obstructive hypertrophic cardiomyopathy: US Nationwide Inpatient Database, 2003–2011. JAMA Cardiol. 1, 324–332 (2016).

    Article  PubMed  Google Scholar 

  145. Ommen, S. R. & Nishimura, R. A. Hypertrophic cardiomyopathy — one case per year? A clarion call to do what is right. JAMA Cardiol. 1, 333–334 (2016).

    Article  PubMed  Google Scholar 

  146. Parry, D. J. et al. Short and medium term outcomes of surgery for patients with hypertrophic obstructive cardiomyopathy. Ann. Thorac. Surg. 99, 1213–1219 (2015).

    Article  PubMed  Google Scholar 

  147. Fifer, M. A. Controversies in cardiovascular medicine. Most fully informed patients choose septal ablation over septal myectomy. Circulation 116, 207–216; discussion 216 (2007).

    Article  PubMed  Google Scholar 

  148. Smedira, N. G. et al. Current effectiveness and risks of isolated septal myectomy for hypertrophic obstructive cardiomyopathy. Ann. Thorac. Surg. 85, 127–133 (2008).

    Article  PubMed  Google Scholar 

  149. Mohr, F. W., Seeburger, J. & Misfeld, M. Keynote lecture — transmitral hypertrophic obstructive cardiomyopathy (HOCM) repair. Ann. Cardiothorac. Surg. 2, 729–732 (2013).

    PubMed  PubMed Central  Google Scholar 

  150. Gutermann, H. et al. Myectomy and mitral repair through the left atrium in hypertrophic obstructive cardiomyopathy: the preferred approach for contemporary surgical candidates? J. Thorac. Cardiovasc. Surg. 147, 1833–1836 (2014).

    Article  PubMed  Google Scholar 

  151. Liebregts, M. et al. Systematic review and meta-analysis of long-term outcomes after septal reduction therapy in patients with hypertrophic cardiomyopathy. JACC Heart Fail. 3, 896–905 (2015).

    Article  PubMed  Google Scholar 

  152. Vatasescu, R. et al. Biventricular / left ventricular pacing in hypertrophic obstructive cardiomyopathy: an overview. Indian Pacing Electrophysiol. J. 12, 114–123 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Slade, A. K. et al. DDD pacing in hypertrophic cardiomyopathy: a multicentre clinical experience. Heart 75, 44–49 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Nishimura, R. A. et al. Dual-chamber pacing for hypertrophic cardiomyopathy: a randomized, double-blind, crossover trial. J. Am. Coll. Cardiol. 29, 435–441 (1997).

    Article  CAS  PubMed  Google Scholar 

  155. Kappenberger, L. et al. Pacing in hypertrophic obstructive cardiomyopathy. A randomized crossover study. Eur. Heart J. 18, 1249–1256 (1997).

    Article  CAS  PubMed  Google Scholar 

  156. Maron, B. J. et al. Assessment of permanent dual-chamber pacing as a treatment for drug-refractory symptomatic patients with obstructive hypertrophic cardiomyopathy. A randomized, double-blind, crossover study (M-PATHY). Circulation 99, 2927–2933 (1999).

    Article  CAS  PubMed  Google Scholar 

  157. Kappenberger, L. J. et al. Clinical progress after randomized on/off pacemaker treatment for hypertrophic obstructive cardiomyopathy. Europace 1, 77–84 (1999).

    Article  CAS  PubMed  Google Scholar 

  158. Berruezo, A. et al. Biventricular pacing in hypertrophic obstructive cardiomyopathy: a pilot study. Heart Rhythm 8, 221–227 (2011).

    Article  PubMed  Google Scholar 

  159. Giraldeau, G. et al. Dyssynchronization reduces dynamic obstruction without affecting systolic function in patients with hypertrophic obstructive cardiomyopathy: a pilot study. Int. J. Cardiovasc. Imaging 32, 1179–1188 (2016).

    Article  PubMed  Google Scholar 

  160. Lenarczyk, R. et al. Effect of cardiac resynchronization on gradient reduction in patients with obstructive hypertrophic cardiomyopathy: preliminary study. Pacing Clin. Electrophysiol. 34, 1544–1552 (2011).

    Article  PubMed  Google Scholar 

  161. Schaff, H. V., Dearani, J. A., Ommen, S. R., Sorajja, P. & Nishimura, R. A. Expanding the indications for septal myectomy in patients with hypertrophic cardiomyopathy: results of operation in patients with latent obstruction. J. Thorac. Cardiovasc. Surg. 143, 303–309 (2012).

    Article  PubMed  Google Scholar 

  162. Minakata, K., Dearani, J. A., O'Leary, P. W. & Danielson, G. K. Septal myectomy for obstructive hypertrophic cardiomyopathy in pediatric patients: early and late results. Ann. Thorac. Surg. 80, 1424–1429; discussion 1429–1430 (2005).

    Article  PubMed  Google Scholar 

  163. Altarabsheh, S. E. et al. Outcome of septal myectomy for obstructive hypertrophic cardiomyopathy in children and young adults. Ann. Thorac. Surg. 95, 663–669; discussion 669 (2013).

    Article  PubMed  Google Scholar 

  164. Minakata, K. et al. Mechanisms for recurrent left ventricular outflow tract obstruction after septal myectomy for obstructive hypertrophic cardiomyopathy. Ann. Thorac. Surg. 80, 851–856 (2005).

    Article  PubMed  Google Scholar 

  165. McLeod, C. J. et al. Surgical septal myectomy decreases the risk for appropriate implantable cardioverter defibrillator discharge in obstructive hypertrophic cardiomyopathy. Eur. Heart J. 28, 2583–2588 (2007).

    Article  PubMed  Google Scholar 

  166. Efthimiadis, G. K. et al. Can septal myectomy prevent sudden cardiac death in hypertrophic obstructive cardiomyopathy? Eur. Heart J. 28, 2177; author reply 2177–2178 (2007).

    Article  PubMed  Google Scholar 

  167. Nishimura, R. A. & Ommen, S. R. Septal reduction therapy for obstructive hypertrophic cardiomyopathy and sudden death: what statistics cannot tell you. Circ. Cardiovasc. Interv. 3, 91–93 (2010).

    Article  PubMed  Google Scholar 

  168. Agarwal, S. et al. Updated meta-analysis of septal alcohol ablation versus myectomy for hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 55, 823–834 (2010).

    Article  PubMed  Google Scholar 

  169. Singh, K., Qutub, M., Carson, K., Hibbert, B. & Glover, C. A meta analysis of current status of alcohol septal ablation and surgical myectomy for obstructive hypertrophic cardiomyopathy. Catheter. Cardiovasc. Interv. 88, 107–115 (2015).

    Article  PubMed  Google Scholar 

  170. Leonardi, R. A., Kransdorf, E. P., Simel, D. L. & Wang, A. Meta-analyses of septal reduction therapies for obstructive hypertrophic cardiomyopathy: comparative rates of overall mortality and sudden cardiac death after treatment. Circ. Cardiovasc. Interv. 3, 97–104 (2010).

    Article  PubMed  Google Scholar 

  171. Kaple, R. K. et al. Mitral valve abnormalities in hypertrophic cardiomyopathy: echocardiographic features and surgical outcomes. Ann. Thorac. Surg. 85, 1527–1535, 1535.e1–1535.e2 (2008).

    Article  PubMed  Google Scholar 

  172. Murat Tuzcu, E. & Kapadia, S. R. Percutaneous mitral valve repair and replacement: a new landmark for structural heart interventions. Eur. Heart J. 37, 826–828 (2016).

    Article  CAS  PubMed  Google Scholar 

  173. Schäfer, U. et al. Targeting systolic anterior motion and left ventricular outflow tract obstruction in hypertrophic obstructed cardiomyopathy with a mitraclip. EuroIntervention 11, 942–947 (2015).

