Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Quantitative monitoring of mouse lung tumors by magnetic resonance imaging

Abstract

Primary lung cancer remains the leading cause of cancer-related death in the Western world, and the lung is a common site for recurrence of extrathoracic malignancies. Small-animal (rodent) models of cancer can have a very valuable role in the development of improved therapeutic strategies. However, detection of mouse pulmonary tumors and their subsequent response to therapy in situ is challenging. We have recently described MRI as a reliable, reproducible and nondestructive modality for the detection and serial monitoring of pulmonary tumors. By combining respiratory-gated data acquisition methods with manual and automated segmentation algorithms described by our laboratory, pulmonary tumor burden can be quantitatively measured in approximately 1 h (data acquisition plus analysis) per mouse. Quantitative, analytical methods are described for measuring tumor burden in both primary (discrete tumors) and metastatic (diffuse tumors) disease. Thus, small-animal MRI represents a novel and unique research tool for preclinical investigation of therapeutic strategies for treatment of pulmonary malignancies, and it may be valuable in evaluating new compounds targeting lung cancer in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sample calibration curve for the estimation of absolute lung tumor burden.
Figure 2: Graphic illustrating three different approaches to measuring diffuse tumor burden.
Figure 3
Figure 4: Manual segmentation of discrete tumors.
Figure 5: Manual segmentation of diffuse metastatic tumors.
Figure 6: Automated segmentation of diffuse metastatic tumors.

Similar content being viewed by others

References

  1. Ghetie, C., Davies, M., Cornfeld, D., Suh, N. & Saif, M.W. Expectoration of a lung metastasis in a patient with colorectal carcinoma. Clin. Colorectal Cancer 7, 283–286 (2008).

    Article  Google Scholar 

  2. Jemal, A., Siegel, R., Xu, J. & Ward, E. Cancer statistics, 2010. CA Cancer J. Clin. 60, 277–300 (2010).

    Google Scholar 

  3. Leong, S.P. et al. Clinical patterns of metastasis. Cancer Metastasis Rev. 25, 221–232 (2006).

    Article  Google Scholar 

  4. Hodi, F.S. et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc. Natl. Acad. Sci. USA 105, 3005–3010 (2008).

    Article  CAS  Google Scholar 

  5. Hodi, F.S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  Google Scholar 

  6. van Elsas, A., Hurwitz, A.A. & Allison, J.P. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J. Exp. Med. 190, 355–366 (1999).

    Article  CAS  Google Scholar 

  7. Bui, J.D., Uppaluri, R., Hsieh, C.S. & Schreiber, R.D. Comparative analysis of regulatory and effector T cells in progressively growing versus rejecting tumors of similar origins. Cancer Res. 66, 7301–7309 (2006).

    Article  CAS  Google Scholar 

  8. Cramer, D.W. & Finn, O.J. Epidemiologic perspective on immune-surveillance in cancer. Curr. Opin. Immunol. 23, 265–271 (2010).

    Article  Google Scholar 

  9. Bienenstock, J. T cells and the immune response: down-regulation via mucosal exposure. Can. Respir. J. 5 (suppl A), 27A–30A (1998).

    PubMed  Google Scholar 

  10. Liu, P. et al. Candidate lung tumor susceptibility genes identified through whole-genome association analyses in inbred mice. Nat. Genet. 38, 888–895 (2006).

    Article  CAS  Google Scholar 

  11. Fushiki, H. et al. Quantification of mouse pulmonary cancer models by microcomputed tomography imaging. Cancer Sci. 100, 1544–1549 (2009).

    Article  CAS  Google Scholar 

  12. Guilbaud, N. et al. Antitumor activity of S 16020-2 in two orthotopic models of lung cancer. Anticancer Drugs 8, 276–282 (1997).

    Article  CAS  Google Scholar 

  13. Feldser, D.M. et al. Stage-specific sensitivity to p53 restoration during lung cancer progression. Nature 468, 572–575 (2010).

    Article  CAS  Google Scholar 

  14. DuPage, M. et al. Endogenous T cell responses to antigens expressed in lung adenocarcinomas delay malignant tumor progression. Cancer Cell 19, 72–85 (2011).

    Article  CAS  Google Scholar 

  15. Johnson, L. et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410, 1111–1116 (2001).

    Article  CAS  Google Scholar 

  16. DuPage, M., Dooley, A.L. & Jacks, T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat. Protoc. 4, 1064–1072 (2009).

    Article  CAS  Google Scholar 

  17. Cheung, A.F., Dupage, M.J., Dong, H.K., Chen, J. & Jacks, T. Regulated expression of a tumor-associated antigen reveals multiple levels of T-cell tolerance in a mouse model of lung cancer. Cancer Res. 68, 9459–9468 (2008).

    Article  CAS  Google Scholar 

  18. Barbie, D.A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112 (2009).

    Article  CAS  Google Scholar 

  19. Kim, C.F. et al. Mouse models of human non-small-cell lung cancer: raising the bar. Cold Spring Harb. Symp. Quant. Biol. 70, 241–250 (2005).

    Article  CAS  Google Scholar 

  20. Kirsch, D.G. et al. Imaging primary lung cancers in mice to study radiation biology. Int. J. Radiat. Oncol. Biol. Phys. 76, 973–977 (2010).

    Article  Google Scholar 

  21. Lubet, R.A., Zhang, Z., Wang, Y. & You, M. Chemoprevention of lung cancer in transgenic mice. Chest 125, 144S–147S (2004).

    Article  CAS  Google Scholar 

  22. Acuff, H.B., Carter, K.J., Fingleton, B., Gorden, D.L. & Matrisian, L.M. Matrix metalloproteinase-9 from bone marrow–derived cells contributes to survival but not growth of tumor cells in the lung microenvironment. Cancer Res. 66, 259–266 (2006).

    Article  CAS  Google Scholar 

  23. Deroose, C.M. et al. Multimodality imaging of tumor xenografts and metastases in mice with combined small-animal PET, small-animal CT, and bioluminescence imaging. J. Nucl. Med. 48, 295–303 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. van Klaveren, R.J. et al. Management of lung nodules detected by volume CT scanning. N. Engl. J. Med. 361, 2221–2229 (2009).

    Article  CAS  Google Scholar 

  25. Aberle, D.R. et al. The National Lung Screening Trial: overview and study design. Radiology 258, 243–253 (2010).

    PubMed  Google Scholar 

  26. Namati, E. et al. Longitudinal assessment of lung cancer progression in the mouse using in vivo micro-CT imaging. Med. Phys. 37, 4793–4805 (2010).

    Article  Google Scholar 

  27. Paulus, M.J., Gleason, S.S., Kennel, S.J., Hunsicker, P.R. & Johnson, D.K. High-resolution X-ray computed tomography: an emerging tool for small animal cancer research. Neoplasia 2, 62–70 (2000).

    Article  CAS  Google Scholar 

  28. Kozin, S.V. et al. Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation. Cancer Res. 70, 5679–5685 (2010).

    Article  CAS  Google Scholar 

  29. Yuan, S., Qiao, T. & Chen, W. CpG oligodeoxynucleotide 1826 enhances the Lewis lung cancer response to radiotherapy in murine tumor. Cancer Biother. Radiopharm. 26, 203–208 (2011).

    Article  CAS  Google Scholar 

  30. Peranteau, W.H., Hayashi, S., Hsieh, M., Shaaban, A.F. & Flake, A.W. High-level allogeneic chimerism achieved by prenatal tolerance induction and postnatal nonmyeloablative bone marrow transplantation. Blood 100, 2225–2234 (2002).

    Article  CAS  Google Scholar 

  31. Hamilton, S.E., Wolkers, M.C., Schoenberger, S.P. & Jameson, S.C. The generation of protective memory-like CD8+ T cells during homeostatic proliferation requires CD4+ T cells. Nat. Immunol. 7, 475–481 (2006).

    Article  CAS  Google Scholar 

  32. Shvets, A. et al. Impaired negative regulation of homeostatically proliferating T cells. Blood 113, 622–625 (2009).

    Article  CAS  Google Scholar 

  33. Dummer, W. et al. T cell homeostatic proliferation elicits effective antitumor autoimmunity. J. Clin. Invest. 110, 185–192 (2002).

    Article  CAS  Google Scholar 

  34. Jeon, Y.H. et al. Immune response to firefly luciferase as a naked DNA. Cancer Biol. Ther. 6, 781–786 (2007).

    Article  CAS  Google Scholar 

  35. Hutchins, G.D., Miller, M.A., Soon, V.C. & Receveur, T. Small animal PET imaging. ILAR J. 49, 54–65 (2008).

    Article  CAS  Google Scholar 

  36. Hashemi, R.H. & Bradley, W.G. Jr. MRI: the Basics (Williams & Wilkins, 1997).

  37. Farrar, T. & Becker, E. Pulse and Fourier Transform NMR—Introduction to Theory and Methods (Academic Press, 1971).

  38. Akitt, J. & Mann, B. NMR and Chemistry: An Introduction to Modern NMR Spectroscopy (Stanley Thomes, 2000).

  39. Kish, P.E. et al. Magnetic resonance imaging of ethyl-nitrosourea-induced rat gliomas: a model for experimental therapeutics of low-grade gliomas. J. Neurooncol. 53, 243–257 (2001).

    Article  CAS  Google Scholar 

  40. Abdulkadir, S.A. et al. Impaired prostate tumorigenesis in Egr1-deficient mice. Nat. Med. 7, 101–107 (2001).

    Article  CAS  Google Scholar 

  41. Cai, S.R. et al. A mouse model for developing treatment for secondary liver tumors. Int. J. Oncol. 27, 113–120 (2005).

    PubMed  Google Scholar 

  42. Garbow, J.R., Wang, M., Wang, Y., Lubet, R.A. & You, M. Quantitative monitoring of adenocarcinoma development in rodents by magnetic resonance imaging. Clin. Cancer Res. 14, 1363–1367 (2008).

    Article  CAS  Google Scholar 

  43. Garbow, J.R., Zhang, Z. & You, M. Detection of primary lung tumors in rodents by magnetic resonance imaging. Cancer Res. 64, 2740–2742 (2004).

    Article  CAS  Google Scholar 

  44. Hedlund, L., Dewalt, S., Cofer, G. & Johnson, G.A. MR microscopy of the lung in Application of Magnetic Resonance to the Study of the Lung (ed. Cutillo, A.) 401–415 (Futura Press, 1996).

  45. Anderson, M.W. et al. Effect of dietary green tea extract and aerosolized difluoromethylornithine during lung tumor progression in A/J strain mice. Carcinogenesis 29, 1594–1600 (2008).

    Article  CAS  Google Scholar 

  46. Carreno, B.M. et al. Immunodeficient mouse strains display marked variability in growth of human melanoma lung metastases. Clin. Cancer Res. 15, 3277–3286 (2009).

    Article  CAS  Google Scholar 

  47. Garbow, J.R. & Ackerman, J.J. Imaging primary lung cancers in mice to study radiation biology: in regard to Kirsch et al. (Int. J. Radiat. Oncol. Biol. Phys. 2010;76:973–977). Int. J. Radiat. Oncol. Biol. Phys. 79, 959 (2011).

    Article  Google Scholar 

  48. Wang, Y. et al. Chemoprevention of lung squamous cell carcinoma in mice by a mixture of Chinese herbs. Cancer Prev. Res. 2, 634–640 (2009).

    Article  Google Scholar 

  49. Tidwell, V.K., Garbow, J.R., Krupnick, A.S., Engelbach, J.A. & Nehorai, A. Quantitative analysis of tumor burden in mouse lung via MRI. Magn. Reson. Med. doi:10.1002/mrm.22951 (27 September 2011).

  50. Garbow, J., Dugas, J., Song, S.-K. & Conradi, M. A simple, robust hardware device for passive or active respiratory gating in MRI and MRS experiments. Concepts Magn. Reson., Part B: Magn. Reson. Eng. 21B, 40–48 (2004).

    Article  Google Scholar 

  51. Naish, J.H. et al. Modeling of contrast agent kinetics in the lung using T1-weighted dynamic contrast-enhanced MRI. Magn. Reson. Med. 61, 1507–1514 (2009).

    Article  Google Scholar 

  52. Yuan, A. et al. Functional and structural characteristics of tumor angiogenesis in lung cancers overexpressing different VEGF isoforms assessed by DCE- and SSCE-MRI. PLoS One 6, e16062 (2011).

    Article  CAS  Google Scholar 

  53. Ertel, D., Kyriakou, Y., Lapp, R.M. & Kalender, W.A. Respiratory phase-correlated micro-CT imaging of free-breathing rodents. Phys. Med. Biol. 54, 3837–3846 (2009).

    Article  Google Scholar 

  54. Memon, A.A. et al. Positron emission tomography (PET) imaging with [11C]-labeled erlotinib: a micro-PET study on mice with lung tumor xenografts. Cancer Res. 69, 873–878 (2009).

    Article  CAS  Google Scholar 

  55. Phenix, C.P. et al. Imaging of enzyme replacement therapy using PET. Proc. Natl. Acad. Sci. USA 107, 10842–10847 (2011).

    Article  Google Scholar 

  56. Grimm, J. et al. Use of gene expression profiling to direct in vivo molecular imaging of lung cancer. Proc. Natl. Acad. Sci. USA 102, 14404–14409 (2005).

    Article  CAS  Google Scholar 

  57. Tung, C.H., Mahmood, U., Bredow, S. & Weissleder, R. In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res. 60, 4953–4958 (2000).

    CAS  PubMed  Google Scholar 

  58. Vikis, H.G. et al. Strain-specific susceptibility for pulmonary metastasis of sarcoma 180 cells in inbred mice. Cancer Res. 70, 4859–4867 (2010).

    Article  CAS  Google Scholar 

  59. Yeh, H.H. et al. Molecular imaging of active mutant L858R EGF receptor (EGFR) kinase-expressing nonsmall cell lung carcinomas using PET/CT. Proc. Natl. Acad. Sci. USA 108, 1603–1608 (2011).

    Article  CAS  Google Scholar 

  60. Zhang, Y. et al. Identification of inhibitors of ABCG2 by a bioluminescence imaging-based high-throughput assay. Cancer Res. 69, 5867–5875 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Mr. and Mrs. Spencer T. Olin Fellowship for Women in Graduate Study; National Science Foundation Grant CCF-0963742; the NIH/National Cancer Institute Small Animal Imaging Resource Program (U24 CA83060); the Alvin J. Siteman Cancer Center at Washington University in St. Louis, an NCI Comprehensive Cancer Center (P30 CA91842); American Cancer Society Internal Research Grant from the Siteman Cancer Center, NIH/National Cancer Institute Grant (KO8 CA131097); an American Thoracic Society/Lungevity Foundation Research Grant; the Barnes-Jewish Hospital Foundation, and the generous support of Sheldon and Charlotte Rudnick.

Author information

Authors and Affiliations

Authors

Contributions

A.S.K., V.K.T. and J.R.G. designed the imaging experiments, performed the data analysis and wrote the manuscript; J.A.E. collected all the MR images; A.E.G. and D.K. helped with experimental design; A.N. helped with data analysis; V.V.A. provided technical support; M.Y. and H.G.V. provided lung tumor-bearing animals and were instrumental in initial efforts to use MRI for monitoring primary mouse lung tumors.

Corresponding author

Correspondence to Joel R Garbow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Large equipment necessary for acquisition of MR Images. (PDF 737 kb)

Supplementary Fig. 2

Small-animal equipment necessary for acquisition of MR images. (PDF 446 kb)

Supplementary Video 1

Manual segmentation of mouse lungs using ImageJ. (AVI 23719 kb)

Supplementary Video 2

Running the Matlab Lung_Segmenation_Main.m program to automatically segment mouse lungs and compute average lung-image intensity, as required to measure tumor burden within the lungs. (AVI 14036 kb)

Supplementary Data

Matlab Code. (ZIP 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krupnick, A., Tidwell, V., Engelbach, J. et al. Quantitative monitoring of mouse lung tumors by magnetic resonance imaging. Nat Protoc 7, 128–142 (2012). https://doi.org/10.1038/nprot.2011.424

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.424

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer