Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Solid-phase microextraction to determine micropollutant–macromolecule partition coefficients

Abstract

Aqueous micropollutants such as estradiol can have a large environmental impact—even at low concentrations. Part of understanding this impact involves determining the extent to which the micropollutants interact with macromolecules in water. In environmental samples, relevant macromolecules to which micropollutants bind are referred to as dissolved organic matter, and the most common examples of these in freshwater and coastal seawater are fulvic and humic acids. In living organisms, the most common macromolecules that affect bioavailability of a drug (or toxin) are proteins such as albumin. Using [2, 4, 6, 7 – 3H]estradiol as an example compound, this protocol uses solid-phase microextraction and scintillation detection as analytical tools to quantify the amount of radiolabeled micropollutant available in solution. The measured free concentration after exposure to various concentrations of macromolecule (dissolved organic matter or protein) or micropollutant is used to determine the partition coefficient in the case of micropollutant–macromolecule interactions. The calibration and preparatory studies take at least 8 d, and the steps to determine the partition coefficient can be completed within 3 d. The protocol could be modified such that nonlabeled compounds are studied; instead of detection of activity by a liquid scintillation counter (LSC), the compounds can be quantified using gas chromatography–mass spectrometry (GC–MS) or liquid chromatography (LC)–MS(/MS).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustrating the focus of the protocol on monitoring interactions of micropollutants (estradiol molecule shown) with macromolecules (e.g., dissolved environmental matrix compounds such as organic matter, which contains fulvic acids (green) and humics (brown)).
Figure 2
Figure 3
Figure 4: Fiber selection.
Figure 5: Fitting of the uptake curve to the data using Graphpad Prism, which resulted in a k1 value of 869 ± 75 and a k2 value of 0.205 ± 0.021, with an r2 of 0.98. This gives a Kfw of 4.23 × 103.
Figure 6: Tannic acid–water partitioning isotherm for estradiol (1 mM NaHCO3, 20 mM NaCl, pH 7, 100 ng/l–100 μg/l estradiol, 12.5 mg C/l tannic acid) giving a final log KOM of 4.71 l/kg. Cw is the free concentration of estradiol in water, and COM is the concentration of estradiol bound to the tannic acid (organic matter).

Similar content being viewed by others

References

  1. Schwarzenbach, R.P. et al. The challenge of micropollutants in aquatic systems. Science 313, 1072–1077 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Schriks, M., Heringa, M.B., van der Kooi, M.M.E., de Voogt, P. & van Wezel, A.P. Toxicological relevance of emerging contaminants for drinking water quality. Water Res. 44, 461–476 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Kolpin, D.W. et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environ. Sci. Technol. 36, 1202–1211 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Braga, O., Smythe, G.A., Schäfer, A.I. & Feitz, A.J. Steroid estrogens in ocean sediments. Chemosphere 61, 827–833 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Trasande, L. et al. Estimating burden and disease costs of exposure to endocrine-disrupting chemicals in the European Union. J. Clin. Endocrinol. Metab. 100, 1245–1255 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jobling, S., Nolan, M., Tyler, C., Brighty, G. & Sumpter, J.P. Widespread sexual disruption in wild fish. Environ. Sci. Technol. 32, 2498–2506 (1998).

    Article  CAS  Google Scholar 

  7. Reinthaler, F.F. et al. Antibiotic resistance of E. coli in sewage and sludge. Water Res. 37, 1685–1690 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Belpaire, C., Geeraerts, C., Roosens, L., Neels, H. & Covaci, A. What can we learn from monitoring PCBs in the European eel? A Belgian experience. Environ. Int. 37, 354–364 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Sumpter, J.P. The ecotoxicology of hormonally active micropollutants. Water Sci. Technol. 57, 125–130 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Sharp, R.M. & Skakkebaek, N.E. Male reproductive disorders and the role of endocrine disruption: advances in understanding and identification of areas for future research. Pure Appl. Chem. 75, 2023–2038 (2003).

    Article  Google Scholar 

  11. Chiou, C., Malcolm, R.L., Brinton, T.I. & Kile, D.E. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. Environ. Sci. Technol. 20, 502–508 (1986).

    Article  CAS  PubMed  Google Scholar 

  12. Schwarzenbach, R.P., Gschwend, P.W. & Imboden, D.M. Environmental Organic Chemistry 2nd edn (John Wiley and Sons, 2003).

  13. Karickhoff, S.W. Organic pollutant sorption in aquatic systems. J. Hydraul. Eng. 110, 707–735 (1984).

    Article  Google Scholar 

  14. Backhus, D.A. & Gschwend, P.W. Fluorescent polycyclic aromatic hydrocarbons as probes for studying the impact of colloids on pollutant transport in groundwater. Environ. Sci. Technol. 24, 1214–1223 (1990).

    Article  CAS  Google Scholar 

  15. Perminova, I.A. et al. Quantification and prediction of the detoxifying properties of humic substances related to their chemical binding to polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 35, 3841–3848 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Landrum, P.F. Bioavailability and toxicokinetics of polycyclic aromatic hydrocarbons sorbed to sediments for the amphipod Pontoporeia hoyi. Environ. Sci. Technol. 23, 588–595 (1989).

    Article  CAS  Google Scholar 

  17. Akkanen, J. & Kukkonen, J.V.K. Measuring the bioavailability of two hydrophobic organic compounds in the presence of dissolved organic matter. Environ. Toxicol. Chem. 22, 518–524 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Lindsey, M.E. & Tarr, M.A. Inhibition of hydroxyl radical reaction with aromatics by dissolved natural organic matter. Environ. Sci. Technol. 34, 444–449 (2000).

    Article  CAS  Google Scholar 

  19. Herbert, B.E., Bertsch, P.M. & Novak, J.M. Pyrene sorption by water-soluble organic carbon. Environ. Sci. Technol. 27, 398–403 (1993).

    Article  CAS  Google Scholar 

  20. Ballard, B.D. & MacKay, A.A. Estimating the removal of anthropogenic organic chemicals from raw drinking water by coagulation flocculation. J. Environ. Eng. 131, 108–118 (2005).

    Article  CAS  Google Scholar 

  21. Ng, H.Y. & Elimelech, M. Influence of colloidal fouling on rejection of trace organic contaminants by reverse osmosis. J. Membr. Sci. 244, 215–226 (2004).

    Article  CAS  Google Scholar 

  22. Hu, J.Y., Jin, X., & Ong, S.L. Rejection of estrone by nanofiltration: influence of solution chemistry. J. Membr. Sci. 302, 188–196 (2007).

    Article  CAS  Google Scholar 

  23. Mott, H.V. Association of hydrophobic organic contaminants with soluble organic matter: evaluation of the database of Kdoc values. Environ. Res. 6, 577–593 (2002).

    Article  CAS  Google Scholar 

  24. Jermann, D., Pronk, W., Boller, M. & Schafer, A.I. The role of NOM fouling for the retention of estradiol and ibuprofen during ultrafiltration. J. Membr. Sci. 329, 75–84 (2009).

    Article  CAS  Google Scholar 

  25. Baronti, C. et al. Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environ. Sci. Technol. 34, 5059–5066 (2000).

    Article  CAS  Google Scholar 

  26. Carballa, M. et al. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res. 38, 2918–2926 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Heringa, M.B., Pastor, D., Algra, J., Vaes, W.H.J. & Hermens, J.L.M. Negligible depletion solid-phase microextraction with radiolabeled analytes to study free concentrations and protein binding: an example with [3H]estradiol. Anal. Chem. 74, 5993–5997 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Neale, P.A., Escher, B.I. & Schafer, A.I. Quantification of solute-solute interactions using negligible-depletion solid phase microextraction: measuring the affinity of estradiol for bulk organic matter. Environ. Sci. Technol. 42, 2886–2892 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, W., Delgado-Moreno, L., Ye, Q. & Gan, J. Improved measurements of partition coefficients for polybrominated diphenyl ethers. Environ. Sci. Technol. 45, 1521–1527 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Xie, M., Yang, Z.-Y., Bao, L.-J. & Zeng, E.Y. Equilibrium and kinetic solid-phase microextraction determination of the partition coefficients between polychlorinated biphenyl congeners and dissolved humic acid. J. Chromatogr. A 1216, 4553–4559 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Bandow, N., Altenburger, R. & Brack, W. Application of nd-SPME to determine freely dissolved concentrations in the presence of green algae and algae-water partition coefficients. Chemosphere 79, 1070–1076 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Prosen, H., Fingler, S., Zupančič-Kralj, L. & Drevenkar, V. Partitioning of selected environmental pollutants into organic matter as determined by solid-phase microextraction. Chemosphere 66, 1580–1589 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Urrestarazu Ramos, E., Meijer, S.N., Vaes, W.H.J., Verhaar, H.J.M. & Hermens, J.L.M. Using solid-phase microextraction to determine partition coefficients to humic acids and bioavailable concentrations of hydrophobic chemicals. Environ. Sci. Technol. 32, 3430–3435 (1998).

    Article  Google Scholar 

  34. Lang, S.-C. et al. Equilibrium passive sampling as a tool to study polycyclic aromatic hydrocarbons in Baltic Sea sediment pore-water systems. Mar. Pollut. Bull. 101, 296–303 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Neale, P.A., Escher, B. & Schafer, A.I. Interaction of steroid hormones with organic matter at environmental concentrations as a function of pH. Sci. Total Environ. 407, 1164–1173 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Poerschmann, J., Kopinke, F.-D. & Pawliszyn, J. Solid phase microextraction to study the sorption of organotin compounds onto particulate and dissolved humic organic matter. Environ. Sci. Technol. 31, 3629–3636 (1997).

    Article  CAS  Google Scholar 

  37. Poerschmann, J., Zhangh, Z., Kopinke, F.-D. & Pawliszyn, J. Solid phase microextraction for determining the distribution of chemicals in aqueous matrices. Anal. Chem. 69, 579–600 (1997).

    Article  Google Scholar 

  38. Risticevic, S., Lord, H., Gorecki, T., Arthur, C.L. & Pawliszyn, J. Protocol for solid-phase microextraction method development. Nat. Protoc. 5, 122–139 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Carter, C.W. & Suffet, I.H. Binding of DDT to dissolved humic substances. Environ. Sci. Technol. 16, 735–740 (1982).

    Article  CAS  PubMed  Google Scholar 

  40. Danielsen, K.M., Chin, Y.-P., Buterbaugh, J.S., Gustafson, T.L. & Traina, S.J. Solubility enhancement and fluorescence quenching of pyrene by humic substances: the effect of dissolved oxygen on quenching processes. Environ. Sci. Technol. 29, 2162–2165 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. McCarthy, J.F. & Jimenez, B.D. Interactions between polycyclic aromatic hydrocarbons and dissolved humic material: binding and dissociation. Environ. Sci. Technol. 19, 1072–1076 (1985).

    Article  CAS  PubMed  Google Scholar 

  42. Landrum, P.F., Nihart, S.R., Eadie, B.J. & Gardner, W.S. Reverse-phase separation method for determining pollutant binding to aldrich humic acid and dissolved organic carbon of natural waters. Environ. Sci. Technol. 18, 187–192 (1984).

    Article  CAS  PubMed  Google Scholar 

  43. Fan, G.T., Burnison, B.K. & Solomon, K.R. The partitioning of fenvalerate to natural dissolved organic matter. Water Res. 31, 2429–2434 (1997).

    Article  CAS  Google Scholar 

  44. Gauthier, T.D., Shane, E.C., Guerin, W.F., Seitz, W.R. & Grant, C.L. Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials. Environ. Sci. Technol. 20, 1162–1166 (1986).

    Article  CAS  Google Scholar 

  45. Tiller, C.L. & Jones, K.D. Effects of dissolved oxygen and light exposure on determination of KOC values for PAHs using fluorescence quenching. Environ. Sci. Technol. 31, 424–429 (1997).

    Article  CAS  Google Scholar 

  46. Mott, H.V. Association of hydrophobic organic contaminants with soluble organic matter: evaluation of the database of Kdoc values. Adv. Environ. Res. 6, 577–593 (2002).

    Article  CAS  Google Scholar 

  47. Akkanen, J., Tuikka, A. & Kukkonen, J.V.K. Comparative sorption and desorption of benzo[a]pyrene and 3,4,3′,4′-tetrachlorobiphenyl in natural lake water containing dissolved organic matter. Environ. Sci. Technol. 39, 7529–7534 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Neale, P.A. Influence of Solute-Solute Interactions on Membrane Filtration. PhD thesis, University of Edinburgh (2009).

  49. Vuckovic, D., Zhang, X., Cudjoe, E. & Pawliszyn, J. Solid-phase microextraction in bioanalysis: new devices and directions. J. Chromatogr. A 1217, 4041–4060 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Vaes, W.H.J. et al. Solid phase microextraction as a tool to determine membrane/water partition coefficients and bioavailable concentrations in in vitro systems. Chem. Res. Toxicol. 10, 1067–1072 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Heringa, M.B. et al. Toward more useful in vitro toxicity data with measured free concentrations. Environ. Sci. Technol. 38, 6263–6270 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Chang, H.-S., Choo, K.-H., Lee, B. & Choi, S.-J. The methods of identification, analysis, and removal of endocrine disrupting compounds (EDCs) in water. J. Hazard. Mater. 172, 1–12 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Heringa, M.B. & Hermens, J.L.M. Measurement of free concentrations using negligible depletion-solid phase microextraction (nd-SPME). Trends Anal. Chem. 22, 575–587 (2003).

    Article  CAS  Google Scholar 

  54. Mackenzie, K., Georgi, A., Kumke, M. & Kopinke, F.-D. Sorption of pyrene to dissolved humic substances and related model polymers. 2. Solid-phase microextraction (SPME) and fluorescence quenching technique (FQT) as analytical methods. Environ. Sci. Technol. 36, 4403–4409 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. ter Laak, T.L., Durjava, M., Struijs, J. & Hermens, J.L.M. Solid phase dosing and sampling technique to determine partition coefficients of hydrophobic chemicals in complex matrixes. Environ. Sci. Technol. 39, 3736–3742 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Endo, S., Droge, S.T.J. & Goss, K.-U. Polyparameter linear free energy models for polyacrylate fiberwater partition coefficients to evaluate the efficiency of solid-phase microextraction. Anal. Chem. 83, 1394–1400 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Boyd-Boland, A.A. et al. New solvent-free sample preparation techniques based on fiber and polymer technologies. Environ. Sci. Technol. 28, 569A–574A (1994).

    CAS  PubMed  Google Scholar 

  58. Gjessing, E.T., Egeberg, P.K. & Hakedal, J. Natural organic matter in drinking water-the ′NOM-typing project′, background and basic characteristics of original water sample and NOM isolates. Environ. Int. 25, 145–159 (1999).

    Article  CAS  Google Scholar 

  59. Haftka, J.J.H., Govers, H.A.J. & Parsons, J.R. Influence of temperature and origin of dissolved organic matter on the partitioning behavior of polycyclic aromatic hydrocarbons. Environ. Sci. Pollut. Res. 17, 1070–1079 (2009).

    Article  CAS  Google Scholar 

  60. Frimmel, F.H. & Abbt-Braun, G. Basic characterization of reference NOM from Central Europe-similarities and differences. Environ. Int. 25, 191–207 (1999).

    Article  CAS  Google Scholar 

  61. Yuan, H., Pawliszyn, J., Ranatunga, R. & Carr, P.W. Determination of equilibrium constant of alkylbenzenes binding to bovine serum albumin by solid phase microextraction. Analyst 124, 1443–1448 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Musteata, F.M., Pawliszyn, J., Qian, M.G., Wu, J.-T. & Miwa, G.T. Determination of drug plasma protein binding by solid phase microextraction. J. Pharm. Sci. 95, 1712–1722 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Tan, Y. & Siebert, K.J. Modeling bovine serum albumin binding of flavor compounds (alcohols, aldehydes, esters, and ketones) as a function of molecular properties. J. Food Sci. 73, S56–S63 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Böhm, L. & Düring, R.-A. Partitioning of polycyclic musk compounds in soil and aquatic environment—experimental determination of KDOC. J. Soils Sediments 10, 708–713 (2010).

    Article  CAS  Google Scholar 

  65. SCR PhysProp Database http://www.srcinc.com/what-we-do/environmental/scientific-databases.html.

  66. Lord, H.L., Grant, R.P., Walles, M., Incledon, B., Fahie, B. & Pawliszyn, J.B. Development and evaluation of a solid-phase microextraction probe for in vivo pharmacokinetic studies. Anal. Chem. 75, 5103–5115 (2003).

    Article  CAS  Google Scholar 

  67. Worch, E. Eine neue Gleichung zur Berechnung von Diffusionskoeffizienten geloster Stoffe. Vom Wasser. 81, 289–297 (1993).

    CAS  Google Scholar 

  68. Lai, K., Johnson, K., Scrimshaw, M. & Lester, J. Binding of waterborne steroid estrogens to solid phases in river and estuarine systems. Environ. Sci. Technol. 34, 3890–3894 (2000).

    Article  CAS  Google Scholar 

  69. Lide, D. Crc Handbook of Chemistry and Physics (CRC Press/Taylor and Francis, 2008).

  70. Hansch, C., Leo, A. & Hoekman, D. Exploring Qsar: Hydrophobic, Electronic, and Steric Constants (Washington, DC: American Chemical Society, 1995).

  71. Nghiem, L.D., Schäfer, A.I. & Elimelech, M. Removal of natural hormones by nanofiltration membranes: measurement, modelling and mechanisms. Environ. Sci. Technol. 38, 1888–1896 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Kwon, J.-H., Liljestrand, H.M. & Katz, L.E. Partitioning of moderately hydrophobic endocrine disrupters between water and synthetic membrane vesicles. Environ. Toxicol. Chem. 25, 1984–1992 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

H.L.B. acknowledges her Royal Academy of Engineering/EPSRC Fellowship for method development during her study at the University of Edinburgh, UK. A.I.S. acknowledges funding from the Helmholtz Association. The authors thank B. Escher for collaboration with A.I.S. and P. Neale while at EAWAG, Switzerland, that resulted in this method. The authors also thank J. Hermens for useful comments on the SPME technique and F. Schramm for proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

H.L.B. wrote the manuscript, with significant contributions from M.H., who was involved in the SPME method development, and A.I.S., who worked with B. Escher and P. Neale to establish this method and developed the radiotracer LSC method for micropollutant detection in water.

Corresponding author

Correspondence to Helen L Bridle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Polymer Fibre Images

Figure S1: Polymer Fibre Images: (left image) Planar view of PA fibre at 100X magnification; (middle image) Top view of PA fibre at 200X magnification; (right image) schematic sketch of the fibre showing the glass core and the approximate thickness of the polymer coating.

Supplementary information

Supplementary Information

Supplementary Figure 1 (PDF 263 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bridle, H., Heringa, M. & Schäfer, A. Solid-phase microextraction to determine micropollutant–macromolecule partition coefficients. Nat Protoc 11, 1328–1344 (2016). https://doi.org/10.1038/nprot.2016.068

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.068

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing