Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

In vivo solid-phase microextraction for monitoring intravenous concentrations of drugs and metabolites

Abstract

This protocol for in vivo solid-phase microextraction (SPME) can be used to monitor and quantify intravenous concentrations of drugs and metabolites without the need to withdraw a blood sample for analysis. The SPME probe is inserted directly into a peripheral vein of a living animal through a standard medical catheter, and extraction occurs typically over 2–5 min. After extraction, the analytes are removed from the sorbent and analyzed by, for example, liquid chromatography–tandem mass spectrometry. It has been validated in comparison with conventional blood analysis, and we describe here the in vitro experiments typically conducted during method development. The new-generation biocompatible SPME probes are designed specifically for extraction of semi-volatiles and nonvolatiles directly from aqueous samples and can be steam sterilized. Sorbents are coated on fine-gauge surgical steel wire (200-μm diameter), which is more rugged and biocompatible than conventional fibers (100-μm fused silica fiber). They incorporate a binding agent that resists fouling by the biological matrix and does not cause an immune response in the experimental animal. The sorbents used (coating thickness of 50 μm) are selected for their affinity for the types of small molecules of interest. The procedure is illustrated by the analysis of benzodiazepines with polypyrrole-coated wires inserted into peripheral blood vessels of beagles, although it can be adapted for use in smaller animals. The in vivo sampling can require as little as 1 min, in which case the entire procedure from sampling to instrumental analysis can take as little as 30 min.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic setup of a flow system to simulate animal circulatory blood system.
Figure 2: The in vivo assembly with the SPME coating retracted and exposed.
Figure 3: Schematic of injection tee for manual probe desorption.
Figure 4: Amounts recovered from successive re-extractions from the same probe and effects of reconditioning on inter-batch reproducibility.
Figure 5: Setup for coating PPY wires.
Figure 6: Comparison of PPY probe extraction calibrations (binding isotherms) in buffer versus plasma versus whole blood.
Figure 7: Representative chromatograms for four benzodiazepines after PPY extractions from a dog plasma sample.
Figure 8: Static equilibration time profiles.
Figure 9
Figure 10: Pharmacokinetic profiles from PPY devices.
Figure 11: Pharmacokinetic profiles from PEG-C18 devices.
Figure 12: In vivo SPME sampling in rats.
Figure 13: Pharmacokinetic profiles of carbamazepine (CBZ) in mice.

Similar content being viewed by others

References

  1. Musteata, F., Musteata, L. & Pawliszyn, J. Fast in-vivo microextraction: a new tool for clinical analysis. Clin. Chem. 52, 708–715 (2006).

    Article  CAS  Google Scholar 

  2. Pawliszyn, J. Sample preparation—quo vadis? Anal. Chem. 75, 2543–2558 (2003).

    Article  CAS  Google Scholar 

  3. Mueller, D.M. & Rentsch, K.M. Sensitive quantification of sirolimus and everolimus by LC–MS/MS with online sample cleanup. J. Chromatogr. B 878, 1007–1012 (2010).

    Article  CAS  Google Scholar 

  4. Stanke-Labesque, F., Loustaud-Ratti, V., Babany, G., Gagnieu, M.-C. & Marquet, P. Ribavirin therapeutic drug monitoring: why, when and how? Fundam. Clin. Pharmacol. 24, 401–406 (2010).

    Article  CAS  Google Scholar 

  5. Gough, D.A., Armour, J.C. & Baker, D.A. Advances and prospects in glucose assay technology. Diabetologia 40, S102–S107 (1997).

    Article  CAS  Google Scholar 

  6. Adams, R.N. In vivo electrochemical measurements in the CNS. Prog. Neurobiol. 35, 297–311 (1990).

    Article  CAS  Google Scholar 

  7. Tian, Y., Mao, L., Okajima, T. & Ohsaka, T. A carbon fibre microelectrode-based third-generation biosensor for superoxide anion. Biosens. Bioelectron. 21, 557–564 (2005).

    Article  CAS  Google Scholar 

  8. Shin, J.H., Weinman, S.W. & Schoenfisch, M.H. Sol-gel derived amperometric nitric oxide microsensor. Anal. Chem. 77, 3494–3501 (2005).

    Article  CAS  Google Scholar 

  9. Strike, D.J., de Rooij, N.F. & Koudelka-Hep, M. Electrochemical techniques for the modification of microelectrodes. Biosens. Bioelectron. 10, 61–66 (1995).

    Article  CAS  Google Scholar 

  10. Hintsche, R. et al. Chemical microsensor systems for medical applications in catheters. Sens. Actuators B B27, 471–473 (1995).

    Article  Google Scholar 

  11. Dale, N., Hatz, S., Tian, F. & Llaudet, E. Listening to the brain: microelectrode biosensors for neurochemicals. Trends Biotechnol. 23, 420–428 (2005).

    Article  CAS  Google Scholar 

  12. Magalhaes, J.M.C.S. & Machado, A.A.S.C. Urea potentiometric biosensor based on urease immobilized on chitosan membranes. Talanta 47, 183–191 (1998).

    Article  CAS  Google Scholar 

  13. Park, S.S. et al. Real-time in vivo simultaneous measurements of nitric oxide and oxygen using an amperometric dual microsensor. Anal. Chem. 82, 7618–7624 (2010).

    Article  CAS  Google Scholar 

  14. Bosch, M.E., Sanchez, A.J.R., Rojas, F.S. & Ojeda, C.B. Optical chemical biosensors for high throughput screening of drugs. Comb. Chem. High Throughput Screen 10, 413–432 (2007).

    Article  CAS  Google Scholar 

  15. Westerink, B. & Cremers, T.I.F.H. Handbook of Microdialysis, Vol. 16. (Academic Press, 2007).

  16. Telting-Diaz, M., Scott, D.O. & Lunte, C.E. Intravenous microdialysis sampling in awake, freely-moving rats. Anal. Chem. 64, 806–810 (1992).

    Article  CAS  Google Scholar 

  17. Chaurasia, C.S. et al. AAPS-FDA workshop white paper: microdialysis principles, application and regulatory perspectives. Pharm. Res. 24, 1014–1025 (2007).

    Article  CAS  Google Scholar 

  18. Nandi, P., Desai, D.P. & Lunte, S.M. Development of a PDMS-based microchip electrophoresis device for continuous online in vivo monitoring of microdialysis samples. Electrophoresis 31, 1414–1422 (2010).

    Article  CAS  Google Scholar 

  19. Wang, M., Slaney, T., Mabrouk, O. & Kennedy, R.T. Collection of nanoliter microdialysate fractions in plugs for off-line in vivo chemical monitoring with up to 2 s temporal resolution. J. Neurosci. Methods 190, 39–48 (2010).

    Article  CAS  Google Scholar 

  20. Vuckovic, D. Solid-Phase Microextraction as Sample Preparation Method for Metabolomics. PhD thesis Chapters 5–9 (University of waterloo, 2010).

  21. Vuckovic, D. & Pawliszyn, J. Systematic evaluation of solid-phase microextraction coatings for untargeted metabolomic profiling of biological fluids by liquid chromatography-mass spectrometry. Anal. Chem 83, 1944–1954 (2011).

    Article  CAS  Google Scholar 

  22. Lord, H. et al. Development and evaluation of a solid phase microextraction probe for in vivo pharmacokinetic studies. Anal. Chem. 75, 5103–5115 (2003).

    Article  CAS  Google Scholar 

  23. Zhou, S.N., Oakes, K.D., Servos, M.R. & Pawliszyn, J. Application of solid-phase microextraction for in vivo laboratory and field sampling of pharmaceuticals in fish. Environ. Sci. Tech. 42, 6073–6079 (2008).

    Article  CAS  Google Scholar 

  24. Musteata, F.M., de Lannoy, I., Gien, B. & Pawliszyn, J. Blood sampling without blood draws for in vivo pharmacokinetic studies in rats. J. Pharm. Biomed. Anal. 47, 907–912 (2008).

    Article  CAS  Google Scholar 

  25. Vuckovic, D. et al. In vitro evaluation of new biocompatible coatings for solid-phase microextraction: implications for drug analysis and in vivo sampling applications. Anal. Chim. Acta 638, 175–185 (2009).

    Article  CAS  Google Scholar 

  26. Musteata, F. & Pawliszyn, J. In-vivo sampling with solid phase microextraction. J. Biochem. Biophys. Methods 70, 181–193 (2007).

    Article  CAS  Google Scholar 

  27. Es-haghi, A., Zhang, X., Musteata, F.M., Bagheri, H. & Pawliszyn, J. Evaluation of bio-compatible poly(ethylene glycol)-based SPME fibre for in-vivo pharmacokinetic studies of diazepam in dogs. Analyst 132, 672–678 (2007).

    Article  CAS  Google Scholar 

  28. Musteata, L., Musteata, M. & Pawliszyn, J. Biocompatible solid-phase microextraction coatings based on polyacrylonitrile and solid-phase extraction phases. Anal. Chem. 79, 6903–6911 (2007).

    Article  CAS  Google Scholar 

  29. Zhang, X. et al. Development of the space-resolved solid-phase microextraction technique and its application to biological matrices. Anal. Chem. 81, 7349–7356 (2009).

    Article  CAS  Google Scholar 

  30. Zhang, X. et al. Tissue-specific in vivo bioconcentration of pharmaceuticals in rainbow trout (Oncorhynchus mykiss) using space-resolved solid-phase microextraction. Environ. Sci. Tech. 44, 3417–3422 (2010).

    Article  CAS  Google Scholar 

  31. Vuckovic, D. et al. In vivo solid-phase microextraction for single rodent pharmacokinetics studies of carbamazepine and carbamazepine-10,11-epoxide in mice. J. Chromatogr. A doi:10.1016/j.chroma.2010.07.060 (3 August 2010).

  32. Lachin, J.M. Introduction to sample size determination and power analysis for clinical trials. Control. Clin. Trials 2, 93–113 (1981).

    Article  CAS  Google Scholar 

  33. Vuckovic, D., Zhang, X., Cudjoe, E. & Pawliszyn, J. Solid-phase microextraction in bioanalysis: new devices and directions. J. Chromatogr. A 1217, 4041–4060 (2010).

    Article  CAS  Google Scholar 

  34. Risticevic, S. et al. Protocol for solid phase microextraction method development. Nat. Protoc. 5, 122–139 (2010).

    Article  CAS  Google Scholar 

  35. Pawliszyn, J. Solid Phase Microextraction: Theory and Practice 1–247 (Wiley-VCH Publishers, 1997).

  36. Pawiszyn, J. ed. Handbook of SPME 1–409 (Chemical Industry Press of China, 2009).

  37. Pawliszyn, J. Solid phase microextraction. In A Century of Separation Science (ed Issaq, H.) 399–419 (Marcel Dekker, 2002).

  38. Zhang, X., Es-haghi, A., Musteata, F.M., Ouyang, G. & Pawliszyn, J. Quantitative in vivo microsampling for pharmacokinetic studies based on an integrated solid-phase microextraction system. Anal. Chem. 79, 4507–4513 (2007).

    Article  CAS  Google Scholar 

  39. Haase, V. & Beck, F. Electrodeposition of N-substituted polypyrroles on iron and the CIPL strategy. Electrochim. Acta 39, 1195–1205 (1994).

    Article  CAS  Google Scholar 

  40. Su, W. & Iroh, J.O. Electrodeposition mechanism of polypyrrole coatings on steel substrates from aqueous oxalate solutions. Electrochim. Acta 46, 1–8 (2000).

    Article  Google Scholar 

  41. Su, W. & Iroh, J.O. Morphology and structure of the passive interphase formed during aqueous electrodeposition of polypyrrole coatings on steel. Electrochim. Acta 44, 4655–4665 (1999).

    Article  CAS  Google Scholar 

  42. Su, W. & Iroh, J.O. Electrodeposition of poly(N-methylpyrrole) coatings on steel from aqueous medium. J. Appl. Polym. Sci. 71, 1293–1302 (1999).

    Article  CAS  Google Scholar 

  43. Lord, H.L. Development of Solid Phase Microextraction Devices for In Vivo Analysis. PhD thesis (University of Waterloo, 2005).

  44. Wu, J. Solid Phase Microextraction Based on Polypyrrole Films PhD thesis. Section 4.3.3 (University of Waterloo, 2001).

  45. Chen, Y. & Pawliszyn, J. Kinetics and the on-site application of standards in a solid-phase microextration fiber. Anal. Chem. 76, 5807–5815 (2004).

    Article  CAS  Google Scholar 

  46. Ouyang, G., Zhao, W. & Pawliszyn, J. Kinetic calibration for automated headspace liquid-phase microextraction. Anal. Chem. 77, 8122–8128 (2005).

    Article  CAS  Google Scholar 

  47. Ouyang, G. & Pawliszyn, J. Kinetic calibration for automated hollow fibre-protected liquid-phase microextraction. Anal. Chem. 78, 5783–5788 (2006).

    Article  CAS  Google Scholar 

  48. Zhou, S., Zhao, W. & Pawliszyn, J. Kinetic calibration using dominant pre-equilibrium desorption for on-site and in vivo sampling by solid-phase microextraction. Anal. Chem. 80, 481–490 (2008).

    Article  CAS  Google Scholar 

  49. Ouyang, G., Cai, J., Zhang, X., Li, H. & Pawliszyn, J. Standard-free kinetic calibration for rapid on-site analysis by solid-phase microextraction. J. Sep. Sci 31, 1167–1172 (2008).

    Article  CAS  Google Scholar 

  50. Ouyang, G., Cui, S., Qin, Z. & Pawliszyn, J. One-calibrant kinetic calibration for on-site water sampling with solid-phase microextraction. Anal. Chem. 81, 5629–5636 (2009).

    Article  CAS  Google Scholar 

  51. Zhang, X., Es-haghi, A., Cai, J. & Pawliszyn, J. Simplified kinetic calibration of solid-phase microextraction for in vivo pharmacokinetics. J. Chromatogr. A 1216, 7664–7669 (2009).

    Article  CAS  Google Scholar 

  52. Lord, H.L. A Review of strategies for interfacing solid phase microextraction with liquid chromatography. J. Chromatogr. A. 1152, 2–13 (2007).

    Article  CAS  Google Scholar 

  53. Chen, J. & Pawliszyn, J. SPME coupled to HPLC. Anal. Chem. 67, 2530–2533 (1995).

    Article  CAS  Google Scholar 

  54. Lord, H.L. Development of Solid Phase Microextraction Devices for In Vivo Analysis. PhD thesis. pp 127–128 (University of Waterloo, 2005).

  55. Es-haghi, A., Zhang, X., Musteata, F.M., Bagheri, H. & Pawliszyn, J. Evaluation of bio-compatible poly(ethylene glycol)-based solid-phase microextraction fiber for in vivo pharmacokinetic studies of diazepam in dogs. Analyst 132, 672–678 (2007).

    Article  CAS  Google Scholar 

  56. Lord, H.L. Development of Solid Phase Microextraction Devices for In Vivo Analysis. PhD thesis. pp 168–171 (University of Waterloo, 2005).

  57. Musteata, F.M., Pawliszyn, J., Qian, M.G., Wu, J.-T. & Miwa, G.T. Determination of drug plasma protein binding by solid phase microextraction. J. Pharm. Sci. 95, 1712–1722 (2006).

    Article  CAS  Google Scholar 

  58. Vuckovic, D., Cudjoe, E., Musteata, F.M. & Pawliszyn, J. Automated solid-phase microextraction and thin-film microextraction for high-throughput analysis of biological fluids and ligand-receptor binding studies. Nat. Protoc. 5, 140–161 (2010).

    Article  CAS  Google Scholar 

  59. Yamazaki, K. & Kanaoka, M. Computational prediction of the plasma protein-binding percent of diverse pharmaceutical compounds. J. Pharm. Sci. 93, 1480–1494 (2004).

    Article  CAS  Google Scholar 

  60. Lord, H.L. Development of Solid Phase Microextraction Devices for In Vivo Analysis PhD thesis. pp 120–121 (University of Waterloo, 2005).

  61. Platt, S.R. et al. Comparison of plasma benzodiazepine concentrations following intranasal and intravenous administration of diazepam to dogs. Am. J. Vet. Res. 61, 651–654 (2000).

    Article  CAS  Google Scholar 

  62. Yeung, J., Vuckovic, D. & Pawliszyn, J. Comparison and validation of calibration methods for in-vivo SPME determinations using an artificial vein system. Anal. Chim. Acta 665, 160–166 (2010).

    Article  CAS  Google Scholar 

  63. Schubert, J.K. et al. Determination of antibiotic drug concentration in circulating human blood by means of SPME. Clin. Chim. Acta 386, 57–62 (2007).

    Article  CAS  Google Scholar 

  64. Chen, Y. & Pawliszyn, J. Kinetics and the on-site application of standards in a solid-phase microextration fiber. Anal. Chem. 76, 5807–5815 (2004).

    Article  CAS  Google Scholar 

  65. Chen, Y., O'Reilly, J., Wang, Y. & Pawliszyn, J. Standards in the extraction phase, a new approach to calibration of microextraction processes. Analyst 129, 702–703 (2004).

    Article  CAS  Google Scholar 

  66. Ouyang, G., Zhao, W. & Pawliszyn, J. Kinetic calibration for automated headspace liquid-phase microextraction. Anal. Chem. 77, 8122–8128 (2005).

    Article  CAS  Google Scholar 

  67. Ouyang, G. & Pawliszyn, J. Kinetic calibration for automated hollow fiber-protected liquid-phase microextraction. Anal. Chem. 78, 5783–5788 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H.L.L. wrote and edited the manuscript. X. Z., F. M.M., D.V. and J.P. participated in editing the manuscript.

Corresponding author

Correspondence to Janusz Pawliszyn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lord, H., Zhang, X., Musteata, F. et al. In vivo solid-phase microextraction for monitoring intravenous concentrations of drugs and metabolites. Nat Protoc 6, 896–924 (2011). https://doi.org/10.1038/nprot.2011.329

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.329

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research