Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Liver receptor homolog-1: structures, related diseases, and drug discovery

Abstract

Liver receptor homolog-1 (LRH-1), a member of the nuclear receptor superfamily, is a ligand-regulated transcription factor that plays crucial roles in metabolism, development, and immunity. Despite being classified as an ‘orphan’ receptor due to the ongoing debate surrounding its endogenous ligands, recent researches have demonstrated that LRH-1 can be modulated by various synthetic ligands. This highlights the potential of LRH-1 as an attractive drug target for the treatment of inflammation, metabolic disorders, and cancer. In this review, we provide an overview of the structural basis, functional activities, associated diseases, and advancements in therapeutic ligand research targeting LRH-1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Domain organization and structure features of the ligand binding domain (LBD) of human LRH-1 (hLRH-1).
Fig. 2: Regulation of LRH-1 transcriptional activity by co-regulators.
Fig. 3: Diseases and pathologies related to LRH-1.
Fig. 4: Co-crystal structures of small molecule modulators bound to hLRH-1 LBP.

Similar content being viewed by others

References

  1. Zhang Y, Luo XY, Wu DH, Xu Y. ROR nuclear receptors: structures, related diseases, and drug discovery. Acta Pharmacol Sin. 2015;36:71–87.

    Article  PubMed  Google Scholar 

  2. Wärnmark A, Treuter E, Wright AP, Gustafsson JA. Activation functions 1 and 2 of nuclear receptors: molecular strategies for transcriptional activation. Mol Endocrinol. 2003;17:1901–9.

    Article  PubMed  Google Scholar 

  3. Sar P. Nuclear receptor: structure and function. Prog Mol Biol Transl Sci. 2023;196:209–27.

    Article  CAS  PubMed  Google Scholar 

  4. Weikum ER, Liu X, Ortlund EA. The nuclear receptor superfamily: a structural perspective. Protein Sci. 2018;27:1876–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Giguère V. Orphan nuclear receptors: from gene to function. Endocr Rev. 1999;20:689–725.

    PubMed  Google Scholar 

  6. Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov. 2006;5:993–96.

    Article  CAS  PubMed  Google Scholar 

  7. Fayard E, Auwerx J, Schoonjans K. LRH-1: an orphan nuclear receptor involved in development, metabolism and steroidogenesis. Trends Cell Biol. 2004;14:250–60.

    Article  CAS  PubMed  Google Scholar 

  8. Zerlotin R, Arconzo M, Piccinin E, Moschetta A. Another one bites the gut: nuclear receptor LRH-1 in intestinal regeneration and cancer. Cancers. 2021;13:896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun Y, Demagny H, Schoonjans K. Emerging functions of the nuclear receptor LRH-1 in liver physiology and pathology. Biochim Biophys Acta Mol Basis Dis. 2021;1867:166145.

    Article  CAS  PubMed  Google Scholar 

  10. Michalek S, Brunner T. Nuclear-mitochondrial crosstalk: on the role of the nuclear receptor liver receptor homolog-1 (NR5A2) in the regulation of mitochondrial metabolism, cell survival, and cancer. IUBMB Life. 2021;73:592–610.

    Article  CAS  PubMed  Google Scholar 

  11. Yazawa T, Imamichi Y, Miyamoto K, Khan MR, Uwada J, Umezawa A, et al. Regulation of steroidogenesis, development, and cell differentiation by steroidogenic factor-1 and liver receptor homolog-1. Zool Sci. 2015;32:323–30.

    Article  CAS  Google Scholar 

  12. Mouzat K, Baron S, Marceau G, Caira F, Sapin V, Volle DH, et al. Emerging roles for LXRs and LRH-1 in female reproduction. Mol Cell Endocrinol. 2013;368:47–58.

    Article  CAS  PubMed  Google Scholar 

  13. Sandhu N, Rana S, Meena K. Nuclear receptor subfamily 5 group A member 2 (NR5A2): role in health and diseases. Mol Biol Rep. 2021;48:8155–70.

    Article  CAS  PubMed  Google Scholar 

  14. Meinsohn M-C, Smith OE, Bertolin K, Murphy BD. The orphan nuclear receptors steroidogenic factor-1 and liver receptor homolog-1: structure, regulation, and essential roles in mammalian reproduction. Physiol Rev. 2019;99:1249–79.

    Article  CAS  PubMed  Google Scholar 

  15. Li LA, Chiang EFL, Chen JC, Hsu NC, Chen YJ, Chung BC. Function of steroidogenic factor 1 domains in nuclear localization, transactivation, and interaction with transcription factor TFIIB and c-Jun. Mol Endocrinol. 1999;13:1588–98.

    Article  CAS  PubMed  Google Scholar 

  16. Solomon IH, Hager JM, Safi R, McDonnell DP, Redinbo MR, Ortlund EA. Crystal structure of the human LRH-1 DBD-DNA complex reveals Ftz-F1 domain positioning is required for receptor activity. J Mol Biol. 2005;354:1091–102.

    Article  CAS  PubMed  Google Scholar 

  17. Seacrist CD, Kuenze G, Hoffmann RM, Moeller BE, Burke JE, Meiler J, et al. Integrated structural modeling of full-length LRH-1 reveals inter-domain interactions contribute to receptor structure and function. Structure. 2020;28:830–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lu Y, Anderson WR, Zhang H, Feng S, Pick L. Functional conservation of drosophila FTZ-F1 and its mammalian homologs suggests ligand-independent regulation of NR5A family transcriptional activity. Dev Genes Evol. 2013;223:199–205.

    Article  CAS  PubMed  Google Scholar 

  19. Steinmetz AC, Renaud JP, Moras D. Binding of ligands and activation of transcription by nuclear receptors. Annu Rev Biophys Biomol Struct. 2001;30:329–59.

    Article  CAS  PubMed  Google Scholar 

  20. Sablin EP, Krylova IN, Fletterick RJ, Ingraham HA. Structural basis for ligand-independent activation of the orphan nuclear receptor LRH-1. Mol Cell. 2003;11:1575–85.

    Article  CAS  PubMed  Google Scholar 

  21. Nagy L, Schwabe JW. Mechanism of the nuclear receptor molecular switch. Trends Biochem Sci. 2004;29:317–24.

    Article  CAS  PubMed  Google Scholar 

  22. Busby S, Nuhant P, Cameron M, Mercer BA, Hodder P, Roush WR, et al. Discovery of inverse agonists for the liver receptor homologue-1 (LRH1; NR5A2). Probe reports from the NIH molecular libraries program. Bethesda (MD): National Center for Biotechnology Information (US); 2010.

    Google Scholar 

  23. Forman BM. Are those phospholipids in your pocket? Cell Metab. 2005;1:153–55.

    Article  CAS  PubMed  Google Scholar 

  24. Xu D, Jiang X, Wang Y, Song S. Liver receptor homolog-1 regulates apoptosis of bovineovarian granulosa cells by progestogen receptor signaling pathway. Animals. 2022;12:1213.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mays SG, Okafor CD, Whitby RJ, Goswami D, Stec J, Flynn AR, et al. Crystal structures of the nuclear receptor, liver receptor homolog 1, bound to synthetic agonists. J Biol Chem. 2016;291:25281–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu X, Zhang Y, Xu Y. Discovery of the first low nanomolar liver receptor homolog-1 (LRH-1) agonist. J Med Chem. 2019;62:11019–21.

    Article  CAS  PubMed  Google Scholar 

  27. Cornelison JL, Cato ML, Johnson AM, D’Agostino EH, Melchers D, Patel AB, et al. Development of a new class of liver receptor homolog-1 (LRH-1) agonists by photoredox conjugate addition. Bioorg Med Chem Lett. 2020;30:127293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cato ML, D’Agostino EH, Spurlin RM, Flynn AR, Cornelison JL, Johnson AM, et al. Comparison of activity, structure, and dynamics of SF-1 and LRH-1 complexed with small molecule modulators. J Biol Chem. 2023;299:104921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cato ML, Cornelison JL, Spurlin RM, Courouble VV, Patel AB, Flynn AR, et al. Differential modulation of nuclear receptor LRH-1 through targeting buried and surface regions of the binding pocket. J Med Chem. 2022;65:6888–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mays SG, Hercules D, Ortlund EA, Okafor CD. The nuclear receptor LRH-1 discriminates between ligands using distinct allosteric signaling circuits. Protein Sci. 2023;32:e4754.

    Article  CAS  PubMed  Google Scholar 

  31. Lazarus KA, Wijayakumara D, Chand AL, Simpson ER, Clyne CD. Therapeutic potential of liver receptor homolog-1 modulators. J Steroid Biochem Mol Biol. 2012;130:138–46.

    Article  CAS  PubMed  Google Scholar 

  32. Lonard DM, O’malley BW. Nuclear receptor coregulators: judges, juries, and executioners of cellular regulation. Mol Cell. 2007;27:691–700.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao H, Li Z, Cooney AJ, Lan ZJ. Orphan nuclear receptor function in the ovary. Front Biosci. 2007;12:3398–405.

    Article  CAS  PubMed  Google Scholar 

  34. Suzuki T, Kasahara M, Yoshioka H, Morohashi K, Umesono K. LXXLL-related motifs in Dax-1 have target specificity for the orphan nuclear receptors Ad4BP/SF-1 and LRH-1. Mol Cell Biol. 2003;23:238–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yazawa T, Inaoka Y, Okada R, Mizutani T, Yamazaki Y, Usami Y, et al. PPAR-gamma coactivator-1alpha regulates progesterone production in ovarian granulosa cells with SF-1 and LRH-1. Mol Endocrinol. 2010;24:485–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Darimont BD, Wagner RL, Apriletti JW, Stallcup MR, Kushner PJ, Baxter JD, et al. Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev. 1998;12:3343–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stein S, Schoonjans K. Molecular basis for the regulation of the nuclear receptor LRH-1. Curr Opin Cell Biol. 2015;33:26–34.

    Article  CAS  PubMed  Google Scholar 

  38. Gu P, Goodwin B, Chung AC, Xu X, Wheeler DA, Price RR, et al. Orphan nuclear receptor LRH-1 is required to maintain oct4 expression at the epiblast stage of embryonic development. Mol Cell Biol. 2005;25:3492–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Heng JC, Feng B, Han J, Jiang J, Kraus P, Ng JH, et al. The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell. 2010;6:167–74.

    Article  CAS  PubMed  Google Scholar 

  40. Paré JF, Malenfant D, Courtemanche C, Jacob-Wagner M, Roy S, Allard D, et al. The fetoprotein transcription factor (FTF) gene is essential to embryogenesis and cholesterol homeostasis and is regulated by a DR4 element. J Biol Chem. 2004;279:21206–16.

    Article  PubMed  Google Scholar 

  41. Meinsohn MC, Morin F, Bertolin K, Duggavathi R, Schoonjans K, Murphy BD. The orphan nuclear receptor liver homolog receptor-1 (Nr5a2) regulates ovarian granulosa cell proliferation. J Endocr Soc. 2018;2:24–41.

    Article  CAS  PubMed  Google Scholar 

  42. Higashiyama H, Kinoshita M, Asano S. Expression profiling of liver receptor homologue 1 (LRH-1) in mouse tissues using tissue microarray. J Mol Histol. 2007;38:45–52.

    Article  CAS  PubMed  Google Scholar 

  43. Nadolny C, Dong X. Liver receptor homolog-1 (LRH-1): a potential therapeutic target for cancer. Cancer Biol Ther. 2015;16:997–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kramer HB, Lai CF, Patel H, Periyasamy M, Lin ML, Feller SM, et al. LRH-1 drives colon cancer cell growth by repressing the expression of the CDKN1A gene in a p53-dependent manner. Nucleic Acids Res. 2016;44:582–94.

    Article  CAS  PubMed  Google Scholar 

  45. Xiao L, Wang Y, Xu K, Hu H, Xu Z, Wu D, et al. Nuclear receptor LRH-1 functions to promote castration-resistant growth of prostate cancer via its promotion of intratumoral androgen biosynthesis. Cancer Res. 2018;78:2205–18.

    Article  CAS  PubMed  Google Scholar 

  46. Faber C, Kirchner T, Hlubek F. The impact of microRNAs on colorectal cancer. Virchows Arch. 2009;454:359–67.

    Article  CAS  PubMed  Google Scholar 

  47. Slaby O, Svoboda M, Michalek J, Vyzula R. MicroRNAs in colorectal cancer: translation of molecular biology into clinical application. Mol Cancer. 2009;8:102.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Schetter AJ, Okayama H, Harris CC. The role of microRNAs in colorectal cancer. Cancer J. 2012;18:244–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Qu R, Hao S, Jin X, Shi G, Yu Q, Tong X, et al. MicroRNA-374b reduces the proliferation and invasion of colon cancer cells by regulation of LRH-1/Wnt signaling. Gene. 2018;642:354–61.

    Article  CAS  PubMed  Google Scholar 

  50. Liang Y, Zhao Q, Fan L, Zhang Z, Tan B, Liu Y, et al. Down-regulation of MicroRNA-381 promotes cell proliferation and invasion in colon cancer through up-regulation of LRH-1. Biomed Pharmacother. 2015;75:137–41.

    Article  CAS  PubMed  Google Scholar 

  51. Yuan Q, Cao G, Li J, Zhang Y, Yang W. MicroRNA-136 inhibits colon cancer cell proliferation and invasion through targeting liver receptor homolog-1/Wnt signaling. Gene. 2017;628:48–55.

    Article  CAS  PubMed  Google Scholar 

  52. Yan L, Qiu J, Yao J. Downregulation of microRNA-30d promotes cell proliferation and invasion by targeting LRH-1 in colorectal carcinoma. Int J Mol Med. 2017;39:1371–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lai HT, Chiang CT, Tseng WK, Chao TC, Su Y. GATA6 enhances the stemness of human colon cancer cells by creating a metabolic symbiosis through upregulating LRH-1 expression. Mol Oncol. 2020;14:1327–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wilde L, Roche M, Domingo-Vidal M, Tanson K, Philp N, Curry J, et al. Metabolic coupling and the reverse warburg effect in cancer: implications for novel biomarker and anticancer agent development. Semin Oncol. 2017;44:198–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sidler D, Renzulli P, Schnoz C, Berger B, Schneider-Jakob S, Flück C, et al. Colon cancer cells produce immunoregulatory glucocorticoids. Oncoimmunology. 2012;1:529–30.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Schoonjans K, Dubuquoy L, Mebis J, Fayard E, Wendling O, Haby C, et al. Liver receptor homolog 1 contributes to intestinal tumor formation through effects on cell cycle and inflammation. Proc Natl Acad Sci USA. 2005;102:2058–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Miki Y, Clyne CD, Suzuki T, Moriya T, Shibuya R, Nakamura Y, et al. Immunolocalization of liver receptor homologue-1 (LRH-1) in human breast carcinoma: possible regulator of insitu steroidogenesis. Cancer Lett. 2006;244:24–33.

    Article  CAS  PubMed  Google Scholar 

  58. Thiruchelvam PT, Lai CF, Hua H, Thomas RS, Hurtado A, Hudson W, et al. The liver receptor homolog-1 regulates estrogen receptor expression in breast cancer cells. Breast Cancer Res Treat. 2011;127:385–96.

    Article  CAS  PubMed  Google Scholar 

  59. Annicotte JS, Chavey C, Servant N, Teyssier J, Bardin A, Licznar A, et al. The nuclear receptor liver receptor homolog-1 is an estrogen receptor target gene. Oncogene. 2005;24:8167–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bianco S, Jangal M, Garneau D, Gévry N. LRH-1 controls proliferation in breast tumor cells by regulating CDKN1A gene expression. Oncogene. 2015;34:4509–18.

    Article  CAS  PubMed  Google Scholar 

  61. Lazarus KA, Brown KA, Young MJ, Zhao Z, Coulson RS, Chand AL, et al. Conditional overexpression of liver receptor homolog-1 in female mouse mammary epithelium results in altered mammary morphogenesis via the induction of TGF-β. Endocrinology. 2014;155:1606–17.

    Article  PubMed  Google Scholar 

  62. Cobo-Vuilleumier N, Lorenzo PI, Gauthier BR. Targeting LRH-1/NR5A2 to treat type 1 diabetes mellitus. Cell Stress. 2018;2:141–43.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Cobo-Vuilleumier N, Lorenzo PI, Rodríguez NG, Herrera Gómez IG, Fuente-Martin E, López-Noriega L, et al. LRH-1 agonism favours an immune-islet dialogue which protects against diabetes mellitus. Nat Commun. 2018;9:1488.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Martin Vázquez E, Cobo-Vuilleumier N, Araujo Legido R, Marín-Cañas S, Nola E, Dorronsoro A, et al. NR5A2/LRH-1 regulates the PTGS2-PGE(2)-PTGER1 pathway contributing to pancreatic islet survival and function. iScience. 2022;25:104345.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Baquié M, St-Onge L, Kerr-Conte J, Cobo-Vuilleumier N, Lorenzo PI, Jimenez Moreno CM, et al. The liver receptor homolog-1 (LRH-1) is expressed in human islets and protects {beta}-cells against stress-induced apoptosis. Hum Mol Genet. 2011;20:2823–33.

    Article  PubMed  Google Scholar 

  66. Hu J, Zhang Z, Hu H, Yang K, Zhu Z, Yang Q, et al. LRH-1 activation alleviates diabetes-induced podocyte injury by promoting GLS2-mediated glutaminolysis. Cell Prolif. 2023;56:e13479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Oosterveer MH, Mataki C, Yamamoto H, Harach T, Moullan N, van Dijk TH, et al. LRH-1-dependent glucose sensing determines intermediary metabolism in liver. J Clin Invest. 2012;122:2817–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Miranda DA, Krause WC, Cazenave-Gassiot A, Suzawa M, Escusa H, Foo JC, et al. LRH-1 regulates hepatic lipid homeostasis and maintains arachidonoyl phospholipid pools critical for phospholipid diversity. JCI Insight. 2018;3:e96151.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Stein S, Lemos V, Xu P, Demagny H, Wang X, Ryu D, et al. Impaired SUMOylation of nuclear receptor LRH-1 promotes nonalcoholic fatty liver disease. J Clin Invest. 2017;127:583–92.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bayrer JR, Wang H, Nattiv R, Suzawa M, Escusa HS, Fletterick RJ, et al. LRH-1 mitigates intestinal inflammatory disease by maintaining epithelial homeostasis and cell survival. Nat Commun. 2018;9:4055.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Coste A, Dubuquoy L, Barnouin R, Annicotte JS, Magnier B, Notti M, et al. LRH-1-mediated glucocorticoid synthesis in enterocytes protects against inflammatory bowel disease. Proc Natl Acad Sci USA. 2007;104:13098–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ahmed A, Schwaderer J, Hantusch A, Kolho KL, Brunner T. Intestinal glucocorticoid synthesis enzymes in pediatric inflammatory bowel disease patients. Genes Immun. 2019;20:566–76.

    Article  CAS  PubMed  Google Scholar 

  73. Landskron G, Dubois-Camacho K, Orellana-Serradell O, De la Fuente M, Parada-Venegas D, Bitrán M, et al. Regulation of the intestinal extra-adrenal steroidogenic pathway component LRH-1 by glucocorticoids in ulcerative colitis. Cells. 2022;11:1905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Benod C, Vinogradova MV, Jouravel N, Kim GE, Fletterick RJ, Sablin EP. Nuclear receptor liver receptor homologue 1 (LRH-1) regulates pancreatic cancer cell growth and proliferation. Proc Natl Acad Sci USA. 2011;108:16927–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sidler D, Renzulli P, Schnoz C, Berger B, Schneider-Jakob S, Flück C, et al. Colon cancer cells produce immunoregulatory glucocorticoids. Oncogene. 2011;30:2411–19.

    Article  CAS  PubMed  Google Scholar 

  76. Zhou J, Suzuki T, Kovacic A, Saito R, Miki Y, Ishida T, et al. Interactions between prostaglandin E(2), liver receptor homologue-1, and aromatase in breast cancer. Cancer Res. 2005;65:657–63.

    Article  CAS  PubMed  Google Scholar 

  77. Wang Z, Wu D, Ng CF, Teoh JY, Yu S, Wang Y, et al. Nuclear receptor profiling in prostatospheroids and castration-resistant prostate cancer. Endocr Relat Cancer. 2018;25:35–50.

    Article  PubMed  Google Scholar 

  78. Chand AL, Pathirage N, Lazarus K, Chu S, Drummond AE, Fuller PJ, et al. Liver receptor homologue-1 expression in ovarian epithelial and granulosa cell tumours. Steroids. 2013;78:700–06.

    Article  CAS  PubMed  Google Scholar 

  79. Whitby RJ, Dixon S, Maloney PR, Delerive P, Goodwin BJ, Parks DJ, et al. Identification of small molecule agonists of the orphan nuclear receptors liver receptor homolog-1 and steroidogenic factor-1. J Med Chem. 2006;49:6652–55.

    Article  CAS  PubMed  Google Scholar 

  80. Whitby RJ, Stec J, Blind RD, Dixon S, Leesnitzer LM, Orband-Miller LA, et al. Small molecule agonists of the orphan nuclear receptors steroidogenic factor-1 (SF-1, NR5A1) and liver receptor homologue-1 (LRH-1, NR5A2). J Med Chem. 2011;54:2266–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Krylova IN, Sablin EP, Moore J, Xu RX, Waitt GM, MacKay JA, et al. Structural analyses reveal phosphatidyl inositols as ligands for the NR5 orphan receptors SF-1 and LRH-1. Cell. 2005;120:343–55.

    Article  CAS  PubMed  Google Scholar 

  82. Ortlund EA, Lee Y, Solomon IH, Hager JM, Safi R, Choi Y, et al. Modulation of human nuclear receptor LRH-1 activity by phospholipids and SHP. Nat Struct Mol Biol. 2005;12:357–63.

    Article  CAS  PubMed  Google Scholar 

  83. Lee JM, Lee YK, Mamrosh JL, Busby SA, Griffin PR, Pathak MC, et al. A nuclear-receptor-dependent phosphatidylcholine pathway with antidiabetic effects. Nature. 2011;474:506–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Flynn AR, Mays SG, Ortlund EA, Jui NT. Development of hybrid phospholipid mimics as effective agonists for liver receptor homologue-1. ACS Med Chem Lett. 2018;9:1051–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mays SG, Flynn AR, Cornelison JL, Okafor CD, Wang H, Wang G, et al. Development of the first low nanomolar liver receptor homolog-1 agonist through structure-guided design. J Med Chem. 2019;62:11022–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Corzo CA, Mari Y, Chang MR, Khan T, Kuruvilla D, Nuhant P, et al. Antiproliferation activity of a small molecule repressor of liver receptor homolog 1. Mol Pharmacol. 2015;87:296–304.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Benod C, Carlsson J, Uthayaruban R, Hwang P, Irwin JJ, Doak AK, et al. Structure-based discovery of antagonists of nuclear receptor LRH-1. J Biol Chem. 2013;288:19830–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the National Key Research and Development Plan (grant 2022YFE0210600), the Joint Fund of Shandong Natural Science Foundation (grant ZR2022LSW026), the Science and Technology Program of Guangzhou, China (grant 202201010138).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Liu or Yong Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Lu, Zf., Yu, Hn. et al. Liver receptor homolog-1: structures, related diseases, and drug discovery. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01276-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01276-x

Keywords

Search

Quick links