Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Cardiac sodium channel mutations: why so many phenotypes?

Abstract

Mutations of the cardiac sodium channel (Nav1.5) can induce gain or loss of channel function. Gain-of-function mutations can cause long QT syndrome type 3 and possibly atrial fibrillation, whereas loss-of-function mutations are associated with a variety of phenotypes, such as Brugada syndrome, cardiac conduction disease, sick sinus syndrome, and possibly dilated cardiomyopathy. The phenotypes produced by Nav1.5 mutations vary according to the direct effect of the mutation on channel biophysics, but also with age, sex, body temperature, and between regions of the heart. This phenotypic variability makes genotype–phenotype correlations difficult. In this Perspectives article, we propose that phenotypic variability not ascribed to mutation-dependent changes in channel function might be the result of additional modifiers of channel behaviour, such as other genetic variation and alterations in transcription, RNA processing, translation, post-translational modifications, and protein degradation. Consideration of these modifiers might help to improve genotype–phenotype correlations and lead to new therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic representation of the cardiac action potential with the major contributing cardiac ion channel currents.
Figure 2: The Nav1.5 channel is part of a macromolecular complex.
Figure 3: Mutations in SCN5A can produce various clinical phenotypes.
Figure 4: Examples of phenotypic variability in patients carrying an SCN5A mutation.
Figure 5: The lifecycle of cardiac Nav1.5 and potential phenotypic modifiers.

Similar content being viewed by others

References

  1. Liu, M. et al. Cardiac Na+ current regulation by pyridine nucleotides. Circ. Res. 105, 737–745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gao, G. et al. Role of RBM25/LUC7L3 in abnormal cardiac sodium channel splicing regulation in human heart failure/clinical perspective. Circulation 124, 1124–1131 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. King, J., Huang, C. & Fraser, J. Determinants of myocardial conduction velocity: implications for arrhythmogenesis. Front. Physiol. 4, 154 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hodgkin, A. & Huxley, A. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gellens, M. E. et al. Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc. Natl Acad. Sci. USA 89, 554–558 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fozzard, H. A. & Hanck, D. A. Structure and function of voltage-dependent sodium channels: comparison of brain II and cardiac isoforms. Physiol. Rev. 76, 887–926 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Balser, J. R. The cardiac sodium channel: gating function and molecular pharmacology. J. Mol. Cell. Cardiol. 33, 599–613 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Kass, R. S. Sodium channel inactivation in heart: a novel role of the carboxy-terminal domain. J. Cardiovasc. Electrophysiol. 17 (Suppl. 1), S21–S25 (2006).

    Article  PubMed  Google Scholar 

  9. Abriel, H. Cardiac sodium channel Nav1.5 and interacting proteins: physiology and pathophysiology. J. Mol. Cell. Cardiol. 48, 2–11 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Zimmer, T. & Surber, R. SCN5A channelopathies—an update on mutations and mechanisms. Prog. Biophys. Mol. Biol. 98, 120–136 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Ruan, Y., Liu, N. & Priori, S. G. Sodium channel mutations and arrhythmias. Nat. Rev. Cardiol. 6, 337–348 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Amin, A., Asghari-Roodsari, A. & Tan, H. Cardiac sodium channelopathies. Pflugers Arch. Eur. J. Physiol. 460, 223–237 (2010).

    Article  CAS  Google Scholar 

  13. Remme, C. A. Cardiac sodium channelopathy associated with SCN5A mutations: electrophysiological, molecular and genetic aspects. J. Physiol. 591, 4099–4116 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Adsit, G. S., Vaidyanathan, R., Galler, C. M., Kyle, J. W. & Makielski, J. C. Channelopathies from mutations in the cardiac sodium channel protein complex. J. Mol. Cell. Cardiol. 61, 34–43 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Locati, E. H. et al. Age- and sex-related differences in clinical manifestations in patients with congenital long-QT syndrome: findings from the international LQTS registry. Circulation 97, 2237–2244 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Alings, M. & Wilde, A. “Brugada” syndrome: clinical data and suggested pathophysiological mechanism. Circulation 99, 666–673 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Kyndt, F. et al. Novel SCN5A mutation leading either to isolated cardiac conduction defect or Brugada Syndrome in a large French family. Circulation 104, 3081–3086 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Priori, S. G. et al. Clinical and genetic heterogeneity of right bundle branch block and ST-segment elevation syndrome: a prospective evaluation of 52 families. Circulation 102, 2509–2515 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Kääb, S., Pfeufer, A., Hinterseer, M., Näbauer, M. & Chulze-Bahr, E. Long QT syndrome. Z. Kardiol. 93, 641–645 (2004).

    Article  PubMed  Google Scholar 

  20. Rashba, E. et al. Does pregnancy cause an increased risk of cardiac events in long QT syndrome patients? Circulation 94, I-203 (1996).

    Google Scholar 

  21. Gehi, A., Duong, T., Metz, L., Gomes, J. & Mehta, D. Risk stratification of individuals with the Brugada electrocardiogram: a meta-analysis. J. Cardiovasc. Electrophysiol. 17, 577–583 (2006).

    Article  PubMed  Google Scholar 

  22. Probst, V. et al. Clinical aspects and prognosis of Brugada syndrome in children. Circulation 115, 2042–2048 (2007).

    Article  PubMed  Google Scholar 

  23. Matsuo, K., Akahoshi, M., Seto, S. & Yano, K. Disappearance of the Brugada-type electrocardiogram after surgical castration: a role for testosterone and an explanation for the male preponderance. Pacing Clin. Electrophysiol. 26, 1551–1553 (2003).

    Article  PubMed  Google Scholar 

  24. Junttila, M. J. et al. Induced Brugada-type electrocardiogram, a sign for imminent malignant arrhythmias. Circulation 117, 1890–1893 (2008).

    Article  PubMed  Google Scholar 

  25. Probst, V. et al. Haploinsufficiency in combination with aging causes SCN5A-linked hereditary Lenègre disease. J. Am. Coll. Cardiol. 41, 643–652 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, Q. et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 392, 293–296 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Baroudi, G., Acharfi, S., Larouche, C. & Chahine, M. Expression and intracellular localization of an SCN5A double mutant R1232W/T1620M implicated in Brugada syndrome. Circ. Res. 90, e11–e16 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Bezzina, C. R. et al. Compound heterozygosity for mutations (W156X and R225W) in SCN5A associated with severe cardiac conduction disturbances and degenerative changes in the conduction system. Circ. Res. 92, 159–168 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Shinlapawittayatorn, K. et al. A common SCN5A polymorphism modulates the biophysical defects of SCN5A mutations. Heart Rhythm 8, 455–462 (2011).

    Article  PubMed  Google Scholar 

  30. Shinlapawittayatorn, K. et al. A novel strategy using cardiac sodium channel rolymorphic fragments to rescue trafficking-deficient SCN5A mutations. Circ. Cardiovasc. Genet. 4, 500–509 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Herfst, L., Rook, M. B. & Jongsma, H. J. Trafficking and functional expression of cardiac Na+ channels. J. Mol. Cell. Cardiol. 36, 185–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Cusdin, F. S., Clare, J. J. & Jackson, A. P. Trafficking and cellular distribution of voltage-gated sodium channels. Traffic 9, 17–26 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Arnolds, D. E. et al. TBX5 drives Scn5a expression to regulate cardiac conduction system function. J. Clin. Invest. 122, 2509–2518 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schroder, E. A. et al. The cardiomyocyte molecular clock, regulation of Scn5a, and arrhythmia susceptibility. Am. J. Physiol. Cell Physiol. 304, C954–C965 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shang, L. L. et al. NF-κB-dependent transcriptional regulation of the cardiac scn5a sodium channel by angiotensin II. Am. J. Physiol. Cell Physiol. 294, C372–C379 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Grant, A. O. Cardiac ion channels. Circ. Arrhythm. Electrophysiol. 2, 185–194 (2009).

    Article  PubMed  Google Scholar 

  37. Kaur, K. et al. TGF-β1, released by myofibroblasts, differentially regulates transcription and function of sodium and potassium channels in adult rat ventricular myocytes. PLoS ONE 8, e55391 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang, P., Kupershmidt, S. & Roden, D. M. Cloning and initial characterization of the human cardiac sodium channel (SCN5A) promoter. Cardiovasc. Res. 61, 56–65 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Park, J. K., Martin, L. J., Zhang, X., Jegga, A. G. & Benson, D. W. Genetic variants in SCN5A promoter are associated with arrhythmia phenotype severity in patients with heterozygous loss-of-function mutation. Heart Rhythm 9, 1090–1096 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gao, G. et al. Unfolded protein response regulates cardiac sodium current in systolic human heart failure. Circ. Arrhythm. Electrophysiol. 6, 1018–1024 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shimoni, Y., Hunt, D., Chen, K., Emmett, T. & Kargacin, G. Differential autocrine modulation of atrial and ventricular potassium currents and of oxidative stress in diabetic rats. Am. J. Physiol. Heart Circ. Physiol. 290, H1879–H1888 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Zicha, S., Maltsev, V. A., Nattel, S., Sabbah, H. N. & Undrovinas, A. I. Post-transcriptional alterations in the expression of cardiac Na+ channel subunits in chronic heart failure. J. Mol. Cell. Cardiol. 37, 91–100 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang, B., Lu, Y. & Wang, Z. Control of cardiac excitability by microRNAs. Cardiovasc. Res. 79, 571–580 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Luo, X., Zhang, H., Xiao, J. & Wang, Z. Regulation of human cardiac ion channel genes by microRNAs: theoretical perspective and pathophysiological implications. Cell. Physiol. Biochem. 25, 571–586 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. van Rooij, E. et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl Acad. Sci. USA 103, 18255–18260 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou, A., Ou, A. C., Cho, A., Benz, E. J. & Huang, S. C. Novel splicing factor RBM25 modulates Bcl-x pre-mRNA 5′ splice site selection. Mol. Cell. Biol. 28, 5924–5936 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Girmatsion, Z. et al. Changes in microRNA-1 expression and IK1 up-regulation in human atrial fibrillation. Heart Rhythm 6, 1802–1809 (2009).

    Article  PubMed  Google Scholar 

  48. Lu, Y. et al. MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation 122, 2378–2387 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Cook, S. A., Sugden, P. H. & Clerk, A. Activation of c-Jun N-terminal kinases and p38-mitogen-activated protein kinases in human heart failure secondary to ischaemic heart disease. J. Mol. Cell. Cardiol. 31, 1429–1434 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Muslin, A. MAPK signaling in cardiovascular health and disease: molecular mechanisms and therapeutic targets. Clin. Sci. 115, 203–218 (2008).

    Article  CAS  Google Scholar 

  51. van Bemmelen, M. X. et al. Cardiac voltage-gated sodium channel Nav1.5 is regulated by Nedd4–2 mediated ubiquitination. Circ. Res. 95, 284–291 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Yanagita, T. et al. Destabilization of Nav1.7 sodium channel α-subunit mRNA by constitutive phosphorylation of extracellular signal-regulated kinase: negative regulation of steady-state level of cell surface functional sodium channels in adrenal chromaffin cells. Mol. Pharmacol. 63, 1125–1136 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Gasser, A. et al. Two Nedd4-binding motifs underlie modulation of sodium channel Nav1.6 by p38 MAPK. J. Biol. Chem. 285, 26149–26161 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ursitti, J. A. et al. Role of an alternatively spliced form of aII-spectrin in localization of connexin 43 in cardiomyocytes and regulation by stress-activated protein kinase. J. Mol. Cell. Cardiol. 42, 572–581 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhou, J. et al. Phosphorylation and putative ER retention signals are required for protein kinase A-mediated potentiation of cardiac sodium current. Circ. Res. 91, 540–546 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Hallaq, H. et al. Activation of protein kinase C alters the intracellular distribution and mobility of cardiac Na+ channels. Am. J. Physiol. Heart Circ. Physiol. 302, H782–H789 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Yarbrough, T. L., Lu, T., Lee, H. C. & Shibata, E. F. Localization of cardiac sodium channels in caveolin-rich membrane domains: regulation of sodium current amplitude. Circ. Res. 90, 443–449 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Levin, K. R. & Page, E. Quantitative studies on plasmalemmal folds and caveolae of rabbit ventricular myocardial cells. Circ. Res. 46, 244–255 (1980).

    Article  CAS  PubMed  Google Scholar 

  59. Razani, B., Woodman, S. E. & Lisanti, M. P. Caveolae: From cell biology to animal physiology. Pharmacol. Rev. 54, 431–467 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Smart, E. J. et al. Caveolins, liquid-ordered domains, and signal transduction. Mol. Cell. Biol. 19, 7289–7304 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rybin, V. O., Xu, X., Lisanti, M. P. & Steinberg, S. F. Differential targeting of β-adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. J. Biol. Chem. 275, 41447–41457 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Palygin, O. A., Pettus, J. M. & Shibata, E. F. Regulation of caveolar cardiac sodium current by a single Gsα histidine residue. Am. J. Physiol. Heart Circ. Physiol. 294, H1693–H1699 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Liu, M., Hanck, D. A. & Dudley, S. C. Jr. The molecular mechanism of cardiac sodium channel current reduction with metabolic stress. Heart Rhythm 10, 1742–1743 (2013).

    Article  Google Scholar 

  64. Vatta, M. et al. Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation 114, 2104–2112 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Shy, D., Gillet, L. & Abriel, H. Cardiac sodium channel Nav1.5 distribution in myocytes via interacting proteins: the multiple pool model. Biochim. Biophys. Acta 1833, 886–894 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Watanabe, H. et al. Sodium channel β1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J. Clin. Invest. 118, 2260–2268 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hu, D. et al. A mutation in the β3 subunit of the cardiac sodium channel associated with Brugada ECG phenotype. Circ. Cardiovasc. Genet. 2, 270–278 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Remme, C. A. et al. Genetically determined differences in sodium current characteristics modulate conduction disease severity in mice with cardiac sodium channelopathy. Circ. Res. 104, 1283–1292 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Mohler, P. J. et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 421, 634–639 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Kattygnarath, D. et al. MOG1: a new susceptibility gene for Brugada syndrome. Circ. Cardiovasc. Genet. 4, 261–268 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Olesen, M. S. et al. A novel nonsense variant in Nav1.5 cofactor MOG1 eliminates its sodium current increasing effect and may increase the risk of arrhythmias. Can. J. Cardiol. 27, 523.e17–523.e23 (2011).

    Article  CAS  Google Scholar 

  72. Wu, G. et al. α1-Syntrophin mutation and the long-QT syndrome: a disease of sodium channel disruption. Circ. Arrhythm. Electrophysiol. 1, 193–201 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Konishi, H. et al. Activation of protein kinase C by tyrosine phosphorylation in response to H2O2 . Proc. Natl Acad. Sci. USA 94, 11233–11237 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Poole, A. W., Pula, G., Hers, I., Crosby, D. & Jones, M. L. PKC-interacting proteins: from function to pharmacology. Trends Pharmacol. Sci. 25, 528–535 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Liu, M., Liu, H. & Dudley, S. C. Jr. Reactive oxygen species originating from mitochondria regulate the cardiac sodium channel. Circ. Res. 107, 967–974 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu, M. et al. Mitochondrial dysfunction causing cardiac sodium channel downregulation in cardiomyopathy. J. Mol. Cell. Cardiol. 54, 25–34 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Yue, Y., Qu, Y. & Boutjdir, M. Protective role of protein kinase C epsilon activation in ischemia–reperfusion arrhythmia. Biochem. Biophys. Res. Commun. 349, 432–438 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Hallaq, H. et al. Quantitation of protein kinase A-mediated trafficking of cardiac sodium channels in living cells. Cardiovasc. Res. 72, 250–261 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Zhou, J., Yi, J., Hu, N., George, A. L. Jr & Murray, K. T. Activation of protein kinase A modulates trafficking of the human cardiac sodium channel in Xenopus oocytes. Circ. Res. 87, 33–38 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Atkinson, M. M. et al. Cyclic AMP modifies the cellular distribution of connexin43 and induces a persistent increase in the junctional permeability of mouse mammary tumor cells. J. Cell Sci. 108, 3079–3090 (1995).

    CAS  PubMed  Google Scholar 

  81. Darrow, B. J., Fast, V. G., Kleber, A. G., Beyer, E. C. & Saffitz, J. E. Functional and structural assessment of intercellular communication: increased conduction velocity and enhanced connexin expression in dibutyryl cAMP-treated cultured cardiac myocytes. Circ. Res. 79, 174–183 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Chanson, M., White, M. M. & Garber, S. S. cAMP promotes gap junctional coupling in T84 cells. Am. J. Physiol. Cell Physiol. 271, C533–C539 (1996).

    Article  CAS  Google Scholar 

  83. Hill, M. F. & Singal, P. K. Right and left myocardial antioxidant responses during heart failure subsequent to myocardial infarction. Circulation 96, 2414–2420 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Dhalla, A. K. & Singal, P. K. Antioxidant changes in hypertrophied and failing guinea pig hearts. Am. J. Physiol. Heart Circ. Physiol. 266, H1280–H1285 (1994).

    Article  CAS  Google Scholar 

  85. Choudhary, G. & Dudley, S. C. Jr. Heart failure, oxidative stress, and ion channel modulation. Congest. Heart Fail. 8, 148–155 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Valdivia, C. R., Ueda, K., Ackerman, M. & Makielski, J. C. GPD1L links redox state to cardiac excitability by PKC-dependent phosphorylation of the sodium channel SCN5A. Am. J. Physiol. Heart Circ. Physiol. 297, H1446–H1452 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pu, J. & Boyden, P. A. Alterations of Na+ currents in myocytes from epicardial border zone of the infarcted heart: a possible ionic mechanism for reduced excitability and postrepolarization refractoriness. Circ. Res. 81, 110–119 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Ufret-Vincenty, C. A. et al. Role of sodium channel deglycosylation in the genesis of cardiac arrhythmias in heart failure. J. Biol. Chem. 276, 28197–28203 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Valdivia, C. R. et al. Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. J. Mol. Cell. Cardiol. 38, 475–483 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Pillai, J. B., Isbatan, A., Imai, S.-i. & Gupta, M. P. Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2a deacetylase activity. J. Biol. Chem. 280, 43121–43130 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Aon, M. A., Cortassa, S., Marban, E. & O'Rourke, B. Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J. Biol. Chem. 278, 44735–44744 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Di, L. F., Menabo, R., Canton, M., Barile, M. & Bernardi, P. Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J. Biol. Chem. 276, 2571–2575 (2001).

    Article  Google Scholar 

  93. Abriel, H., Kamynina, E., Horisberger, J. D. & Staub, O. Regulation of the cardiac voltage-gated Na+ channel (H1) by the ubiquitin-protein ligase Nedd4. FEBS Lett. 466, 377–380 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Jespersen, T. et al. The KCNQ1 potassium channel is down-regulated by ubiquitylating enzymes of the Nedd4/Nedd4-like family. Cardiovasc. Res. 74, 64–74 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Rougier, J. S. et al. Molecular determinants of voltage-gated sodium channel regulation by the Nedd4/Nedd4-like proteins. Am. J. Physiol. Cell Physiol. 288, C692–C701 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Rougier, J. S., Albesa, M., Abriel, H. & Viard, P. Neuronal precursor cell-expressed developmentally down-regulated 4–1 (NEDD4–1) controls the sorting of newly-synthesized Cav1.2 calcium channels. J. Biol. Chem. 286, 8829–8838 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fotia, A. B. et al. Regulation of neuronal voltage-gated sodium channels by the ubiquitin-protein ligases Nedd4 and Nedd4–2. J. Biol. Chem. 279, 28930–28935 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Snyder, P. M. Down-regulating destruction: phosphorylation regulates the E3 ubiquitin ligase Nedd4–2. Sci. Signal 2, e41 (2009).

    Google Scholar 

  99. Yang, B. & Kumar, S. Nedd4 and Nedd4–2: closely related ubiquitin-protein ligases with distinct physiological functions. Cell Death Differ. 17, 68–77 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Haufe, V. et al. Expression pattern of neuronal and skeletal muscle voltage-gated Na+ channels in the developing mouse heart. J. Physiol. 564, 683–696 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lei, M. et al. Requirement of neuronal- and cardiac-type sodium channels for murine sinoatrial node pacemaking. J. Physiol. 559, 835–848 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Noujaim, S. F. et al. A null mutation of the neuronal sodium channel Nav1.6 disrupts action potential propagation and excitation-contraction coupling in the mouse heart. FASEB J. 26, 63–72 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chambers, J. et al. Genetic variations in SCN10A influences cardiac conduction. Nat. Genet. 42, 149–152 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Verkerk, A. O. et al. Functional Nav1.8 channels in intracardiac neurons: the link between SCN10A and cardiac electrophysiology. Circ. Res. 111, 333–343 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Yang, T. et al. Blocking Scn10a channels in heart reduces late sodium current and is antiarrhythmic. Circ. Res. 111, 322–332 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bezzina, C. R. et al. Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat. Genet. 45, 1044–1049 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Groenewegen, W. A. et al. A cardiac sodium channel mutation cosegregates with a rare connexin 40 genotype in familial atrial standstill. Circ. Res. 92, 14–22 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Hoogendijk, M. G. et al. The Brugada ECG pattern: a marker of channelopathy, structural heart disease, or neither? Toward a unifying mechanism of the Brugada syndrome. Circ. Arrhythm. Electrophysiol. 3, 283–290 (2010).

    Article  PubMed  Google Scholar 

  109. Milstein, M. L. et al. Dynamic reciprocity of sodium and potassium channel expression in a macromolecular complex controls cardiac excitability and arrhythmia. Proc. Natl Acad. Sci. USA 109, E2134–E2143 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Probst, V. et al. SCN5A mutations and the role of genetic background in the pathophysiology of Brugada syndrome. Circ. Cardiovasc. Genet. 2, 552–557 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. London, B. et al. Mutation in glycerol-3-phosphate dehydrogenase 1-like gene (GPD1-L) decreases cardiac Na+ current and causes inherited arrhythmias. Circulation 116, 2260–2268 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Van Norstrand, D. W. et al. Molecular and functional characterization of novel glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) mutations in sudden infant death syndrome. Circulation 116, 2253–2259 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mizumaki, K. et al. Vagal activity modulates spontaneous augmentation of ST elevation in the daily life of patients with Brugada syndrome. J. Cardiovasc. Electrophysiol. 15, 667–673 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

K.-C.Y. is funded by an AHA Midwest Affiliation Postdoctoral Fellowship AHA13POST14380029. S.C.D. is funded by NIH grants RO1 HL104025, RO1 HL106592, and R41 HL112355; and a Veterans Affairs MERIT grant BX000859.

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, contributed substantially to discussions of content, wrote the article, and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Samuel C. Dudley Jr.

Ethics declarations

Competing interests

S.C.D. is the inventor on patents or patent applications: SCN5A splice variants for use in methods relating to sudden cardiac death and need for implanted cardiac defibrillators (PCT/US2012/20564); SCN5A splicing factors and splice variants for use in diagnostic and prognostic methods (US 13/291,826); Modulation of sodium channels by nicotinamide adenine dinucleotide (US 8,003,324); Human sodium channel isoforms (US 11/707,882); Method for modulating or controlling sodium channel current by reactive oxygen species (US 12/929,786); Activation of the renin–angiotensin system (RAS) and sudden cardiac death (US 13/032,629); Modulation of sodium channels by nicotinamide adenine dinucleotide (US 13/067,953); and Method for detecting Brugada syndrome (US 61/786,882). S.C.D. founded a company called 3PrimeDx to commercialize a blood test for sudden death risk. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Yang, KC. & Dudley, S. Cardiac sodium channel mutations: why so many phenotypes?. Nat Rev Cardiol 11, 607–615 (2014). https://doi.org/10.1038/nrcardio.2014.85

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2014.85

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing