Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Genome-scale analysis of replication timing: from bench to bioinformatics

Abstract

Replication timing profiles are cell type–specific and reflect genome organization changes during differentiation. In this protocol, we describe how to analyze genome-wide replication timing (RT) in mammalian cells. Asynchronously cycling cells are pulse labeled with the nucleotide analog 5-bromo-2-deoxyuridine (BrdU) and sorted into S-phase fractions on the basis of DNA content using flow cytometry. BrdU-labeled DNA from each fraction is immunoprecipitated, amplified, differentially labeled and co-hybridized to a whole-genome comparative genomic hybridization microarray, which is currently more cost effective than high-throughput sequencing and equally capable of resolving features at the biologically relevant level of tens to hundreds of kilobases. We also present a guide to analyzing the resulting data sets based on methods we use routinely. Subjects include normalization, scaling and data quality measures, LOESS (local polynomial) smoothing of RT values, segmentation of data into domains and assignment of timing values to gene promoters. Finally, we cover clustering methods and means to relate changes in the replication program to gene expression and other genetic and epigenetic data sets. Some experience with R or similar programming languages is assumed. All together, the protocol takes 3 weeks per batch of samples.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two-dimensional cell-cycle sorting for S- and G1-phases.
Figure 2: A typical cell-cycle profile for a mammalian fibroblast population obtained during FACS analysis by plotting cell count versus DNA content.
Figure 3: Distribution of signal intensities before and after normalization.
Figure 4: Dependence of timing ratios on signal intensity.
Figure 5: Verification of scale normalization between data sets.
Figure 6: Replication timing values across chromosome 1.
Figure 7: Autocorrelation functions for two RT experiments and their average.
Figure 8: A typical NimbleGen microarray image after a successful experiment.
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Pope, B.D., Hiratani, I. & Gilbert, D.M. Domain-wide regulation of DNA replication timing during mammalian development. Chromosome Res. 18, 127–136 (2010).

    Article  CAS  Google Scholar 

  2. Yaffe, E. et al. Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture. PLoS Genet. 6, e1001011 (2010).

    Article  Google Scholar 

  3. Ryba, T. et al. Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res. 20, 761–770 (2010).

    Article  CAS  Google Scholar 

  4. Gilbert, D.M. et al. Space and time in the nucleus: developmental control of replication timing and chromosome architecture. Cold Spring Harb. Symp. Quant. Biol. doi:10.1101/sqb.2010.75.011 (2010).

  5. Hiratani, I. et al. Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis. Genome Res. 20, 155–169 (2010).

    Article  CAS  Google Scholar 

  6. Hiratani, I. et al. Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol. 6, e245 (2008).

    Article  Google Scholar 

  7. Schwaiger, M. et al. Heterochromatin protein 1 (HP1) modulates replication timing of the Drosophila genome. Genome Res. 20, 771–780 (2010).

    Article  CAS  Google Scholar 

  8. Schwaiger, M. et al. Chromatin state marks cell-type- and gender-specific replication of the Drosophila genome. Genes Dev. 23, 589–601 (2009).

    Article  CAS  Google Scholar 

  9. Schübeler, D. et al. Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nat. Genet. 32, 438–442 (2002).

    Article  Google Scholar 

  10. Lee, T.-J. et al. Arabidopsis thaliana chromosome 4 replicates in two phases that correlate with chromatin state. PLoS Genet. 6, e1000982 (2010).

    Article  Google Scholar 

  11. Koren, A., Soifer, I. & Barkai, N. MRC1-dependent scaling of the budding yeast DNA replication timing program. Genome Res. 20, 781–790 (2010).

    Article  CAS  Google Scholar 

  12. Raghuraman, M.K. & Brewer, B.J. Molecular analysis of the replication program in unicellular model organisms. Chromosome Res. 18, 19–34 (2010).

    Article  CAS  Google Scholar 

  13. Hayashi, M. et al. Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast. EMBO J. 26, 1327–1339 (2007).

    Article  CAS  Google Scholar 

  14. Karnani, N., Taylor, C.M. & Dutta, A. Microarray analysis of DNA replication timing. Methods Mol. Biol. 556, 191–203 (2009).

    Article  CAS  Google Scholar 

  15. Farkash-Amar, S. & Simon, I. Genome-wide analysis of the replication program in mammals. Chromosome Res. 18, 115–125 (2009).

    Article  Google Scholar 

  16. Sasaki, T. et al. The Chinese hamster dihydrofolate reductase replication origin decision point follows activation of transcription and suppresses initiation of replication within transcription units. Mol. Cel. Biol. 26, 1051–1062 (2006).

    Article  CAS  Google Scholar 

  17. Gilbert, D.M. Replication origin plasticity, taylor-made: inhibition vs recruitment of origins under conditions of replication stress. Chromosoma 116, 341–347 (2007).

    Article  Google Scholar 

  18. Anglana, M. et al. Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing. Cell 114, 385–394 (2003).

    Article  CAS  Google Scholar 

  19. Gilbert, D.M. Evaluating genome-scale approaches to eukaryotic DNA replication. Nat. Rev. Genet. 11, 673–684 (2010).

    Article  CAS  Google Scholar 

  20. Gilbert, D.M. Temporal order of replication of Xenopus laevis 5S ribosomal RNA genes in somatic cells. Proc. Natl. Acad. Sci. USA 83, 2924–2928 (1986).

    Article  CAS  Google Scholar 

  21. Gilbert, D.M. & Cohen, S.N. Bovine papilloma virus plasmids replicate randomly in mouse fibroblasts throughout S phase of the cell cycle. Cell 50, 59–68 (1987).

    Article  CAS  Google Scholar 

  22. Hansen, R.S. et al. Association of fragile X syndrome with delayed replication of the FMR1 gene. Cell 73, 1403–1409 (1993).

    Article  CAS  Google Scholar 

  23. Yokochi, T. et al. G9a selectively represses a class of late-replicating genes at the nuclear periphery. Proc. Natl. Acad. Sci. USA 106, 19363–19368 (2009).

    Article  CAS  Google Scholar 

  24. Lu, J. et al. G2 phase chromatin lacks determinants of replication timing. J Cell Biol. 189, 967–980 (2010).

    Article  CAS  Google Scholar 

  25. Pollack, J.R. et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat. Genet. 23, 41–46 (1999).

    Article  CAS  Google Scholar 

  26. Acevedo, L.G. et al. Genome-scale ChIP-chip analysis using 10,000 human cells. BioTechniques 43, 791–797 (2007).

    Article  CAS  Google Scholar 

  27. Smyth, G.K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, 3 (2004).

    Article  Google Scholar 

  28. Yang, Y.H. et al. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 30, e15 (2002).

    Article  Google Scholar 

  29. Bolstad, B.M. et al. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003).

    Article  CAS  Google Scholar 

  30. Core, R.D. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2008).

  31. Gentleman, R.C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

    Article  Google Scholar 

  32. Ihaka, R. & Gentleman, R. R: A language for data analysis and graphics. J. Comput. Graph. Stat. 5, 299–314 (1996).

    Google Scholar 

  33. Spector, P. Data Manipulation with R (Springer Publishing Company, 2008).

  34. Chambers, J.M. Software for Data Analysis: Programming with R (Springer Publishing Company, 2008).

  35. Crawley, M.J. The R Book (Wiley, 2007).

  36. Wettenhall, J.M. & Smyth, G.K. limmaGUI: a graphical user interface for linear modeling of microarray data. Bioinformatics 20, 3705–3706 (2004).

    Article  CAS  Google Scholar 

  37. Hansen, R.S. et al. Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc. Natl. Acad. Sci. USA 107, 139–144 (2010).

    Article  CAS  Google Scholar 

  38. Pombo, A. & Gilbert, D.M. Nucleus and gene expression: the structure and function conundrum. Curr. Opin. Cell Biol. 22, 269–270 (2010).

    Article  CAS  Google Scholar 

  39. O'Geen, H. et al. Comparison of sample preparation methods for ChIP-chip assays. BioTechniques 41, 577–580 (2006).

    Article  CAS  Google Scholar 

  40. Peng, S. et al. Normalization and experimental design for ChIP-chip data. BMC Bioinformatics 8, 219 (2007).

    Article  Google Scholar 

  41. Reimers, M. & Weinstein, J.N. Quality assessment of microarrays: visualization of spatial artifacts and quantitation of regional biases. BMC Bioinformatics 6, 166 (2005).

    Article  Google Scholar 

  42. Venkatraman, E.S. & Olshen, A.B. A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 23, 657–663 (2007).

    Article  CAS  Google Scholar 

  43. Dellinger, A.E. et al. Comparative analyses of seven algorithms for copy number variant identification from single nucleotide polymorphism arrays. Nucleic Acids Res. 38, e105 (2010).

    Article  Google Scholar 

  44. Willenbrock, H. & Fridlyand, J. A comparison study: applying segmentation to array CGH data for downstream analyses. Bioinformatics 21, 4084–4091 (2005).

    Article  CAS  Google Scholar 

  45. Lai, W.R. et al. Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data. Bioinformatics 21, 3763–3770 (2005).

    Article  CAS  Google Scholar 

  46. Olshen, A.B. et al. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5, 557–572 (2004).

    Article  Google Scholar 

  47. Eisen, M.B. et al. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  Google Scholar 

  48. Suzuki, R. & Shimodaira, H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22, 1540–1542 (2006).

    Article  CAS  Google Scholar 

  49. ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306, 636–640 (2004).

  50. Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

    Article  CAS  Google Scholar 

  51. Rosenbloom, K.R. et al. ENCODE whole-genome data in the UCSC genome browser. Nucleic Acids Res. 38, D620–D625 (2010).

    Article  CAS  Google Scholar 

  52. Edgar, R., Domrachev, M. & Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002).

    Article  CAS  Google Scholar 

  53. Barrett, T. et al. NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res. 37, D885–D890 (2009).

    Article  CAS  Google Scholar 

  54. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  Google Scholar 

  55. Salcedo-Amaya, A.M. et al. Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 106, 9655–9660 (2009).

    Article  CAS  Google Scholar 

  56. Guenther, M.G. et al. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007).

    Article  CAS  Google Scholar 

  57. Hon, G., Wang, W. & Ren, B. Discovery and annotation of functional chromatin signatures in the human genome. PLoS Comput. Biol. 5, e1000566 (2009).

    Article  Google Scholar 

  58. Aladjem, M.I. et al. Replication initiation patterns in the beta-globin loci of totipotent and differentiated murine cells: evidence for multiple initiation regions. Mol. Cel. Biol. 22, 442–452 (2002).

    Article  CAS  Google Scholar 

  59. Woodfine, K. et al. Replication timing of the human genome. Hum. Mol. Genet. 13, 191–202 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.C. Rivera Mulia and A. Rycyk for helpful comments on the manuscript. Research in the Gilbert lab is funded by NIH Grants GM083337 and GM085354.

Author information

Authors and Affiliations

Authors

Contributions

D.M.G. and I.H. conceived the study and designed the experiments. T.R. and I.H. devised the computational methods. T.R., D.B., B.D.P. and D.M.G. wrote the manuscript.

Corresponding author

Correspondence to David M Gilbert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Data 1

Example data file L1210LymphoblastR1_532.pair (TXT 38582 kb)

Supplementary Data 2

Example data file L1210LymphoblastR1_635.pair (TXT 38532 kb)

Supplementary Data 3

Example data file L1210LymphoblastR2_532.pair (TXT 39297 kb)

Supplementary Data 4

Example data file L1210LymphoblastR2_635.pair (TXT 39203 kb)

Supplementary Data 5

Example targets file T.txt (TXT 0 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryba, T., Battaglia, D., Pope, B. et al. Genome-scale analysis of replication timing: from bench to bioinformatics. Nat Protoc 6, 870–895 (2011). https://doi.org/10.1038/nprot.2011.328

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.328

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing