Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates

Abstract

Surface plasmon polaritons (SPPs), optical excitations at the interface between a metal and a dielectric, carry significant potential for guiding and manipulating light on the nanoscale1,2,3. However, their weak optical nonlinearities hinder active device fabrication, for example, for all-optical switching4,5,6,7 or information processing8,9. Recently, strong optical dipole coupling has been demonstrated between SPPs and nonlinear quantum emitters with normal mode splittings of up to 700 meV (refs 101112131415). The predicted ultrafast energy transfer between quantum emitters and SPP fields could be a crucial microscopic mechanism for switching light by light on the nanoscale. Here, we present the first real-time observation of ultrafast Rabi oscillations in a J-aggregate/metal nanostructure, indicating coherent energy transfer between excitonic quantum emitters and SPP fields. We demonstrate coherent manipulation of the coupling energy by controlling the exciton density on a 10 fs timescale, which represents a step towards coherent, all-optical ultrafast plasmonic circuits and devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strong exciton–SPP coupling in J-aggregate/metal hybrid nanostructures.
Figure 2: Coherent dynamics of X–SPP Rabi oscillations.
Figure 3: Transient manipulation of the Rabi energy.

Similar content being viewed by others

References

  1. Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229–232 (2003).

    Article  ADS  Google Scholar 

  2. Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J. Y. & Ebbesen, T. W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006).

    Article  ADS  Google Scholar 

  3. Lal, S., Link, S. & Halas, N. J. Nano-optics from sensing to waveguiding. Nature Photon. 1, 641–648 (2007).

    Article  ADS  Google Scholar 

  4. Dintinger, J., Robel, I., Kamat, P., Genet, C. & Ebbesen, T. Terahertz all-optical molecule-plasmon modulation. Adv. Mater. 18, 1645–1648 (2006).

    Article  Google Scholar 

  5. Chang, D. E., Sorensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007).

    Article  ADS  Google Scholar 

  6. MacDonald, K. F., Samson, Z. L., Stockman, M. I. & Zheludev, N. I. Ultrafast active plasmonics. Nature Photon. 3, 55–58 (2009).

    Article  ADS  Google Scholar 

  7. Vasa, P. et al. Ultrafast manipulation of strong coupling in metal–molecular aggregate hybrid nanostructures. ACS Nano 4, 7559–7565 (2010).

    Article  Google Scholar 

  8. Engheta, N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317, 1698–1702 (2007).

    Article  ADS  Google Scholar 

  9. Gonzalez-Tudela, A. et al. Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. Phys. Rev. Lett. 106, 020501 (2011).

    Article  ADS  Google Scholar 

  10. Bellessa, J., Bonnand, C., Plenet, J. C. & Mugnier, J. Strong coupling between surface plasmons and excitons in an organic semiconductor. Phys. Rev. Lett. 93, 036404 (2004).

    Article  ADS  Google Scholar 

  11. Dintinger, J., Klein, S., Bustos, F., Barnes, W. L. & Ebbesen, T. W. Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays. Phys. Rev. B 71, 035424 (2005).

    Article  ADS  Google Scholar 

  12. Hakala, T. K. et al. Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules. Phys. Rev. Lett. 103, 053602 (2009).

    Article  ADS  Google Scholar 

  13. Schwartz, T., Hutchison, J. A., Genet, C. & Ebbesen, T. W. Reversible switching of ultrastrong light–molecule coupling. Phys. Rev. Lett. 106, 196405 (2011).

    Article  ADS  Google Scholar 

  14. Guebrou, S. A. et al. Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons. Phys. Rev. Lett. 108, 066401 (2012).

    Article  ADS  Google Scholar 

  15. Fofang, N. T. et al. Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell–J-aggregate complexes. Nano Lett. 8, 3481–3487 (2008).

    Article  ADS  Google Scholar 

  16. Stockman, M. I. Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19, 22029–22106 (2011).

    Article  ADS  Google Scholar 

  17. Bergman, D. J. & Stockman, M. I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).

    Article  ADS  Google Scholar 

  18. Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

    Article  ADS  Google Scholar 

  19. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article  ADS  Google Scholar 

  20. Zheludev, N. I., Prosvirnin, S. L., Papasimakis, N. & Fedotov, V. A. Lasing spaser. Nature Photon. 2, 351–354 (2008).

    Article  ADS  Google Scholar 

  21. Fofang, N. T., Grady, N. K., Fan, Z., Govorov, A. O. & Halas, N. J. Plexciton dynamics: exciton–plasmon coupling in a J-aggregate–Au nanoshell complex provides a mechanism for nonlinearity. Nano Lett. 11, 1556–1560 (2011).

    Article  ADS  Google Scholar 

  22. Thompson, R. J., Rempe, G. & Kimble, H. J. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132–1135 (1992).

    Article  ADS  Google Scholar 

  23. Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).

    Article  ADS  Google Scholar 

  24. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    Article  ADS  Google Scholar 

  25. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton–photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    Article  ADS  Google Scholar 

  26. Khitrova, G., Gibbs, H. M., Jahnke, F., Kira, M. & Koch, S. W. Nonlinear optics of normal-mode-coupling semiconductor microcavities. Rev. Mod. Phys. 71, 1591–1639 (1999).

    Article  ADS  Google Scholar 

  27. Fidder, H., Knoester, J. & Wiersma, D. A. Observation of the one-exciton to two-exciton transition in a J aggregate. J. Chem. Phys. 98, 6564–6566 (1993).

    Article  ADS  Google Scholar 

  28. Kim, D. S. et al. Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures. Phys. Rev. Lett. 91, 143901 (2003).

    Article  ADS  Google Scholar 

  29. Manzoni, C., Polli, D. & Cerullo, G. Two-color pump–probe system broadly tunable over the visible and the near infrared with sub-30 fs temporal resolution. Rev. Sci. Instrum. 77, 023103 (2006).

    Article  ADS  Google Scholar 

  30. Akram, U., Ficek, Z. & Swain, S. Decoherence and coherent population transfer between two coupled systems. Phys. Rev. A 62, 013413 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft (SPP 1391 and DFG-NSF Materials World Network), Fondazione Cariplo (‘Engineering of optical nonlinearities in plasmonic metamaterials’), European Community (FP-7 INFRASTRUCTURES-2008-1, ‘Laserlab Europe II’, contract no. 228334 and FP-7 NMP ‘Cronos’) and the Korea Foundation for International Cooperation of Science and Technology (Global Research Laboratory project, K20815000003) for financial support. The authors also thank E. Sommer for preparing some of the figures.

Author information

Authors and Affiliations

Authors

Contributions

P.V., R.P., W.W. and C.L. designed and fabricated the hybrid nanostructures. All authors participated in conducting the experiments. R.P., P.V., W.W. and C.L. contributed to the theoretical modelling. All authors discussed the results and implications at all stages. P.V., R.P., G.C. and C.L. wrote the paper.

Corresponding authors

Correspondence to Parinda Vasa or Christoph Lienau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1476 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasa, P., Wang, W., Pomraenke, R. et al. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nature Photon 7, 128–132 (2013). https://doi.org/10.1038/nphoton.2012.340

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.340

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing