Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Generation and multi-octave shaping of mid-infrared intense single-cycle pulses

Abstract

The generation of intense mid-infrared (mid-IR) optical pulses with customizable shape and spectra spanning a multiple-octave range of vibrational frequencies is an elusive technological capability. While some recent approaches to mid-IR supercontinuum generation—such as filamentation, multicolour four-wave-mixing and optical rectification1,2,3,4,5,6,7,8—have successfully generated broad spectra, no process has been identified for achieving complex pulse shaping at the generation step. The adiabatic frequency converter9,10 allows for a one-to-one transfer of spectral phase through nonlinear frequency conversion over a larger-than-octave-spanning range and with an overall linear phase transfer function. Here, we show that we can convert shaped near-infrared (near-IR) pulses to shaped, energetic, multi-octave-spanning mid-IR pulses lasting only 1.2 optical cycles, and extendable to the sub-cycle regime. We expect this capability to enable a new class of precisely controlled nonlinear interactions in the mid-IR spectral range, from nonlinear vibrational spectroscopy to strong light–matter interactions and single-shot remote sensing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Octave-spanning adiabatic frequency conversion (simulation).
Figure 2: Transform-limited pulse compression and octave-spanning pulse shaping.
Figure 3: Measurement of a single-cycle mid-IR pulse.
Figure 4: Mid-IR pulse pair generation using a near-IR shaper.

Similar content being viewed by others

References

  1. Junginger, F. et al. Single-cycle multiterahertz transients with peak fields above 10 MV/cm. Opt. Lett. 35, 2645–2647 (2010).

    Article  ADS  Google Scholar 

  2. Kartashov, D. et al. Mid-infrared laser filamentation in molecular gases. Opt. Lett. 38, 3194–3197 (2013).

    Article  ADS  Google Scholar 

  3. Lanin, A. A., Voronin, A. A., Stepanov, E. A., Fedotov, A. B. & Zheltikov, A. M. Multioctave, 3–18 μm sub-two-cycle supercontinua from self-compressing, self-focusing soliton transients in a solid. Opt. Lett. 40, 974–977 (2015).

    Article  ADS  Google Scholar 

  4. Nomura, Y. et al. Phase-stable sub-cycle mid-infrared conical emission from filamentation in gases. Opt. Express 20, 24741–24747 (2012).

    Article  ADS  Google Scholar 

  5. Petersen, C. R. et al. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Photon. 8, 830–834 (2014).

    Article  ADS  Google Scholar 

  6. Petersen, P. B. & Tokmakoff, A. Source for ultrafast continuum infrared and terahertz radiation. Opt. Lett. 35, 1962–1964 (2010).

    Article  ADS  Google Scholar 

  7. Pupeza, I. et al. High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate. Nat. Photon. 9, 721–724 (2015).

    Article  ADS  Google Scholar 

  8. Silva, F. et al. Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal. Nat. Commun. 3, 807 (2012).

    Article  ADS  Google Scholar 

  9. Suchowski, H., Porat, G. & Arie, A. Adiabatic processes in frequency conversion. Laser Photon. Rev. 8, 333–367 (2014).

    Article  ADS  Google Scholar 

  10. Suchowski, H., Krogen, P. R., Huang, S.-W., Kärtner, F. X. & Moses, J. Octave-spanning coherent mid-IR generation via adiabatic difference frequency conversion. Opt. Express 21, 28892–28901 (2013).

    Article  ADS  Google Scholar 

  11. Fayer, M. D. Dynamics of liquids, molecules, and proteins measured with ultrafast 2D IR vibrational echo chemical exchange spectroscopy. Annu. Rev. Phys. Chem. 60, 21–38 (2009).

    Article  ADS  Google Scholar 

  12. Först, M. et al. Nonlinear phononics as an ultrafast route to lattice control. Nat. Phys. 7, 854–856 (2011).

    Article  Google Scholar 

  13. Blaga, C. I. et al. Imaging ultrafast molecular dynamics with laser-induced electron diffraction. Nature 483, 194–197 (2012).

    Article  ADS  Google Scholar 

  14. Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  15. Mehlenbacher, R. D. et al. Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy. Nat. Commun. 6, 6732 (2015).

    Article  ADS  Google Scholar 

  16. Cerullo, G., Baltuška, A., Mücke, O. D. & Vozzi, C. Few-optical-cycle light pulses with passive carrier-envelope phase stabilization. Laser Photon. Rev. 5, 323–351 (2011).

    Article  ADS  Google Scholar 

  17. Chipperfield, L. E., Robinson, J. S., Tisch, J. W. G. & Marangos, J. P. Ideal waveform to generate the maximum possible electron recollision energy for any given oscillation period. Phys. Rev. Lett. 102, 063003 (2009).

    Article  ADS  Google Scholar 

  18. Huang, S.-W. et al. High-energy pulse synthesis with sub-cycle waveform control for strong-field physics. Nat. Photon. 5, 475–479 (2011).

    Article  ADS  Google Scholar 

  19. Sansone, G. et al. Electron localization following attosecond molecular photoionization. Nature 465, 763–766 (2010).

    Article  ADS  Google Scholar 

  20. Field, J. J. et al. Optimizing the fluorescent yield in two-photon laser scanning microscopy with dispersion compensation. Opt. Express 18, 13661–13672 (2010).

    Article  ADS  Google Scholar 

  21. Glenn, R. & Dantus, M. Single broadband phase-shaped pulse stimulated Raman spectroscopy for standoff trace explosive detection. J. Phys. Chem. Lett. 7, 117–125 (2016).

    Article  Google Scholar 

  22. Manzoni, C. et al. Coherent pulse synthesis: towards sub-cycle optical waveforms. Laser Photon. Rev. 9, 129–171 (2015).

    Article  ADS  Google Scholar 

  23. Suchowski, H., Oron, D., Arie, A. & Silberberg, Y. Geometrical representation of sum frequency generation and adiabatic frequency conversion. Phys. Rev. A 78, 063821 (2008).

    Article  ADS  Google Scholar 

  24. Moses, J., Suchowski, H. & Kärtner, F. X. Fully efficient adiabatic frequency conversion of broadband Ti:sapphire oscillator pulses. Opt. Lett. 37, 1589–1591 (2012).

    Article  ADS  Google Scholar 

  25. Baranova, N. B., Bolshtyanskii, M. A. & Zel'dovich, B. Y. Adiabatic energy transfer from a pump wave to its second harmonic. Quantum Electron. 25, 638–640 (1995).

    Article  ADS  Google Scholar 

  26. Phillips, C. R. & Fejer, M. M. Efficiency and phase of optical parametric amplification in chirped quasi-phase-matched gratings. Opt. Lett. 35, 3093–3095 (2010).

    Article  ADS  Google Scholar 

  27. Mayer, B. W., Phillips, C. R., Gallmann, L. & Keller, U. Mid-infrared pulse generation via achromatic quasi-phase-matched OPCPA. Opt. Express 22, 20798–20808 (2014).

    Article  ADS  Google Scholar 

  28. Phillips, C. R. & Fejer, M. M. Adiabatic optical parametric oscillators: steady-state and dynamical behavior. Opt. Express 20, 2466–2482 (2012).

    Article  ADS  Google Scholar 

  29. Sanchez, D. et al. 7 μm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2 μm. Optica 3, 147–150 (2016).

    Article  ADS  Google Scholar 

  30. Schunemann, P. G. New nonlinear optical crystals for the mid-infrared. In Advanced Solid State Lasers, OSA Technical Digest (online) AM2A.2 (Optical Society of America, 2015).

  31. Moses, J. et al. Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression. Opt. Lett. 34, 1639–1641 (2009).

    Article  ADS  Google Scholar 

  32. Trebino, R. et al. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev. Sci. Instrum. 68, 3277–3295 (1997).

    Article  ADS  Google Scholar 

  33. Gayer, O., Sacks, Z., Galun, E. & Arie, A. Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3 . Appl. Phys. B 91, 343–348 (2008).

    Article  ADS  Google Scholar 

  34. Myers, L. E. & Bosenberg, W. R. Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators. IEEE J. Quantum Electron. 33, 1663–1672 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the Air Force Office of Scientific Research under award numbers FA9550-12-1-0080, FA9550-12-1-0499 and FA9550-13-1-0159, by the Center for Free-Electron Laser Science, DESY and by the excellence cluster ‘The Hamburg Centre for Ultrafast Imaging: Structure, Dynamics and Control of Matter at the Atomic Scale’ of the Deutsche Forschungsgemeinschaft (by grant EXC 1074). P.K. acknowledges support by a National Defense Science and Engineering Graduate (NDSEG) Fellowship. H.S. acknowledges support by the European Research Council (ERC) Fund under the project MIRAGE 20-15. J.M. and P.K. thank D. Brida for helpful advice regarding the FROG pulse retrieval algorithm.

Author information

Authors and Affiliations

Authors

Contributions

J.M., H.S., F.X.K. and P.K. conceived and designed the experiment, H.S. designed the adiabatic grating, P.K. and J.M. constructed the modified OPCPA system and ADFG stage, P.K. and H.L. carried out the pulse compression, shaping and characterization with help from K.-H.H. F.X.K designed the octave-spanning Ti:sapphire laser and provided essential infrastructure for the experiment, and P.K., N.F. and J.M. carried out the pulse propagation simulations and analysis. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Jeffrey Moses.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 622 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krogen, P., Suchowski, H., Liang, H. et al. Generation and multi-octave shaping of mid-infrared intense single-cycle pulses. Nature Photon 11, 222–226 (2017). https://doi.org/10.1038/nphoton.2017.34

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2017.34

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing