Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Transient expression of human antibodies in mammalian cells

Abstract

Recombinant expression of antibody molecules in mammalian cells offers important advantages over traditionally utilized bacterial expression, including glycosylation required for antibody functionality and markedly reduced levels of endotoxin contamination. Advances in transient mammalian expression systems enable high yields (>100 mg/liter) that now allow for effective recombinant antibody production at a reasonable cost. Here, we provide step-by-step protocols for the design and recombinant expression of full-length IgG antibodies and antibody-derived constructs (including Fab, Fc-fusions and bispecifics) in mammalian cells. Antibody constructs are designed by combining antibody variable domains, generated by phage display or derived from human/humanized monoclonals, with constant regions. The constructs are then expressed from mammalian vectors, secreted into culture media, purified by affinity chromatography and characterized by biolayer interferometry. This article provides detailed protocols, sequences and strategies that allow the expression and purification of endotoxin-free antibody reagents suitable for testing in animal models within a 3-week time frame.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic overview of the procedure.
Figure 2: Antibody formats for expression in mammalian cells (overview).
Figure 3: Design of gene constructs.
Figure 4: Quality control of purified antibody preparations.
Figure 5: Optimization of heavy/light chain DNA transfection ratios (IgG format).

Similar content being viewed by others

References

  1. Begley, C.G. & Ellis, L.M. Drug development: raise standards for preclinical cancer research. Nature 483, 531–533 (2012).

    Article  CAS  Google Scholar 

  2. Bradbury, A. & Pluckthun, A. Reproducibility: standardize antibodies used in research. Nature 518, 27–29 (2015).

    Article  CAS  Google Scholar 

  3. Rouet, R. et al. Expression of high-affinity human antibody fragments in bacteria. Nat. Protoc. 7, 364–373 (2012).

    Article  CAS  Google Scholar 

  4. Beck, A. et al. Trends in glycosylation, glycoanalysis and glycoengineering of therapeutic antibodies and Fc-fusion proteins. Curr. Pharm. Biotechnol. 9, 482–501 (2008).

    Article  CAS  Google Scholar 

  5. Nose, M. & Wigzell, H. Biological significance of carbohydrate chains on monoclonal antibodies. Proc. Natl. Acad. Sci. USA 80, 6632–6636 (1983).

    Article  CAS  Google Scholar 

  6. Simmons, L.C. et al. Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J. Immunol. Methods 263, 133–147 (2002).

    Article  CAS  Google Scholar 

  7. Wakelin, S.J. et al. “Dirty little secrets”—endotoxin contamination of recombinant proteins. Immunol. Lett. 106, 1–7 (2006).

    Article  CAS  Google Scholar 

  8. Beutler, B. & Rietschel, E.T. Innate immune sensing and its roots: the story of endotoxin. Nat. Rev. Immunol. 3, 169–176 (2003).

    Article  CAS  Google Scholar 

  9. Schwarz, H., Schmittner, M., Duschl, A. & Horejs-Hoeck, J. Residual endotoxin contaminations in recombinant proteins are sufficient to activate human CD1c+ dendritic cells. PLoS ONE 9, e113840 (2014).

    Article  Google Scholar 

  10. Wolff, S.M. Biological effects of bacterial endotoxins in man. J. Infect. Dis. 128, S259–S264 (1973).

    Article  Google Scholar 

  11. Copeland, S. et al. Acute inflammatory response to endotoxin in mice and humans. Clin. Diagn. Lab. Immunol. 12, 60–67 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Frenzel, A., Hust, M. & Schirrmann, T. Expression of recombinant antibodies. Front. Immunol. 4, 217 (2013).

    Article  Google Scholar 

  13. Brooks, S.A. Protein glycosylation in diverse cell systems: implications for modification and analysis of recombinant proteins. Expert Rev. Proteomics 3, 345–359 (2006).

    Article  CAS  Google Scholar 

  14. Dumont, J., Euwart, D., Mei, B., Estes, S. & Kshirsagar, R. Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit. Rev. Biotechnol. 36, 1110–1122 (2016).

    Article  CAS  Google Scholar 

  15. Wurm, F.M. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 22, 1393–1398 (2004).

    Article  CAS  Google Scholar 

  16. Dalton, A.C. & Barton, W.A. Over-expression of secreted proteins from mammalian cell lines. Protein Sci. 23, 517–525 (2014).

    Article  CAS  Google Scholar 

  17. Chiou, H.C. et al. Scalable transient protein expression. Methods Mol. Biol. 1104, 35–55 (2014).

    Article  CAS  Google Scholar 

  18. Liu, C.Y. et al. Attaining high transient titers in CHO cells. Genetic Eng. Biotechnol. News 35, 34–35 (2015).

    Article  Google Scholar 

  19. Backliwal, G. et al. Rational vector design and multi-pathway modulation of HEK 293E cells yield recombinant antibody titers exceeding 1 g/l by transient transfection under serum-free conditions. Nucleic Acids Res. 36, e96–e96 (2008).

    Article  Google Scholar 

  20. Jones, M.B. et al. Mammalian transient transfection system. Genetic Eng. Biotechnol. News 32, 50–51 (2012).

    Article  Google Scholar 

  21. Lee, C.M.Y., Iorno, N., Sierro, F. & Christ, D. Selection of human antibody fragments by phage display. Nat. Protoc. 2, 3001–3008 (2007).

    Article  CAS  Google Scholar 

  22. Eisenstein, M. Living factories of the future. Nature 531, 401–403 (2016).

    Article  CAS  Google Scholar 

  23. Peccoud, J. Synthetic Biology: Fostering the Cyber-Biological Revolution (Oxford University Press, 2016).

  24. von Boehmer, L. et al. Sequencing and cloning of antigen-specific antibodies from mouse memory B cells. Nat. Protoc. 11, 1908–1923 (2016).

    Article  CAS  Google Scholar 

  25. Dodev, T.S. et al. A tool kit for rapid cloning and expression of recombinant antibodies. Sci. Rep. 4, 5885 (2014).

    Article  Google Scholar 

  26. Tiller, T., Busse, C.E. & Wardemann, H. Cloning and expression of murine Ig genes from single B cells. J. Immunol. Methods 350, 183–193 (2009).

    Article  CAS  Google Scholar 

  27. Underhill, M.F., Smales, C.M., Naylor, L.H., Birch, J.R. & James, D.C. Transient gene expression levels from multigene expression vectors. Biotechnol. Prog. 23, 435–443 (2007).

    Article  CAS  Google Scholar 

  28. Chng, J. et al. Cleavage efficient 2A peptides for high level monoclonal antibody expression in CHO cells. mAbs 7, 403–412 (2015).

    Article  CAS  Google Scholar 

  29. Hacker, D.L. et al. Polyethyleneimine-based transient gene expression processes for suspension-adapted HEK-293E and CHO-DG44 cells. Protein Expr. Purif. 92, 67–76 (2013).

    Article  CAS  Google Scholar 

  30. Geisse, S. Reflections on more than 10 years of TGE approaches. Protein Expr. Purif. 64, 99–107 (2009).

    Article  CAS  Google Scholar 

  31. Baldi, L., Hacker, D.L., Meerschman, C. & Wurm, F.M. Large-scale transfection of mammalian cells. in Protein Expression in Mammalian Cells: Methods and Protocols 801, 13–26 (2012).

    Article  CAS  Google Scholar 

  32. Lai, T., Yang, Y. & Ng, S.K. Advances in mammalian cell line development technologies for recombinant protein production. Pharmaceuticals 6, 579–603 (2013).

    Article  CAS  Google Scholar 

  33. Ye, J. et al. Rapid protein production using CHO stable transfection pools. Biotechnol. Prog. 26, 1431–1437 (2010).

    Article  CAS  Google Scholar 

  34. Riechmann, L., Clark, M., Waldmann, H. & Winter, G. Reshaping human antibodies for therapy. Nature 332, 323–327 (1988).

    Article  CAS  Google Scholar 

  35. Jones, P.T., Dear, P.H., Foote, J., Neuberger, M.S. & Winter, G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321, 522–525 (1986).

    Article  CAS  Google Scholar 

  36. Clackson, T., Hoogenboom, H.R., Griffiths, A.D. & Winter, G. Making antibody fragments using phage display libraries. Nature 352, 624–628 (1991).

    Article  CAS  Google Scholar 

  37. Jäger, V., Büssow, K. & Schirrmann, T. Transient recombinant protein expression in mammalian cells. in Animal Cell Culture 27–64 Springer, 2015).

  38. Vazquez-Lombardi, R. et al. Potent antitumour activity of interleukin-2-Fc fusion proteins requires Fc-mediated depletion of regulatory T-cells. Nat. Commun. 8, 15373 (2017).

    Article  CAS  Google Scholar 

  39. Kontermann, R.E. Dual targeting strategies with bispecific antibodies. Mabs 4, 182–197 (2012).

    Article  Google Scholar 

  40. GE-Healthcare. Recombinant Protein Purification: Principles and Methods (GE Healthcare Bio-Sciences AB, 2012).

  41. Concepcion, J. et al. Label-free detection of biomolecular interactions using BioLayer interferometry for kinetic characterization. Comb. Chem. High Throughput Screen. 12, 791–800 (2009).

    Article  CAS  Google Scholar 

  42. Vasu, S. et al. High yield transient expression in mammalian cells using unique pairing of high density growth and transfection medium and expression enhancers. US Patent Application No. 13/886,226 (2013).

  43. Chun, B.H., Park, S.Y., Chung, N. & Bang, W.G. Enhanced production of recombinant B-domain deleted factor VIII from Chinese hamster ovary cells by propionic and butyric acids. Biotechnol. Lett. 25, 315–319 (2003).

    Article  CAS  Google Scholar 

  44. Fan, S. et al. Valproic acid enhances gene expression from viral gene transfer vectors. J. Virol. Methods 125, 23–33 (2005).

    Article  CAS  Google Scholar 

  45. Rodrigo, G., Gruvegård, M. & Van Alstine, J.M. Antibody fragments and their purification by protein L affinity chromatography. Antibodies 4, 259–277 (2015).

    Article  CAS  Google Scholar 

  46. Petsch, D. & Anspach, F.B. Endotoxin removal from protein solutions. J. Biotechnol. 76, 97–119 (2000).

    Article  CAS  Google Scholar 

  47. Malyala, P. & Singh, M. Endotoxin limits in formulations for preclinical research. J. Pharm. Sci. 97, 2041–2044 (2008).

    Article  CAS  Google Scholar 

  48. Dudgeon, K. et al. General strategy for the generation of human antibody variable domains with increased aggregation resistance. Proc. Natl. Acad. Sci. USA 109, 10879–10884 (2012).

    Article  CAS  Google Scholar 

  49. Haryadi, R. et al. Optimization of heavy chain and light chain signal peptides for high level expression of therapeutic antibodies in CHO cells. PLoS ONE 10, e0116878 (2015).

    Article  Google Scholar 

  50. Feige, M.J. et al. An unfolded CH1 domain controls the assembly and secretion of IgG antibodies. Mol. Cell 34, 569–579 (2009).

    Article  CAS  Google Scholar 

  51. Sadhu, C., Dutta, S. & Gopinathan, K.P. Influence of formamide on the thermal stability of DNA. J. Biosci. 6, 817–821 (1984).

    Article  CAS  Google Scholar 

  52. Kozak, M. Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc. Natl. Acad. Sci. USA 87, 8301–8305 (1990).

    Article  CAS  Google Scholar 

  53. Köhler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Article  Google Scholar 

  54. Fields, C. et al. Creation of recombinant antigen-binding molecules derived from hybridomas secreting specific antibodies. Nat. Protoc. 8, 1125–1148 (2013).

    Article  Google Scholar 

  55. Overdijk, M.B. et al. Crosstalk between human IgG isotypes and murine effector cells. J. Immunol. 189, 3430–3438 (2012).

    Article  CAS  Google Scholar 

  56. Musolino, A. et al. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu–positive metastatic breast cancer. J. Clin. Oncol. 26, 1789–1796 (2008).

    Article  CAS  Google Scholar 

  57. Smith, P., DiLillo, D.J., Bournazos, S., Li, F. & Ravetch, J.V. Mouse model recapitulating human Fcγ receptor structural and functional diversity. Proc. Natl. Acad. Sci. USA 109, 6181–6186 (2012).

    Article  CAS  Google Scholar 

  58. Walsh, N.C. et al. Humanized mouse models of clinical disease. Annu. Rev. Pathol.: Mech. Dis. 12, 187–215 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council and the National Health and Medical Research Council.

Author information

Authors and Affiliations

Authors

Contributions

R.V.-L., D.N., A.L., P.S. and C.Z. wrote the manuscript and generated figures. D.C. wrote the manuscript, generated figures and supervised the research.

Corresponding author

Correspondence to Daniel Christ.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Data 1

Sequences for construct design. (PDF 391 kb)

Supplementary Data 2

Herceptin IgG heavy chain.dna. (ZIP 8 kb)

Supplementary Data 3

Herceptin IgG light chain.dna. (ZIP 5 kb)

Supplementary Data 4

Herceptin Fab heavy chain.dna. (ZIP 5 kb)

Supplementary Data 5

Herceptin Fab light chain.dna. (ZIP 5 kb)

Supplementary Data 6

IL-2-Fc.dna. (ZIP 8 kb)

Supplementary Data 7

Fc-His.dna. (ZIP 7 kb)

Supplementary Data 8

Herceptin-Erbitux bispecific scFv.dna. (ZIP 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vazquez-Lombardi, R., Nevoltris, D., Luthra, A. et al. Transient expression of human antibodies in mammalian cells. Nat Protoc 13, 99–117 (2018). https://doi.org/10.1038/nprot.2017.126

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.126

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research