    Article  PubMed  Google Scholar 

  174. Khalpey, Z., Korovin, L., Chitwood, W. R. J. & Poston, R. Robot-assisted septal myectomy for hypertrophic cardiomyopathy with left ventricular outflow tract obstruction. J. Thorac. Cardiovasc. Surg. 147, 1708–1709 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Kim, H. R., Yoo, J. S. & Lee, J. W. Minimally invasive trans-mitral septal myectomy to treat hypertrophic obstructive cardiomyopathy. Korean J. Thorac. Cardiovasc. Surg. 48, 419–421 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Spirito, P. et al. Infective endocarditis in hypertrophic cardiomyopathy: prevalence, incidence, and indications for antibiotic prophylaxis. Circulation 99, 2132–2137 (1999).

    Article  CAS  PubMed  Google Scholar 

  177. Maron, B. J. & Lever, H. In defense of antimicrobial prophylaxis for prevention of infective endocarditis in patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 54, 2339–2340; author reply 2340 (2009).

    Article  PubMed  Google Scholar 

  178. Zhao, D. et al. Outcomes of catheter ablation of atrial fibrillation in patients with hypertrophic cardiomyopathy: a systematic review and meta-analysis. Europace 18, 508–520 (2015).

    Article  PubMed  Google Scholar 

  179. Ha, H. S. K. et al. Catheter ablation for atrial fibrillation in hypertrophic cardiomyopathy patients: a systematic review. J. Interv. Card. Electrophysiol. 44, 161–170 (2015).

    Article  PubMed  Google Scholar 

  180. Francia, P. et al. Eligibility for the subcutaneous implantable cardioverter-defibrillator in patients with hypertrophic cardiomyopathy. J. Cardiovasc. Electrophysiol. 26, 893–899 (2015).

    Article  PubMed  Google Scholar 

  181. Maurizi, N. et al. Prevalence of subcutaneous implantable cardioverter-defibrillator candidacy based on template ECG screening in patients with hypertrophic cardiomyopathy. Heart Rhythm 13, 457–463 (2016).

    Article  PubMed  Google Scholar 

  182. Frommeyer, G. et al. Long-term follow-up of subcutaneous ICD systems in patients with hypertrophic cardiomyopathy: a single-center experience. Clin. Res. Cardiol. 105, 89–93 (2016).

    Article  PubMed  Google Scholar 

  183. Olde Nordkamp, L. R. A. et al. Inappropriate shocks in the subcutaneous ICD: Incidence, predictors and management. Int. J. Cardiol. 195, 126–133 (2015).

    Article  PubMed  Google Scholar 

  184. Shimada, Y. J. et al. Effects of losartan on left ventricular hypertrophy and fibrosis in patients with nonobstructive hypertrophic cardiomyopathy. JACC Heart Fail. 1, 480–487 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Axelsson, A. et al. Efficacy and safety of the angiotensin II receptor blocker losartan for hypertrophic cardiomyopathy: the INHERIT randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 3, 123–131 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01912534 (2016).

  187. Barajas-Martínez, H., Hu, D., Goodrow, R. J. J., Joyce, F. & Antzelevitch, C. Electrophysiologic characteristics and pharmacologic response of human cardiomyocytes isolated from a patient with hypertrophic cardiomyopathy. Pacing Clin. Electrophysiol. 36, 1512–1515 (2013).

    Article  PubMed  Google Scholar 

  188. Coppini, R. et al. Late sodium current inhibition reverses electromechanical dysfunction in human hypertrophic cardiomyopathy. Circulation 127, 575–584 (2013).

    Article  CAS  PubMed  Google Scholar 

  189. EU Clinical Trials Register. Clinicaltrialsregister.eu https://www.clinicaltrialsregister.eu/ctr-search/trial/2011-004507-20/DE (2016).

  190. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02291237 (2016).

  191. Spudich, J. A. Hypertrophic and dilated cardiomyopathy: four decades of basic research on muscle lead to potential therapeutic approaches to these devastating genetic diseases. Biophys. J. 106, 1236–1249 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Alves, M. L., Gaffin, R. D. & Wolska, B. M. Rescue of familial cardiomyopathies by modifications at the level of sarcomere and Ca2+ fluxes. J. Mol. Cell. Cardiol. 48, 834–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Semsarian, C. et al. The L-type calcium channel inhibitor diltiazem prevents cardiomyopathy in a mouse model. J. Clin. Invest. 109, 1013–1020 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ho, C. Y. et al. Diltiazem treatment for pre-clinical hypertrophic cardiomyopathy sarcomere mutation carriers: a pilot randomized trial to modify disease expression. JACC Heart Fail. 3, 180–188 (2015).

    Article  PubMed  Google Scholar 

  195. Kirschner, S. E. et al. Hypertrophic cardiomyopathy-related β-myosin mutations cause highly variable calcium sensitivity with functional imbalances among individual muscle cells. Am. J. Physiol. Heart Circ. Physiol. 288, H1242–H1251 (2005).

    Article  CAS  PubMed  Google Scholar 

  196. Sung, J., Sivaramakrishnan, S., Dunn, A. R. & Spudich, J. A. Single-molecule dual-beam optical trap analysis of protein structure and function. Methods Enzymol. 475, 321–375 (2010).

    Article  CAS  PubMed  Google Scholar 

  197. Brenner, B., Seebohm, B., Tripathi, S., Montag, J. & Kraft, T. Familial hypertrophic cardiomyopathy: functional variance among individual cardiomyocytes as a trigger of FHC-phenotype development. Front. Physiol. 5, 392 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Nattel, S. & Carlsson, L. Innovative approaches to anti-arrhythmic drug therapy. Nat. Rev. Drug Discov. 5, 1034–1049 (2006).

    Article  CAS  PubMed  Google Scholar 

  199. Spudich, J. A. The myosin mesa and a possible unifying hypothesis for the molecular basis of human hypertrophic cardiomyopathy. Biochem. Soc. Trans. 43, 64–72 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Green, E. M. et al. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science 351, 617–621 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. MyoKardia Inc. MyoKardia provides update on two phase 1 trials of MYK-461 for the treatment of hypertrophic cardiomyopathy. http://investors.myokardia.com/phoenix.zhtml?c=254211&p=irol-newsArticle&ID=2097088 (2015).

  202. Abozguia, K. et al. Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation 122, 1562–1569 (2010).

    Article  CAS  PubMed  Google Scholar 

  203. Horowitz, J. D. & Chirkov, Y. Y. Perhexiline and hypertrophic cardiomyopathy: a new horizon for metabolic modulation. Circulation 122, 1547–1549 (2010).

    Article  CAS  PubMed  Google Scholar 

  204. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT02431221 (2015).

  205. Lombardi, R. et al. Resolution of established cardiac hypertrophy and fibrosis and prevention of systolic dysfunction in a transgenic rabbit model of human cardiomyopathy through thiol-sensitive mechanisms. Circulation 119, 1398–1407 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Wilder, T., Ryba, D. M., Wieczorek, D. F., Wolska, B. M. & Solaro, R. J. N-acetylcysteine reverses diastolic dysfunction and hypertrophy in familial hypertrophic cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 309, H1720–1730 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT01537926? (2015).

  208. Geske, J. B., Sorajja, P., Ommen, S. R. & Nishimura, R. A. Left ventricular outflow tract gradient variability in hypertrophic cardiomyopathy. Clin. Cardiol. 32, 397–402 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.S.-C. is supported by the BHF Intermediate Clinical Research Fellowship (FS/10/011/27881). W.J.M. is supported by the Fondation Leducq Transatlantic Networks of Excellence Program.

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article and reviewed and edited the manuscript before submission. D.J., J.C.M., and W.J.M. substantially contributed to discussion of content. S.S.-C. and D.J. wrote the manuscript.

Corresponding author

Correspondence to William J. McKenna.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen-Chowdhry, S., Jacoby, D., Moon, J. et al. Update on hypertrophic cardiomyopathy and a guide to the guidelines. Nat Rev Cardiol 13, 651–675 (2016). https://doi.org/10.1038/nrcardio.2016.140

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2016.140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing