Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Preparation of cells for assessing ultrastructural localization of nanoparticles with transmission electron microscopy

Abstract

We describe the use of transmission electron microscopy (TEM) for cellular ultrastructural examination of nanoparticle (NP)-exposed biomaterials. Preparation and imaging of electron-transparent thin cell sections with TEM provides excellent spatial resolution (1 nm), which is required to track these elusive materials. This protocol provides a step-by-step method for the mass-basis dosing of cultured cells with NPs, and the process of fixing, dehydrating, staining, resin embedding, ultramicrotome sectioning and subsequently visualizing NP uptake and translocation to specific intracellular locations with TEM. In order to avoid potential artifacts, some technical challenges are addressed. Based on our results, this procedure can be used to elucidate the intracellular fate of NPs, facilitating the development of biosensors and therapeutics, and provide a critical component for understanding NP toxicity. This protocol takes 1 week.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellular structures, possible mechanisms of nanoparticle (NP) uptake and some potential NP physicochemical uptake factors.
Figure 2: Issue of nanoparticle (NP) agglomeration and dispersion.
Figure 3: Overview of sample preparation process (ah).
Figure 4
Figure 5: Sample and equipment used for thin sectioning of resin-embedded cells (ag).
Figure 6: Overview of the uptake of carbon nanomaterials into neuroblastoma (N2A) cells after 24 h at 100 μg ml−1.

Similar content being viewed by others

References

  1. Colvin, V.L. The potential environmental impact of engineered nanomaterials. Nat. Biotechnol. 21, 1166 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Hoet, P.H., Nemmar, A. & Nemery, B. Health impact of nanomaterials? Nat. Biotechnol. 22, 19 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Maynard, A.D. et al. Safe handling of nanotechnology. Nature 444, 267 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Nel, A., Xia, T., Madler, L. & Li, N. Toxic potential of materials at the nanolevel. Science 311, 622 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Hussain, S.M., Hess, K.L., Gearhart, J.M., Geiss, K.T. & Schlager, J.J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro 19, 975–983 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Braydich-Stolle, L., Hussain, S., Schlager, J.J. & Hofmann, M.-C. In vitro cytotoxicity of nanoparticles in mammalian germ-line stem cells. Tox. Sci. 88, 412–419 (2005).

    Article  CAS  Google Scholar 

  7. Hussain, S. et al. The interaction of manganese nanotubes with PC-12 cells induces dopamine depletion. J. Tox. Sci. 92, 456–463 (2006).

    Article  CAS  Google Scholar 

  8. Skebo, J.E., Grabinski, C.M., Schrand, A.M., Schlager, J.J. & Hussain, S.M. Assessment of metal nanoparticle agglomeration, uptake, and interaction using a high illuminating system. Int. J. Tox. 26, 135–141 (2007).

    Article  CAS  Google Scholar 

  9. Schrand, A.M. et al. Are diamond nanoparticles cytotoxic? J. Phys. Chem. B. 111, 2–7 (2007a).

    Article  CAS  PubMed  Google Scholar 

  10. Schrand, A.M., Dai, L., Schlager, J.J., Hussain, S.M. & Osawa, E. Differential biocompatibility of carbon nanotubes and nanodiamonds. Diam. Relat. Mater. 16, 2118–2123 (2007b).

    Article  CAS  Google Scholar 

  11. Schrand, A.M. et al. Interaction and biocompatibility of multi-walled carbon nanotubes in PC-12 cells. Int. J. Neuroprot. Neuroregener. 3, 115–121 (2007c).

    CAS  Google Scholar 

  12. Wagner, A.J. et al. Cellular interaction of different forms of aluminum nanoparticles in rat alveolar macrophages. J. Phys. Chem. B. 111, 7353–7359 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Schrand, A.M., Braydich-Stolle, L.K., Schlager, J.J., Dai, L. & Hussain, S.M. Can silver nanoparticles be useful as potential biological labels? Nanotechnology 19, 1–13 (2008a).

    Article  CAS  Google Scholar 

  14. Carlson, C. et al. Uniques cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B. 112, 13608–13619 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Murdock, R.C., Braydich-Stolle, L., Schrand, A.M., Schlager, J.J. & Hussain, S.M. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Tox. Sci. 101, 239–253 (2008).

    Article  CAS  Google Scholar 

  16. Braydich-Stolle, L.K. et al. Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J. Nanopart. Res. 11, 1361–1374 (2008).

    Article  CAS  Google Scholar 

  17. Yu, K.O. et al. Toxicity of amorphous silica nanoparticles in mouse keratinocytes. J. Nanopart. Res. 11, 15–24 (2009).

    Article  CAS  Google Scholar 

  18. Hussain, S.M. et al. Toxicity evaluation for safe use of nanomaterials: recent achievements and technical challenges. Adv. Mat. 21, 1–11 (2009).

    Article  CAS  Google Scholar 

  19. Schrand, A.M., Citan, S.A. & Shenderova, O.A. Nanodiamond particles: properties and perspectives for bioapplications. Crit. Rev. Solid State Mater. Sci. 34, 18–74 (2009).

    Article  CAS  Google Scholar 

  20. Colvin, V. The potential environmental impact of engineered nanomaterials. Nat. Biotechnol. 21, 1166–1170 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Nel, A.E. et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8, 543–557 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Ryman-Rasmussen, J.P., Riviere, J.E. & Monteiro-Rivere, N.A. Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. Soc. Invest. Derm. 127, 143–153 (2006).

    Article  CAS  Google Scholar 

  23. Zhang, L.W., Zeng, L., Barron, A.R. & Monteiro-Riviere, N.A. Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes. Tox. Appl. Pharm. 228, 200–211 (2008).

    Article  CAS  Google Scholar 

  24. Zhang, L.W. & Monteiro-Riviere, N.A. Mechanisms of quantum dot nanoparticle cellular uptake. Tox. Sci. 110, 138–155 (2009).

    Article  CAS  Google Scholar 

  25. de Jonge, N., Peckys, D.B., Kremers, G.J. & Pistona, D.W. Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. USA 106, 2159–2164 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mayhew, T.M., Mühlfeld, C., Vanhecke, D. & Ochs, M. A review of recent methods for efficiently quantifying immunogold and other nanoparticles using TEM sections through cells, tissues and organs. Ann. Anat. 191, 153–170 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Allen, T.D. et al. Visualization of the nucleus and nuclear envelope in situ by SEM in tissue culture cells. Nat. Protoc. 2, 1180–1184 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Allen, T.D. et al. A protocol for isolating Xenopus oocyte nuclear envelope for visualization and characterization by scanning electron microscopy (SEM) or transmission electron microscopy (TEM). Nat. Protoc. 2, 1166–1172 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Allen, T.D. et al. Generation of cell-free extracts of Xenopus eggs and demembranated sperm chromatin for the assembly and isolation of in vitro–formed nuclei for western blotting and scanning electron microscopy (SEM). Nat. Protoc. 2, 1173–1179 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Wilhelm, C., Gazeau, F., Roger, J., Pons, J.N. & Bacri, J.C. Interaction of anionic superparamagnetic nanoparticles with cells: kinetic analyses of membrane adsorption and subsequent internalization. Langmuir 18, 8148–8155 (2002).

    Article  CAS  Google Scholar 

  31. Conner, S.D. & Schmid, S.L. Regulated portals of entry into the cell. Nature 422, 37–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Shukla, R. et al. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21, 10644–10654 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Kam, N.W.S., Liu, Z. & Dai, H. Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. 45, 577–581 (2006).

    Article  CAS  Google Scholar 

  34. Dobrovolskaia, M.A. & McNeil, S.E. Immunological properties of engineered nanomaterials. Nat. Nanotech. 2, 469–478 (2007).

    Article  CAS  Google Scholar 

  35. Verma, A. et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat. Mater. 7, 588–595 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jin, H., Heller, D.A. & Strano, M.S. Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in HIH3T3 cells. Nano Lett. 8, 1577–1585 (2008).

    Article  PubMed  Google Scholar 

  37. Yu, J. et al. Effect of surface functionality of magnetic silica nanoparticles on the cellular uptake by Glioma cells in vitro. J. Mater. Chem. 19, 1265–1270 (2009).

    Article  CAS  Google Scholar 

  38. Geiser, M. et al. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ. Health Perspect. 113, 1555–1560 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Porter, A.E. et al. Visualizing the uptake of C60 to the cytoplasm and nucleus of human monocyte-derived macrophage cells using energy-filtered transmission electron microscopy and electron tomography. Enivron. Sci. Technol. 41, 3012–3017 (2007).

    Article  CAS  Google Scholar 

  40. Porter, A.E. et al. Direct imaging of single-walled carbon nanotubes in cells. Nat. Nanotechnol. 2, 713–717 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Cheng, C. et al. Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells. Biomaterials 30, 4152–4160 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Steinbrecht, R.A. Freeze-substitution and freeze-drying. in Cryotechniques in Biological Electron Microscopy (eds. Steinbrecht, R.A. & Zierold, K.) 149–172 (K. Springer-Verlag, Berlin, 1987).

  43. Parthasarathy, M.V. Chapter 5 freeze-substitution. Methods Cell Biol. 49, 57–69 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Lucic, V. et al. Multiscale imaging of neurons grown in culture: from light microscopy to cryoelectron tomography. J. Struct. Biol. 160, 146–156 (2007).

    Article  PubMed  Google Scholar 

  45. Satori, A. et al. Correlative microscopy: bridging the gap between fluorescence light microscopy and cryoelectron tomography. J. Struct. Biol. 160, 135–145 (2007).

    Article  Google Scholar 

  46. Hess, M.W., Muller, M., Debbage, P.L., Vetterlein, M. & Pavelka, M. Cryopreparation provides new insight into the effects of brefeldin A on the structure of the HepG2 Gel apparatus. J. Struct. Biol. 130, 63–72 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Marko, M. Focused ion beam thinning of frozen hydrated biological specimens for cryoelectron microscopy. Nat. Methods 4, 215–217 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Riley, M.R. et al. Comparison of the sensitivity of three lung derived cell lines to metals from combustion derived particulate matter. Toxicol. In Vitro 19, 411–419 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Ricarda-Lorenz, M. et al. Uptake of functionalized, fluorescent-labeled polymeric particles in different cell lines and stem cells. Biomaterials 27, 2820–2828 (2006).

    Article  CAS  Google Scholar 

  50. Sayes, C.M., Reed, K.L. & Warheit, D.B. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol. Sci. 97, 163–180 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Chang, J.-S., Chang, K.L.B., Hwang, D.-F. & Kong, K.-L. In vitro cytotoxicity of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ. Sci. Technol. 41, 2064–2068 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Xia, T. et al. Cationic polystyreen nanosphere toxicity depends on cell-specific endocytoic and mitohcondrial injury pathways. ACS Nano 2, 85–96 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Lanone, S. et al. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part. Fiber Toxicol. 6, 14–26 (2009).

    Article  CAS  Google Scholar 

  54. Nabiev, I. et al. Non-functionalized nanocrystals can exploit a cell's active transport machinery delivering them to specific nuclear and cytoplasmic compartments. Nano Lett. 7, 3452–3461 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Krüger, A. et al. Unusually tight aggregation in detonation nanodiamond: identification and disintegration. Carbon 43, 1722–1730 (2005).

    Article  CAS  Google Scholar 

  56. Greiner, N., Phillips, D., Johnson, J. & Volk, F. Dimaonds in detonation soot. Nature 333, 440–442 (1998).

    Article  Google Scholar 

  57. Liang, Y., Ozawa, M. & Krueger, A. A general procedure to functionalize agglomerating nanoparticles demonstrated on nanodiamond. ACS Nano 3, 2288–2296 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Mei, B.C., Susumu, K., Medintz, I.L. & Mattoussi, H. Polyethylene glycol-based bidentate ligands to enhance quantum dot and gold nanoparticle stability in biological media. Nat. Protoc. 4, 412–423 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Monteiro-Riviere, N.A., Inman, A.O., Wang, Y.Y. & Nemanich, R.J. Surfactant effects on carbon nanotube interactions with human epidermal keratinocytes. Nanomedicine 1, 293–299 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Limbach, L.K. et al. Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ. Sci. Technol. 39, 9370–9376 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Shenderova, O. et al. Modification of detonation nanodiamonds by heat treatment in air. Diamond Relat. Mater. 15, 1799 (2006).

    Article  CAS  Google Scholar 

  62. Morita, Y. et al. A facile and scalable process for size-controllable separation of nanodiamond particles as small as 4 nm. Small 4, 2154–2157 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Jamison, J.A. et al. Size dependent sedimentation properties of nanocrystals. ACS Nano 2, 311–319 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Teeguarden, J.G., Hinderliter, P.M., Orr, G., Thrall, B.D. & Pounds, J.G. Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol. Sci. 95, 300–312 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Jaiswal, J.K., Mattoussi, H., Mauro, J.M. & Simon, S.M. Long-term multiple color imaing of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21, 47–51 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Monteiro-Riviere, N.A., Nemanich, R.J., Inman, A.O., Wang, Y.Y. & Riviere, J.E. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol. Lett. 155, 377–384 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Soto, K., Garza, K.M. & Murr, L.E. Cytotoxic effects of aggregated nanomaterials. Acta Biomater. 3, 351–358 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Warheit, D.B., Webb, T.R., Sayes, C.M., Colvin, V.L. & Reed, K.L. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol. Sci. 91, 227–236 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Stoeger, T. et al. Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ. Health Perspect. 114, 328–333 (2006).

    Article  PubMed  Google Scholar 

  70. Elder, A. et al. Effects of subchronically inhaled carbon black in three species. I. Retention kinetics, lung inflammation, and histopathology. Toxicol. Sci. 88, 614–629 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Brown, D.M., Wilson, M.R., MacNee, W., Stone, V. & Donaldson, K. Size dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol. Appl. Pharmacol. 175, 191–199 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Chithrani, B.D. & Chan, W.C.W. Elucidating the mechanisms of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7, 1542–1550 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Nativo, P., Prior, I.A. & Brust, M. Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2, 1639–1644 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Gopee, N.V. et al. Migration of intradermally injected quantum dots to sentinel organs in mice. Toxicol. Sci. 98, 249–257 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Gojova, A. et al. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ. Health Perspect. 115, 403–409 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Gratton, S.E. et al. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA 105, 11613–11618 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Vincent, A. et al. Protonated nanoparticle surface governing ligand tethering and cellular targeting. ACS Nano 3, 1203–1211 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Karnovsky, M.J. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. JCB 27, 137A–138A (1965).

    Google Scholar 

  79. McDowell, E.M. & Trump, B.F. Histologic fixatives suitable for diagnostic light and electron microscopy. Arch. Pathol. Lab. Med. 100, 405–414 (1976).

    CAS  PubMed  Google Scholar 

  80. Monteiro-Riviere, N. & Inman, A. Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 44, 1070–1078 (2006).

    Article  CAS  Google Scholar 

  81. Rouse, J.G., Yang, J., Barron, A.R. & Monteiro-Riviere, N.A. Fullerene-based amino acid nanoparticle interactions with human epidermal keratinocytes. Toxicol. In Vitro 20, 1313–1320 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Zhang, L.W., Zeng, L., Barron, A.R. & Monteiro-Riviere, N.A. Biological interactions of functionalized single-wall carbon nanotubes in human epidermal keratinocytes. Int. J. Toxicol. 26, 103–113 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Zhang, Y. & Zhang, J. Surface modification of monodisperse magnetite nanoparticles for improved intracellular uptake to breast cancer cells. J. Colloid Interface Sci. 283, 352–357 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Millonig, G. Advantages of a phosphate buffer for osmium tetroxide solutions in fixation. J. Appl. Phys. 32, 1637 (1961).

    Google Scholar 

  85. Reynolds, E.S. Use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Graham, L. & Orenstein, J.M. Processing tissue and cells for transmission electron microscopy in diagnostic pathology and research. Nat. Protoc. 2, 2439–2450 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Robards, A.W. & Wilson, A.J. Procedure in Electron Microscopy: Module 5:5 Basic Biological Preparation Techniques for TEM 5:5.1–5:5.28 (John Wiley & Son, Hoboken, NJ, 1999).

  88. Aderem, A. & Underhill, D.M. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17, 593–623 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.M.S. received funding from the National Research Council (NRC) Fellowship program funded by the Joint Science and Technology Office for Chemical and Biological Defense (JSTO-CBD), a program administered by the Defense Threat Reduction Agency (DTRA).

Author information

Authors and Affiliations

Authors

Contributions

A.M.S. developed the protocol, carried out experiments, analyzed data and wrote the paper under the close supervision of S.M.H. and J.J.S. The carbon nanomaterials were provided by L.D. All the authors discussed the results and implications and commented on the manuscript.

Corresponding author

Correspondence to Saber M Hussain.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schrand, A., Schlager, J., Dai, L. et al. Preparation of cells for assessing ultrastructural localization of nanoparticles with transmission electron microscopy. Nat Protoc 5, 744–757 (2010). https://doi.org/10.1038/nprot.2010.2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.2

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing