Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

High-performance liquid chromatography-mass spectrometry for mapping and sequencing glycosaminoglycan-derived oligosaccharides

Abstract

Glycosaminoglycans (GAGs) have proven to be very difficult to analyze and characterize because of their high negative charge density, polydispersity and sequence heterogeneity. As the specificity of the interactions between GAGs and proteins results from the structure of these polysaccharides, an understanding of GAG structure is essential for developing a structure–activity relationship. Electrospray ionization (ESI) mass spectrometry (MS) is particularly promising for the analysis of oligosaccharides chemically or enzymatically generated by GAGs because of its relatively soft ionization capacity. Furthermore, on-line high-performance liquid chromatography (HPLC)-MS greatly enhances the characterization of complex mixtures of GAG-derived oligosaccharides, providing important structural information and affording their disaccharide composition. A detailed protocol for producing oligosaccharides from various GAGs, using controlled, specific enzymatic or chemical depolymerization, is presented, together with their HPLC separation, using volatile reversed-phase ion-pairing reagents and on-line ESI-MS structural identification. This analysis provides an oligosaccharide map together with sequence information from a reading frame beginning at the nonreducing end of the GAG chains. The preparation of oligosaccharides can be carried out in 10 h, with subsequent HPLC analysis in 1–2 h and HPLC-MS analysis taking another 2 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different classes of GAGs and their disaccharide units.
Figure 2: SAX-HPLC of HA oligosaccharides produced by testicular hyaluronidase digestion detected at 214 nm.
Figure 3: RPIP-HPLC separation of HP unsaturated oligosaccharides obtained from controlled heparinase I depolymerization.
Figure 4: Total ion chromatograms of Scapharca inaequivalvis DS oligosaccharides up to 10-mer in the negative ion mode obtained by partial treatment with chondroitin ABC lyase and separated by means of RPIP-HPLC.
Figure 5: The ESI-MS spectrum in the negative mode of each single Scapharca inaequivalvis DS oligosaccharide species separated by means of RPIP-HPLC from 1- to 10-mer.
Figure 6: Total ion chromatograms of K4 oligosaccharides up to 24-mers in negative ion mode separated by means of RPIP-HPLC.
Figure 7: Total ion chromatograms of unsulfated saturated chondroitin oligosaccharides up to 16-mers in negative ion mode separated by means of RPIP-HPLC.
Figure 8: Total ion chromatograms of HA-saturated oligosaccharides up to 40-mers in negative ion mode separated by means of RPIP-HPLC.
Figure 9: Analysis of unsaturated oligosaccharides derived from nonsulfated HA and HN GAGs.
Figure 10: MS/MS spectra of HA 4-mer, tetrasaccharide from HA and HN 4-mer, tetrasaccharide from HN.

Similar content being viewed by others

References

  1. Bielik, A.M. & Zaia, J. Historical overview of glycoanalysis. Methods Mol. Biol. 600, 9–30 (2010).

    Article  CAS  Google Scholar 

  2. Sasisekharan, R. et al. Glycomics approach to structure-function relationships of glycosaminoglycans. Annu. Rev. Biomed. Eng. 8, 181–231 (2006).

    Article  CAS  Google Scholar 

  3. Ly, M. et al. Proteoglycanomics: Recent progress and future challenges. OMICS (in press).

  4. Dennis, J.W., Granovsky, M. & Warren, C.E. Protein glycosylation in development and disease. Bioessays 21, 412–421 (1999).

    Article  CAS  Google Scholar 

  5. Morgan, M.R., Humphries, M.J. & Bass, M.D. Synergistic control of cell adhesion by integrins and syndecans. Nat. Rev. Mol. Cell. Biol. 8, 957–969 (2007).

    Article  CAS  Google Scholar 

  6. Gama, C.I. & Hsieh-Wilson, L.C. Chemical approaches to deciphering the glycosaminoglycan code. Curr. Opin. Chem. Biol. 9, 609–619 (2005).

    Article  CAS  Google Scholar 

  7. Capila, I. & Linhardt, R.J. Heparin-protein interactions. Angew. Chem. Int. Ed. Engl. 41, 391–412 (2002).

    Article  Google Scholar 

  8. Raman, R. et al. Structural insights into biological roles of protein-glycosaminoglycan interactions. Chem. Biol. 12, 267–277 (2005).

    Article  CAS  Google Scholar 

  9. Yamada, S. & Sugahara, K. Potential therapeutic application of chondroitin sulfate/dermatan sulfate. Curr. Drug. Discov. Technol. 5, 289–301 (2008).

    Article  CAS  Google Scholar 

  10. Yip, G.W. et al. Therapeutic value of glycosaminoglycans in cancer. Mol. Cancer Ther. 5, 2139–2148 (2006).

    Article  CAS  Google Scholar 

  11. Lee, J.S. & Chien, C.B. When sugars guide axons: insights from heparan sulphate proteoglycan mutants. Nat. Rev. Genet. 5, 923–935 (2004).

    Article  CAS  Google Scholar 

  12. Casu, B. et al. Structural and conformational aspects of the anticoagulant and anti-thrombotic activity of heparin and dermatan sulfate. Curr. Pharm. Des. 10, 939–949 (2004).

    Article  CAS  Google Scholar 

  13. Shriver, Z. et al. Glycomics: a pathway to a class of new and improved therapeutics. Nat. Rev. Drug Discov. 3, 863–873 (2004).

    Article  CAS  Google Scholar 

  14. Linhardt, R.J. & Gunay, N.S. Production and chemical processing of low molecular weight heparins. Semin. Thromb. Hemost. 25 (Suppl 3): 5–16 (1999).

    CAS  PubMed  Google Scholar 

  15. Zhang, Z. et al. Solution structure of chemoenzymatic synthesized heparin and its precursors. J. Am. Chem. Soc. 130, 12998–13007 (2008).

    Article  CAS  Google Scholar 

  16. Lindahl, U. et al. Generation of 'neoheparin' from E. coli K5 capsular polysaccharide. J. Med. Chem. 48, 349–352 (2005).

    Article  CAS  Google Scholar 

  17. Kuberan, B. et al. Chemoenzymatic synthesis of classical and non-classical anticoagulant heparan sulfate polysaccharides. J. Biol. Chem. 278, 52613–52621 (2003).

    Article  CAS  Google Scholar 

  18. Naggi, A. et al. Toward a biotechnological heparin through combined chemical and enzymatic modification of the Escherichia coli K5 polysaccharide. Semin. Thromb. Hemost. 27, 437–443 (2001).

    Article  CAS  Google Scholar 

  19. Rodriguez, M.L., Jann, B. & Jann, K. Structure and serological characteristics of the capsular K4 antigen of Escherichia coli O5:K4:H4, a fructose-containing polysaccharide with a chondroitin backbone. Eur. J. Biochem. 177, 117–124 (1988).

    Article  CAS  Google Scholar 

  20. Griffiths, G., Barrett, B., Cook, N. & Roberts, I.S. Biosynthesis of the Escherichia coli K5 capsular polysaccharide. Biochem. Soc. Trans. 27, 507–512 (1999).

    Article  CAS  Google Scholar 

  21. DeAngelis, P.L., Gunay, N.S., Toida, T., Mao, W.J. & Linhardt, R.J. Identification of the capsular polysaccharides of type D and F Pasteurella multocida as unmodified heparin and chondroitin, respectively. Carbohydr. Res. 337, 1547–1552 (2002).

    Article  CAS  Google Scholar 

  22. Martin, J.G. et al. Toward an artificial Golgi: redesigning the biological activities of heparan sulfate on a digital microfluidic chip. J. Am. Chem. Soc. 131, 11041–11048 (2009).

    Article  CAS  Google Scholar 

  23. Laremore, T.N., Zhang, F., Dordick, J.S., Liu, J. & Linhardt, R.J. Recent progress and applications in glycosaminoglycan and heparin research. Curr. Opin. Chem. Biol. 13, 633–640 (2009).

    Article  CAS  Google Scholar 

  24. Silbert, J.E. & Sugumaran, G. Biosynthesis of chondroitin/dermatan sulfate. IUBMB Life 54, 177–186 (2002).

    Article  CAS  Google Scholar 

  25. Esko, J.D. & Selleck, S.B. Order out of chaos: assembly and ligand binding in heparin sulfate. Annu. Rev. Biochem. 71, 435–471 (2002).

    CAS  Google Scholar 

  26. Thanawiroon, C. et al. Liquid chromatography/mass spectrometry sequencing approach for highly sulfated heparin-derived oligosaccharides. J. Biol. Chem. 279, 2608–2615 (2004).

    Article  CAS  Google Scholar 

  27. Dell, A., Reason, A.J., Khoo, K.H., Panico, M., McDowell, R.A. & Morris, H.R. Mass spectrometry of carbohydrate-containing biopolymers. Methods Enzymol. 230, 108–132 (1994).

    Article  CAS  Google Scholar 

  28. Prabhakar, V. et al. The structural elucidation of glycosaminoglycans. Methods Mol. Biol. 534, 147–156 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Volpi, N. et al. Capillary electrophoresis of complex natural polysaccharides. Electrophoresis 29, 3095–3106 (2008).

    Article  CAS  Google Scholar 

  30. Raman, R. et al. Glycomics: an integrated systems approach to structure-function relationships of glycans. Nat. Methods 2, 817–824 (2005).

    Article  CAS  Google Scholar 

  31. Bindila, L. & Peter-Katalinić, J. Chip-mass spectrometry for glycomic studies. Mass Spectrom. Rev. 28, 223–253 (2009).

    Article  CAS  Google Scholar 

  32. Conrad, H.E. Nitrous acid degradation of glycosaminoglycans. In Analysis of Glycoconjugates. (ed. Varki, A.) Chapter 17: Unit 17.22A (Wiley Interscience, Boston, 2001).

  33. Linhardt, R.J. Analysis of glycosaminoglycans with polysaccharide lyases. In Analysis of Glycoconjugates. (ed. Varki, A.) Chapter 17: Unit 17.13.17 (Wiley Interscience, Boston, 2001).

  34. Imanari, T. et al. High-performance liquid chromatographic analysis of glycosaminoglycan-derived oligosaccharides. J. Chromatogr. A 720, 275–293 (1996).

    Article  CAS  Google Scholar 

  35. Storm, T. et al. Use of volatile amines as ion-pairing agents for the high-performance liquid chromatographic-tandem mass spectrometric determination of aromatic sulfonates in industrial wastewater. J. Chromatogr. A 854, 175–185 (1999).

    Article  CAS  Google Scholar 

  36. Witters, E. et al. Ion-pair liquid chromatography-electrospray mass spectrometry for the analysis of cyclic nucleotides. J. Chromatogr. B 694, 55–63 (1997).

    Article  CAS  Google Scholar 

  37. Heinegard, D. & Sommarin, Y. Isolation and characterization of proteoglycans. Methods Enzymol. 144, 319–373 (1987).

    Article  CAS  Google Scholar 

  38. Volpi, N. (ed.) Chondroitin Sulfate: Structure, Role And Pharmacological Activity (Academic Press, New York, 2006).

  39. Beaty, N.B. & Mello, R.J. Extracellular mammalian polysaccharides: glycosaminoglycans and proteoglycans. J. Chromatogr. 418, 187–222 (1987).

    Article  CAS  Google Scholar 

  40. Roden, L. et al. Isolation and characterization of connective tissue polysaccharides. Methods Enzymol. 28, 73–140 (1972).

    Article  Google Scholar 

  41. Zhang, F. et al. Microscale isolation and analysis of heparin from plasma using an anion exchange column. Anal. Biochem. 353, 284–286 (2006).

    Article  CAS  Google Scholar 

  42. Volpi, N. et al. Mass spectrometry for the characterization of unsulfated chondroitin oligosaccharides from 2-mers to 16-mers. Comparison with hyaluronic acid oligomers. Rapid Commun. Mass Spectrom. 22, 3526–3530 (2008).

    Article  CAS  Google Scholar 

  43. Volpi, N. Mass spectrometry characterization of Escherichia coli K4 oligosaccharides from 2-mers to more than 20-mers. Rapid Commun. Mass Spectrom. 21, 3459–3466 (2007).

    Article  CAS  Google Scholar 

  44. Volpi, N. Chondroitin C lyase [4.2.2.] is unable to cleave fructosylated sequences inside the partially fructosylated Escherichia coli K4 polymer. Glycoconj. J. 25, 451–457 (2008).

    Article  CAS  Google Scholar 

  45. Thanawiroon, C. & Linhardt, R.J. Separation of a complex mixture of heparin-derived oligosaccharides using reversed-phase high-performance liquid chromatography. J. Chromatogr. A 1014, 215–223 (2003).

    Article  CAS  Google Scholar 

  46. Volpi, N. & Maccari, F. Structural characterization and antithrombin activity of dermatan sulfate purified from marine clam Scapharca inaequivalvis. Glycobiology 19, 356–367 (2009).

    Article  CAS  Google Scholar 

  47. Volpi, N. On-line HPLC/ESI-MS separation and characterization of hyaluronan oligosaccharides from 2-mers to 40-mers. Anal. Chem. 79, 6390–6397 (2007).

    Article  CAS  Google Scholar 

  48. Zhang, Z. et al. Tandem MS can distinguish hyaluronic acid from N-acetylheparosan. J. Am. Soc. Mass Spectrom. 19, 82–90 (2008).

    Article  CAS  Google Scholar 

  49. Midura, R.J. et al. Nonreducing end structures of chondroitin sulfate chains on aggrecan isolated from Swarm rat chondrosarcoma cultures. J. Biol. Chem. 270, 8009–8015 (1995).

    Article  CAS  Google Scholar 

  50. Zhang, Z. et al. Liquid chromatography–mass spectrometry to study chondroitin lyase action pattern. Anal. Biochem. 385, 57–64 (2009).

    Article  CAS  Google Scholar 

  51. Volpi, N. & Maccari, F. LC separation and online MS characterization of saturated and unsaturated alginic acid oligomers. Chromatographia 69, 813–819 (2009).

    Article  CAS  Google Scholar 

  52. Domon, B. & Costello, C.E. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J. 5, 397–409 (1988).

    Article  CAS  Google Scholar 

  53. Bitter, T. & Muir, H.M. A modified uronic acid carbazole reaction. Anal. Biochem. 4, 330–334 (1962).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part through grants from the US National Institutes of Health (GM38060, HL096972, HL101721 and GM090127) to R.J.L.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work. R.J.L. designed and developed the RPIP-HPLC-ESI-MS. R.J.L. and N.V. applied this methodology to the structural study of various complex natural polymers with respect to bacterial polysaccharides.

Corresponding author

Correspondence to Nicola Volpi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volpi, N., Linhardt, R. High-performance liquid chromatography-mass spectrometry for mapping and sequencing glycosaminoglycan-derived oligosaccharides. Nat Protoc 5, 993–1004 (2010). https://doi.org/10.1038/nprot.2010.48

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.48

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing