Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Visualization and genetic analysis of alternative splicing regulation in vivo using fluorescence reporters in transgenic Caenorhabditis elegans

Abstract

Transgenic multicolor fluorescence reporters enable the visualization of alternative splicing patterns at a single-cell resolution in living organisms and facilitate further genetic analyses to identify cis-elements and trans-acting factors involved in splicing regulation. In this paper, we describe a method of generating fluorescence alternative splicing reporters for the nematode Caenorhabditis elegans. We describe strategies for designing minigene reporters and methods for constructing them; DNA fragments ('modules', such as promoter/3′ cassettes, a genomic fragment of interest and a fluorescent protein cassette) that exist in separate vectors are assembled using site-directed recombination. We also describe strategies and methods for mutant screening and single-nucleotide polymorphism mapping using fluorescence reporters. This is the first detailed description of the design and construction of fluorescence alternative splicing reporters for C. elegans and their use in subsequent genetic analyses. It takes 2–4 months to construct minigenes and generate extrachromosomal lines for visualizing spatiotemporal distribution of alternative splicing events in vivo. Identification of regulators by integration of transgenes, mutant screening and mapping of the responsible genes takes a further 6–12 months. The fluorescence-reporter construction described here can also be applied to the vertebrate cell culture system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic structure of fluorescence reporter minigenes and expected mRNA isoforms.
Figure 2: Strategies for constructing fluorescence alternative splicing–reporter minigenes by site-directed recombination.
Figure 3: Schematic structure of pDEST-PL.
Figure 4: Visualization of developmental switching of the mutually exclusive exons of the let-2 gene.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Wang, E.T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Matlin, A.J., Clark, F. & Smith, C.W. Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell. Biol. 6, 386–398 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Black, D.L. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72, 291–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Jin, Y. et al. A vertebrate RNA-binding protein Fox-1 regulates tissue-specific splicing via the pentanucleotide GCAUG. EMBO J. 22, 905–912 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jensen, K.B. et al. Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron 25, 359–371 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Ladd, A.N., Charlet, N. & Cooper, T.A. The CELF family of RNA binding proteins is implicated in cell-specific and developmentally regulated alternative splicing. Mol. Cell. Biol. 21, 1285–1296 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sheives, P. & Lynch, K.W. Identification of cells deficient in signaling-induced alternative splicing by use of somatic cell genetics. RNA 8, 1473–1481 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, Z., Rolish, M.E., Yeo, G., Tung, V., Mawson, M. & Burge, C.B. Systematic identification and analysis of exonic splicing silencers. Cell 119, 831–845 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Ellis, P.D., Smith, C.W. & Kemp, P. Regulated tissue-specific alternative splicing of enhanced green fluorescent protein transgenes conferred by alpha-tropomyosin regulatory elements in transgenic mice. J. Biol. Chem. 279, 36660–36669 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Oltean, S. et al. Alternative inclusion of fibroblast growth factor receptor 2 exon IIIc in Dunning prostate tumors reveals unexpected epithelial mesenchymal plasticity. Proc. Natl. Acad. Sci. USA 103, 14116–14121 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Levinson, N. et al. Use of transcriptional synergy to augment sensitivity of a splicing reporter assay. RNA 12, 925–930 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. MacMorris, M.A., Zorio, D.A. & Blumenthal, T. An exon that prevents transport of a mature mRNA. Proc. Natl. Acad. Sci. USA 96, 3813–3818 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Newman, E.A. et al. Identification of RNA-binding proteins that regulate FGFR2 splicing through the use of sensitive and specific dual color fluorescence minigene assays. RNA 12, 1129–1141 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Orengo, J.P., Bundman, D. & Cooper, T.A. A bichromatic fluorescent reporter for cell-based screens of alternative splicing. Nucleic Acids Res. 34, e148 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Warzecha, C.C., Sato, T.K., Nabet, B., Hogenesch, J.B. & Carstens, R.P. ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol. Cell 33, 591–601 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oltean, S., Febbo, P.G. & Garcia-Blanco, M.A. Dunning rat prostate adenocarcinomas and alternative splicing reporters: powerful tools to study epithelial plasticity in prostate tumors in vivo. Clin. Exp. Metastasis 25, 611–619 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stoilov, P., Lin, C.H., Damoiseaux, R., Nikolic, J. & Black, D.L. A high-throughput screening strategy identifies cardiotonic steroids as alternative splicing modulators. Proc. Natl. Acad. Sci. USA 105, 11218–11223 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bonano, V.I., Oltean, S. & Garcia-Blanco, M.A. A protocol for imaging alternative splicing regulation in vivo using fluorescence reporters in transgenic mice. Nat. Protoc. 2, 2166–2181 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Bonano, V.I., Oltean, S., Brazas, R.M. & Garcia-Blanco, M.A. Imaging the alternative silencing of FGFR2 exon IIIb in vivo. RNA 12, 2073–2079 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Takeuchi, A., Hosokawa, M., Nojima, T. & Hagiwara, M. Splicing reporter mice revealed the evolutionally conserved switching mechanism of tissue-specific alternative exon selection. PLoS One 5, e10946 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zahler, A.M. Alternative splicing in C. elegans. in WormBook (ed. The C. elegans Research Community). doi:10.1895/wormbook.1.31.1, http://www.wormbook.org (26 September 2005).

  22. Spike, C.A., Davies, A.G., Shaw, J.E. & Herman, R.K. MEC-8 regulates alternative splicing of unc-52 transcripts in C. elegans hypodermal cells. Development 129, 4999–5008 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Spartz, A.K., Herman, R.K. & Shaw, J.E. SMU-2 and SMU-1, Caenorhabditis elegans homologs of mammalian spliceosome-associated proteins RED and fSAP57, work together to affect splice site choice. Mol. Cell. Biol. 24, 6811–6823 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Spike, C.A., Shaw, J.E. & Herman, R.K. Analysis of smu-1, a gene that regulates the alternative splicing of unc-52 pre-mRNA in Caenorhabditis elegans. Mol. Cell. Biol. 21, 4985–4995 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kabat, J.L., Barberan-Soler, S., McKenna, P., Clawson, H., Farrer, T. & Zahler, A.M. Intronic alternative splicing regulators identified by comparative genomics in nematodes. PLoS Comput. Biol. 2, e86 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kuroyanagi, H., Kobayashi, T., Mitani, S. & Hagiwara, M. Transgenic alternative-splicing reporters reveal tissue-specific expression profiles and regulation mechanisms in vivo. Nat. Methods 3, 909–915 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Ohno, G., Hagiwara, M. & Kuroyanagi, H. STAR family RNA-binding protein ASD-2 regulates developmental switching of mutually exclusive alternative splicing in vivo. Genes Dev. 22, 360–374 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kuroyanagi, H., Ohno, G., Mitani, S. & Hagiwara, M. The Fox-1 family and SUP-12 coordinately regulate tissue-specific alternative splicing in vivo. Mol. Cell. Biol. 27, 8612–8621 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. David, C.J. & Manley, J.L. The search for alternative splicing regulators: new approaches offer a path to a splicing code. Genes Dev. 22, 279–285 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kuroyanagi, H. Fox-1 family of RNA-binding proteins. Cell. Mol. Life Sci. 66, 3895–3907 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mello, C.C., Kramer, J.M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Van Buskirk, C. & Sternberg, P.W. Epidermal growth factor signaling induces behavioral quiescence in Caenorhabditis elegans. Nat. Neurosci. 10, 1300–1307 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Chang, Y.F., Imam, J.S. & Wilkinson, M.F. The nonsense-mediated decay RNA surveillance pathway. Annu. Rev. Biochem. 76, 51–74 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Isken, O. & Maquat, L.E. Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev. 21, 1833–1856 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Pulak, R. & Anderson, P. mRNA surveillance by the Caenorhabditis elegans smg genes. Genes Dev. 7, 1885–1897 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Burgess, R.R. Use of bioinformatics in planning a protein purification. Methods Enzymol. 463, 21–28 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Brondyk, W.H. Selecting an appropriate method for expressing a recombinant protein. Methods Enzymol. 463, 131–147 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Mello, C.C. & Fire, A. DNA transformation. in Caenorhabditis elegans: Modern Biological Analysis of an Organism (eds. Epstein, H.F. & Shakes, D.C.) 452–482 (Academic Press, San Diego, 1995).

  40. Clark, S.G., Lu, X. & Horvitz, H.R. The Caenorhabditis elegans locus lin-15, a negative regulator of a tyrosine kinase signaling pathway, encodes two different proteins. Genetics 137, 987–997 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mitani, S. Genetic regulation of mec-3 gene expression implicated in the specification of the mechanosensory neuron cell types in Caenorhabditis elegans. Dev. Growth Differ. 37, 551–557 (1995).

    Article  CAS  Google Scholar 

  42. Caceres, J.F. & Kornblihtt, A.R. Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet. 18, 186–193 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Wicks, S.R., Yeh, R.T., Gish, W.R., Waterston, R.H. & Plasterk, R.H. Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat. Genet. 28, 160–164 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Ryder, S.P., Recht, M.I. & Williamson, J.R. Quantitative analysis of protein-RNA interactions by gel mobility shift. Methods Mol. Biol. 99–115 (2008).

  45. Clarke, P.A. Labeling and purification of RNA synthesized by in vitro transcription. in RNA-Protein Interaction Protocols (ed. Haynes, S.R.) 1–10 (Humana Press, Totowa, New Jersey, 1999).

  46. Ohno, M. & Shimura, Y. Nuclear cap binding protein from HeLa cells. Methods Enzymol. 181, 209–215 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Johnstone, I.L. Molecular biology. in C. elegans: A Practical Approach (ed. Hope, I.A.) 201–225 (Oxford University Press, New York, 1999).

  48. Inoue, H., Nojima, H. & Okayama, H. High efficiency transformation of Escherichia coli with plasmids. Gene 96, 23–28 (1990).

    Article  CAS  PubMed  Google Scholar 

  49. Goodman, S.J., Branda, C.S., Robinson, M.K., Burdine, R.D. & Stern, M.J. Alternative splicing affecting a novel domain in the C. elegans EGL-15 FGF receptor confers functional specificity. Development 130, 3757–3766 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Graham, P.L., Johnson, J.J., Wang, S., Sibley, M.H., Gupta, M.C. & Kramer, J.M. Type IV collagen is detectable in most, but not all, basement membranes of Caenorhabditis elegans and assembles on tissues that do not express it. J. Cell. Biol. 137, 1171–1183 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sibley, M.H., Johnson, J.J., Mello, C.C. & Kramer, J.M. Genetic identification, sequence, and alternative splicing of the Caenorhabditis elegans alpha 2(IV) collagen gene. J. Cell. Biol. 123, 255–264 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Kostas, S.A. & Fire, A. The T-box factor MLS-1 acts as a molecular switch during specification of nonstriated muscle in C. elegans. Genes Dev. 16, 257–269 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Galarneau, A. & Richard, S. Target RNA motif and target mRNAs of the Quaking STAR protein. Nat. Struct. Mol. Biol. 12, 691–698 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Fire, H.R. Horvitz, R.Y. Tsien and A. Miyawaki for materials. We thank the present and past members of Masatoshi Hagiwara lab for their suggestions. We thank M. Hagiwara, H. Ito, Y. Kikuchi, T. Yamada and K. Kawamata for technical assistance. We thank Caenorhabditis Genetics Center for strains. We acknowledge support from grants from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), the Japan Society for the Promotion of Science and the Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Contributions

H.K. designed and performed the experiments, and wrote the paper; G.O., H.S. and H.M. designed and performed the experiments to improve the procedure; M.H. organized the study.

Corresponding authors

Correspondence to Hidehito Kuroyanagi or Masatoshi Hagiwara.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Sequence Archive

Sequence information of the fluorescent protein cassettes in pENTR-L5-L2 Entry vectors (PDF 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuroyanagi, H., Ohno, G., Sakane, H. et al. Visualization and genetic analysis of alternative splicing regulation in vivo using fluorescence reporters in transgenic Caenorhabditis elegans. Nat Protoc 5, 1495–1517 (2010). https://doi.org/10.1038/nprot.2010.107

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.107

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing