Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting liver X receptors in cancer therapeutics

Key Points

  • Members of the nuclear receptor (NR) superfamily of ligand-dependent transcription factors have key roles in a number of cancers and are highly druggable targets.

  • Liver X receptors (LXRs) are NRs that function as oxysterol sensors in metabolic tissues and immune cells. Synthetic LXR ligands have been developed for the treatment of atherosclerosis.

  • LXRs are expressed in a variety of cancers, and treatment with synthetic ligands has been shown to block tumour cell proliferation, tumorigenesis and metastasis in multiple cancer models.

  • Mechanisms of action of LXR ligands in cancer models include alterations in the expression and function of cell cycle, signal transduction, hormone response, and metabolic genes and pathways, and LXR ligands target both tumour cells and immune and stromal cells in the tumour microenvironment.

  • The current generation of synthetic LXR ligands was developed for treating heart and metabolic diseases, and so these ligands have not been optimized for cancer-related end points. In addition to identifying novel cancer-targeting ligands, available tissue-specific and receptor subtype-specific ligands may be effective in treating certain responsive cancers.

Abstract

Members of the nuclear receptor superfamily of ligand-dependent transcription factors carry out vital cellular functions and are highly druggable therapeutic targets. Liver X receptors (LXRs) are nuclear receptor family members that function in cholesterol transport, glucose metabolism and the modulation of inflammatory responses. There is now accumulating evidence to support the involvement of LXRs in a variety of malignancies and the potential efficacy of their ligands in these diseases. This Review summarizes the discovery and characterization of LXRs and their ligands, their effects and mechanisms in preclinical cancer models, and the future directions of basic and translational LXR research in cancer therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of LXR, ligands and classical mechanism of action.
Figure 2: Composite model of potential mechanisms of action of LXR agonists and LXRs in human cancers.

Similar content being viewed by others

References

  1. Gronemeyer, H., Gustafsson, J. A. & Laudet, V. Principles for modulation of the nuclear receptor superfamily. Nature Rev. Drug Discov. 3, 950–964 (2004).

    Article  CAS  Google Scholar 

  2. Lappano, R. & Maggiolini, M. G protein-coupled receptors: novel targets for drug discovery in cancer. Nature Rev. Drug Discov. 10, 47–60 (2011).

    Article  CAS  Google Scholar 

  3. Ali, S. & Coombes, R. C. Estrogen receptor α in human breast cancer: occurrence and significance. J. Mammary Gland Biol. Neoplasia 5, 271–281 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Jordan, V. C. Selective estrogen receptor modulation: concept and consequences in cancer. Cancer Cell 5, 207–213 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Culig, Z., Bartsch, G. & Hobisch, A. Antiandrogens in prostate cancer endocrine therapy. Curr. Cancer Drug Targets 4, 455–461 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Weinberger, C., Hollenberg, S. M., Rosenfeld, M. G. & Evans, R. M. Domain structure of human glucocorticoid receptor and its relationship to the v-erb-A oncogene product. Nature 318, 670–672 (1985).

    Article  CAS  PubMed  Google Scholar 

  7. Kumar, V., Green, S., Staub, A. & Chambon, P. Localisation of the oestradiol-binding and putative DNA-binding domains of the human oestrogen receptor. EMBO J. 5, 2231–2236 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wrange, O. & Gustafsson, J. A. Separation of the hormone- and DNA-binding sites of the hepatic glucocorticoid receptor by means of proteolysis. J. Biol. Chem. 253, 856–865 (1978).

    CAS  PubMed  Google Scholar 

  9. Song, C., Kokontis, J. M., Hiipakka, R. A. & Liao, S. Ubiquitous receptor: a receptor that modulates gene activation by retinoic acid and thyroid hormone receptors. Proc. Natl Acad. Sci. USA 91, 10809–10813 (1994). This is the earliest report of the discovery of LXRβ, which was the first LXR to be cloned.

    Article  CAS  PubMed  Google Scholar 

  10. Shinar, D. M. et al. NER, a new member of the gene family encoding the human steroid hormone nuclear receptor. Gene 147, 273–276 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Apfel, R. et al. A novel orphan receptor specific for a subset of thyroid hormone-responsive elements and its interaction with the retinoid/thyroid hormone receptor subfamily. Mol. Cell. Biol. 14, 7025–7035 (1994). This is the first published report of the cloning of LXRα.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Teboul, M. et al. OR-1, a member of the nuclear receptor superfamily that interacts with the 9-cis-retinoic acid receptor. Proc. Natl Acad. Sci. USA 92, 2096–2100 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Willy, P. J. et al. LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev. 9, 1033–1045 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Nuclear Receptors Nomenclature Committee. A unified nomenclature system for the nuclear receptor superfamily. Cell 97, 161–163 (1999).

  15. Seol, W., Choi, H. S. & Moore, D. D. Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors. Mol. Endocrinol. 9, 72–85 (1995).

    CAS  PubMed  Google Scholar 

  16. Lou, X. et al. Structure of the retinoid X receptor α-liver X receptor β (RXRα-LXRβ) heterodimer on DNA. Nature Struct. Mol. Biol. 21, 277–281 (2014).

    Article  CAS  Google Scholar 

  17. Janowski, B. A., Willy, P. J., Devi, T. R., Falck, J. R. & Mangelsdorf, D. J. An oxysterol signalling pathway mediated by the nuclear receptor LXR α. Nature 383, 728–731 (1996). This study identified oxysterols as endogenous ligands for LXRs.

    Article  CAS  PubMed  Google Scholar 

  18. Janowski, B. A. et al. Structural requirements of ligands for the oxysterol liver X receptors LXRα and LXRβ. Proc. Natl Acad. Sci. USA 96, 266–271 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Plat, J., Nichols, J. A. & Mensink, R. P. Plant sterols and stanols: effects on mixed micellar composition and LXR (target gene) activation. J. Lipid Res. 46, 2468–2476 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Berrodin, T. J. et al. Identification of 5α, 6α-epoxycholesterol as a novel modulator of liver X receptor activity. Mol. Pharmacol. 78, 1046–1058 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Ou, J. et al. Unsaturated fatty acids inhibit transcription of the sterol regulatory element-binding protein-1c (SREBP-1c) gene by antagonizing ligand-dependent activation of the LXR. Proc. Natl Acad. Sci. USA 98, 6027–6032 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Yoshikawa, T. et al. Polyunsaturated fatty acids suppress sterol regulatory element-binding protein 1c promoter activity by inhibition of liver X receptor (LXR) binding to LXR response elements. J. Biol. Chem. 277, 1705–1711 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Tamehiro, N. et al. Riccardin C: a natural product that functions as a liver X receptor (LXR)α agonist and an LXRβ antagonist. FEBS Lett. 579, 5299–5304 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Goldwasser, J. et al. Transcriptional regulation of human and rat hepatic lipid metabolism by the grapefruit flavonoid naringenin: role of PPARα, PPARγ and LXRα. PLoS ONE 5, e12399 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schultz, J. R. et al. Role of LXRs in control of lipogenesis. Genes Dev. 14, 2831–2838 (2000). This paper describes the identification of T0901317 as a synthetic LXR agonist and provides the first evidence that hyperlipidaemia and liver steatosis are potential adverse effects of LXR agonists.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Houck, K. A. et al. T0901317 is a dual LXR/FXR agonist. Mol. Genet. Metabolism 83, 184–187 (2004).

    Article  CAS  Google Scholar 

  27. Mitro, N., Vargas, L., Romeo, R., Koder, A. & Saez, E. T0901317 is a potent PXR ligand: implications for the biology ascribed to LXR. FEBS Lett. 581, 1721–1726 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Collins, J. L. et al. Identification of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines. J. Med. Chem. 45, 1963–1966 (2002). The synthesis of GW3965 and its characterization as a LXR agonist are described in this paper.

    Article  CAS  PubMed  Google Scholar 

  29. Joseph, S. B. et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc. Natl Acad. Sci. USA 99, 7604–7609 (2002). This study demonstrated the effects of GW3965 on reducing atherosclerotic lesions.

    Article  CAS  PubMed  Google Scholar 

  30. Kaneko, E. et al. Induction of intestinal ATP-binding cassette transporters by a phytosterol-derived liver X receptor agonist. J. Biol. Chem. 278, 36091–36098 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Quinet, E. M. et al. Gene-selective modulation by a synthetic oxysterol ligand of the liver X receptor. J. Lipid Res. 45, 1929–1942 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Viennois, E. et al. Selective liver X receptor modulators (SLiMs): what use in human health? Mol. Cell Endocrinol. 351, 129–141 (2012). The concept of selective LXR modulators was first introduced in this comprehensive review on LXR ligands.

    Article  CAS  PubMed  Google Scholar 

  33. Gabbi, C., Warner, M. & Gustafsson, J. A. Action mechanisms of Liver X Receptors. Biochem. Biophys. Res. Commun. 446, 647–650 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Jakobsson, T., Treuter, E., Gustafsson, J. A. & Steffensen, K. R. Liver X receptor biology and pharmacology: new pathways, challenges and opportunities. Trends Pharmacol. Sci. 33, 394–404 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Boergesen, M. et al. Genome-wide profiling of liver X receptor, retinoid X receptor, and peroxisome proliferator-activated receptor-α in mouse liver reveals extensive sharing of binding sites. Mol. Cell. Biol. 32, 852–867 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Carroll, J. S. et al. Genome-wide analysis of estrogen receptor binding sites. Nature Genet. 38, 1289–1297 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Lin, C.-Y. et al. Whole-genome cartography of estrogen receptorα binding sites. PLoS Genet. 3, e87 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Derangere, V. et al. Liver X receptor β activation induces pyroptosis of human and murine colon cancer cells. Cell Death Differ. 21, 1914–1924 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee, J. H. et al. Differential SUMOylation of LXRα and LXRβ mediates transrepression of STAT1 inflammatory signaling in IFN-γ-stimulated brain astrocytes. Mol. Cell 35, 806–817 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Peet, D. J. et al. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXRα. Cell 93, 693–704 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Laffitte, B. A. et al. Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proc. Natl Acad. Sci. USA 100, 5419–5424 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Gerin, I. et al. LXRβ is required for adipocyte growth, glucose homeostasis, and β cell function. J. Biol. Chem. 280, 23024–23031 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Korach-Andre, M. et al. Separate and overlapping metabolic functions of LXRα and LXRβ in C57Bl/6 female mice. Am. J. Physiol. Endocrinol. Metab. 298, E167–E178 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Korach-Andre, M., Archer, A., Barros, R. P., Parini, P. & Gustafsson, J. A. Both liver-X receptor (LXR) isoforms control energy expenditure by regulating brown adipose tissue activity. Proc. Natl Acad. Sci. USA 108, 403–408 (2011).

    Article  PubMed  Google Scholar 

  45. Gabbi, C. et al. Pancreatic exocrine insufficiency in LXRβ−/− mice is associated with a reduction in aquaporin-1 expression. Proc. Natl Acad. Sci. USA 105, 15052–15057 (2008).

    Article  PubMed  Google Scholar 

  46. Kim, H. J. et al. Liver X receptor β (LXRβ): a link between β-sitosterol and amyotrophic lateral sclerosis–Parkinson's dementia. Proc. Natl Acad. Sci. USA 105, 2094–2099 (2008).

    Article  PubMed  Google Scholar 

  47. Wang, L. et al. Liver X receptors in the central nervous system: from lipid homeostasis to neuronal degeneration. Proc. Natl Acad. Sci. USA 99, 13878–13883 (2002). This is the first report showing that the LXRs are important for CNS function.

    Article  CAS  PubMed  Google Scholar 

  48. Walcher, D. et al. LXR activation reduces proinflammatory cytokine expression in human CD4-positive lymphocytes. Arterioscler Thromb. Vasc. Biol. 26, 1022–1028 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Walcher, D. et al. LXR activation inhibits chemokine-induced CD4-positive lymphocyte migration. Bas. Res. Cardiol. 105, 487–494 (2010).

    Article  CAS  Google Scholar 

  50. Chang, L. et al. Liver-X-receptor activator prevents homocysteine-induced production of IgG antibodies from murine B lymphocytes via the ROS–NF-κB pathway. Biochem. Biophys. Res. Commun. 357, 772–778 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Heine, G. et al. Liver X receptors control IgE expression in B cells. J. Immunol. 182, 5276–5282 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Myhre, A. E. et al. Liver X receptor is a key regulator of cytokine release in human monocytes. Shock 29, 468–474 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Zelcer, N. & Tontonoz, P. Liver X receptors as integrators of metabolic and inflammatory signaling. J. Clin. Invest. 116, 607–614 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Solt, L. A., Kamenecka, T. M. & Burris, T. P. LXR-mediated inhibition of CD4+ T helper cells. PLoS ONE 7, e46615 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hindinger, C. et al. Liver X receptor activation decreases the severity of experimental autoimmune encephalomyelitis. J. Neurosci. Res. 84, 1225–1234 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Joseph, S. B. et al. LXR-dependent gene expression is important for macrophage survival and the innate immune response. Cell 119, 299–309 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Valledor, A. F. et al. Activation of liver X receptors and retinoid X receptors prevents bacterial-induced macrophage apoptosis. Proc. Natl Acad. Sci. USA 101, 17813–17818 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Birrell, M. A. et al. Novel role for the liver X nuclear receptor in the suppression of lung inflammatory responses. J. Biol. Chem. 282, 31882–31890 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Smoak, K. et al. Effects of liver X receptor agonist treatment on pulmonary inflammation and host defense. J. Immunol. 180, 3305–3312 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schmuth, M., Jiang, Y. J., Dubrac, S., Elias, P. M. & Feingold, K. R. Thematic review series: skin lipids. Peroxisome proliferator-activated receptors and liver X receptors in epidermal biology. J. Lipid Res. 49, 499–509 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Schmuth, M., Moosbrugger-Martinz, V., Blunder, S. & Dubrac, S. Role of PPAR, LXR, and PXR in epidermal homeostasis and inflammation. Biochim. Biophys. Acta 1841, 463–473 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Li, N. et al. LXR modulation blocks prostaglandin E2 production and matrix degradation in cartilage and alleviates pain in a rat osteoarthritis model. Proc. Natl Acad. Sci. USA 107, 3734–3739 (2010).

    Article  PubMed  Google Scholar 

  63. Asquith, D. L. et al. Simultaneous activation of the liver X receptors (LXRα and LXRβ) drives murine collagen-induced arthritis disease pathology. Ann. Rheum. Dis. 70, 2225–2228 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Zelcer, N. et al. Attenuation of neuroinflammation and Alzheimer's disease pathology by liver x receptors. Proc. Natl Acad. Sci. USA 104, 10601–10606 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Koldamova, R. P. et al. The liver X receptor ligand T0901317 decreases amyloid β production in vitro and in a mouse model of Alzheimer's disease. J. Biol. Chem. 280, 4079–4088 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. White, C. P. On the occurrence of crystals in tumours. J. Pathol. Bacteriol. 13, 3–10 (1909).

    Article  Google Scholar 

  67. Yasuda, M. & Bloor, W. R. Lipid content of tumors. J. Clin. Invest. 11, 677–682 (1932).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Swyer, G. I. M. The cholesterol content of normal and enlarged prostates. Cancer Res. 2, 372–375 (1942).

    CAS  Google Scholar 

  69. Sporer, A., Brill, D. R. & Schaffner, C. P Epoxycholesterols in secretions and tissues of normal, benign, and cancerous human prostate glands. Urology 20, 244–250 (1982).

    Article  CAS  PubMed  Google Scholar 

  70. Ettinger, S. L. et al. Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence. Cancer Res. 64, 2212–2221 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Fukuchi, J., Kokontis, J. M., Hiipakka, R. A., Chuu, C. P. & Liao, S. Antiproliferative effect of liver X receptor agonists on LNCaP human prostate cancer cells. Cancer Res. 64, 7686–7689 (2004). This is the first report of the potential antitumour effects of LXR agonists.

    Article  CAS  PubMed  Google Scholar 

  72. Rough, J. J., Monroy, M. A., Yerrum, S. & Daly, J. M. Anti-proliferative effect of LXR agonist T0901317 in ovarian carcinoma cells. J. Ovarian Res. 3, 13 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vedin, L. L., Lewandowski, S. A., Parini, P., Gustafsson, J. A. & Steffensen, K. R. The oxysterol receptor LXR inhibits proliferation of human breast cancer cells. Carcinogenesis 30, 575–579 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Geyeregger, R. et al. Liver X receptors interfere with cytokine-induced proliferation and cell survival in normal and leukemic lymphocytes. J. Leukoc. Biol. 86, 1039–1048 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Nguyen-Vu, T. et al. Liver X receptor ligands disrupt breast cancer cell proliferation through an E2F-mediated mechanism. Breast Cancer Res. 15, R51 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Vedin, L. L., Gustafsson, J. A. & Steffensen, K. R. The oxysterol receptors LXRα and LXRβ suppress proliferation in the colon. Mol. Carcinog. 52, 835–844 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Lo Sasso, G. et al. Liver X receptors inhibit proliferation of human colorectal cancer cells and growth of intestinal tumors in mice. Gastroenterology 144, 1497–1507 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Candelaria, N. R. et al. Antiproliferative effects and mechanisms of liver X receptor ligands in pancreatic ductal adenocarcinoma cells. PLoS ONE 9, e106289 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Agarwal, J. R. et al. Activation of liver X receptors inhibits hedgehog signaling, clonogenic growth, and self-renewal in multiple myeloma. Mol. Cancer Ther. 13, 1873–1881 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang, W. et al. Liver X receptor activation induces apoptosis of melanoma cell through caspase pathway. Cancer Cell. Int. 14, 16 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pencheva, N., Buss, C. G., Posada, J., Merghoub, T. & Tavazoie, S. F. Broad-spectrum therapeutic suppression of metastatic melanoma through nuclear hormone receptor activation. Cell 156, 986–1001 (2014). This is the most comprehensive study of mechanisms of action of LXR ligands in a cancer model, including effects on tumour and stromal cells.

    Article  CAS  PubMed  Google Scholar 

  82. Fukuchi, J. et al. Androgenic suppression of ATP-binding cassette transporter A1 expression in LNCaP human prostate cancer cells. Cancer Res. 64, 7682–7685 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Pommier, A. J. et al. Liver X Receptor activation downregulates AKT survival signaling in lipid rafts and induces apoptosis of prostate cancer cells. Oncogene 29, 2712–2723 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. El Roz, A., Bard, J. M., Huvelin, J. M. & Nazih, H. LXR agonists and ABCG1-dependent cholesterol efflux in MCF-7 breast cancer cells: relation to proliferation and apoptosis. Anticancer Res. 32, 3007–3013 (2012).

    CAS  PubMed  Google Scholar 

  85. Kim, K. H. et al. Inhibitory effect of LXR activation on cell proliferation and cell cycle progression through lipogenic activity. J. Lipid Res. 51, 3425–3433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fu, W. et al. LXR agonist regulates the carcinogenesis of PCa via the SOCS3 pathway. Cell Physiol. Biochem. 33, 195–204 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Kneitz, B. et al. Survival in patients with high-risk prostate cancer is predicted by miR221, which regulates proliferation, apoptosis, and invasion of prostate cancer cells by inhibiting IRF2 and SOCS3. Cancer Res. 74, 2591–2603 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Guo, D. et al. An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway. Cancer Discov. 1, 442–456 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pencheva, N. et al. Convergent multi-miRNA targeting of ApoE drives LRP1/LRP8-dependent melanoma metastasis and angiogenesis. Cell 151, 1068–1082 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cramer, P. E. et al. ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science 335, 1503–1506 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dragnev, K. H. et al. A proof-of-principle clinical trial of bexarotene in patients with non-small cell lung cancer. Clin. Cancer Res. 13, 1794–1800 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Esteva, F. J. et al. Multicenter phase II study of oral bexarotene for patients with metastatic breast cancer. J. Clin. Oncol. 21, 999–1006 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Sanchez, P. V., Glantz, S. T., Scotland, S., Kasner, M. T. & Carroll, M. Induced differentiation of acute myeloid leukemia cells by activation of retinoid X and liver X receptors. Leukemia 28, 749–760 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Chuu, C. P. et al. The liver X receptor agonist T0901317 acts as androgen receptor antagonist in human prostate cancer cells. Biochem. Biophys. Res. Commun. 357, 341–346 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lee, J. H. et al. Androgen deprivation by activating the liver X receptor. Endocrinology 149, 3778–3788 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Gong, H. et al. Estrogen deprivation and inhibition of breast cancer growth in vivo through activation of the orphan nuclear receptor liver X receptor. Mol. Endocrinol. 21, 1781–1790 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Villablanca, E. J. et al. Tumor-mediated liver X receptor-α activation inhibits CC chemokine receptor7 expression on dendritic cells and dampens antitumor responses. Nature Med. 16, 98–105 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Wang, Q. et al. Identification of interferon-γ as a new molecular target of liver X receptor. Biochem. J. 459, 345–354 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Noghero, A. et al. Liver X receptor activation reduces angiogenesis by impairing lipid raft localization and signaling of vascular endothelial growth factor receptor-2. Arterioscler Thromb. Vasc. Biol. 32, 2280–2288 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. El Roz, A., Bard, J. M., Valin, S., Huvelin, J. M. & Nazih, H. Macrophage apolipoprotein E and proliferation of MCF7 breast cancer cells: role of LXR. Anticancer Res. 33, 3783–3789 (2013).

    CAS  PubMed  Google Scholar 

  101. Katz, A. et al. Safety, pharmacokinetics, and pharmacodynamics of single doses of LXR-623, a novel liver X-receptor agonist, in healthy participants. J. Clin. Pharmacol. 49, 643–649 (2009). These are the only published clinical trial results of a LXR agonist to show adverse effects on the CNS.

    Article  CAS  PubMed  Google Scholar 

  102. Yasuda, T. et al. Tissue-specific liver X receptor activation promotes macrophage reverse cholesterol transport in vivo. Arterioscler Thromb. Vasc. Biol. 30, 781–786 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank X. Lou for preparing the image of the three-dimensional structure of the LXR–RXR heterodimer. This work was supported by grants to C.-Y.L. from Golfers Against Cancer and to J.-Å.G. from the Emerging Technology Fund of Texas (agreement 300-9-1958), the Robert A. Welch Foundation (E-0004) and the Swedish Science Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Åke Gustafsson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Ligands

Small molecules that bind receptors and modulate their activity.

Ligand-binding domains

(LBDs). Conserved regions within the receptor molecule that bind ligands and alter molecular interactions and the activity of the receptor.

Phytochemicals

Chemicals found in plants that may affect health.

Steatosis

The abnormal accumulation of lipids in cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CY., Gustafsson, JÅ. Targeting liver X receptors in cancer therapeutics. Nat Rev Cancer 15, 216–224 (2015). https://doi.org/10.1038/nrc3912

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3912

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing