Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum key distribution without detector vulnerabilities using optically seeded lasers

Abstract

Security in quantum cryptography1,2 is continuously challenged by inventive attacks3,4,5,6,7 targeting the real components of a cryptographic set-up, and duly restored by new countermeasures8,9,10 to foil them. Owing to their high sensitivity and complex design, detectors are the most frequently attacked components. It was recently shown that two-photon interference11 from independent light sources can be used to remove any vulnerability from detectors12,13. This new form of detection-safe quantum key distribution (QKD), termed measurement-device-independent13 (MDI), has been experimentally demonstrated13,14,15,16,17,18,19 but with modest key rates. Here, we introduce a new pulsed laser seeding technique to obtain high-visibility interference from gain-switched lasers and thereby perform MDI-QKD with unprecedented key rates in excess of 1 megabit per second in the finite-size regime. This represents a two to six orders of magnitude improvement over existing implementations and supports the new scheme as a practical resource for secure quantum communications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MDI-QKD scheme and experimental set-up.
Figure 2: Characteristics of the PLS-enabled light source.
Figure 3: MDI-QKD key rates.

Similar content being viewed by others

References

  1. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article  ADS  Google Scholar 

  2. Scarani, V. et al. The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009).

    Article  ADS  Google Scholar 

  3. Gerhardt, I. et al. Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nature Commun. 2, 349 (2011).

    Article  ADS  Google Scholar 

  4. Lydersen, L. et al. Hacking commercial quantum cryptography systems by tailored bright illumination. Nature Photon. 4, 686–689 (2010).

    Article  ADS  Google Scholar 

  5. Xu, F., Qi, B. & Lo, H.-K. Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New J. Phys. 12, 113026 (2010).

    Article  ADS  Google Scholar 

  6. Zhao, Y., Fung, C.-H. F., Qi, B., Chen, C. & Lo, H.-K. Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A 78, 042333 (2008).

    Article  ADS  Google Scholar 

  7. Qi, B., Fung, C.-H. F., Lo, H.-L. & Ma, X. Time-shift attack in practical quantum cryptosystems. Quantum Inf. Comput. 7, 73–82 (2007).

    MathSciNet  MATH  Google Scholar 

  8. Sasaki, T., Yamamoto, Y. & Koashi, M. Practical quantum key distribution protocol without monitoring signal disturbance. Nature 509, 475–478 (2014).

    Article  ADS  Google Scholar 

  9. Yuan, Z. L., Dynes, J. F. & Shields, A. J. Avoiding the blinding attack in QKD. Nature Photon. 4, 800–801 (2010).

    Article  ADS  Google Scholar 

  10. Fung, C.-H. F., Tamaki, K., Qi, B., Lo, H.-K. & Ma, X. Security proof of quantum key distribution with detection efficiency mismatch. Quantum Inf. Comput. 9, 131–165 (2009).

    MathSciNet  MATH  Google Scholar 

  11. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article  ADS  Google Scholar 

  12. Braunstein, S. L. & Pirandola, S. Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012).

    Article  ADS  Google Scholar 

  13. Lo, H.-K., Curty, M. & Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012).

    Article  ADS  Google Scholar 

  14. Rubenok, A., Slater, J. A., Chan, P., Lucio-Martinez, I. & Tittel, W. Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. Phys. Rev. Lett. 111, 130501 (2013).

    Article  ADS  Google Scholar 

  15. Liu, Y. et al. Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 111, 130502 (2013).

    Article  ADS  Google Scholar 

  16. Ferreira da Silva, T., et al. Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Phys. Rev. A 88, 052303 (2013).

    Article  ADS  Google Scholar 

  17. Tang, Z. et al. Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 112, 190503 (2014).

    Article  ADS  Google Scholar 

  18. Tang, Y.-L. et al. Measurement-device-independent quantum key distribution over 200 km. Phys. Rev. Lett. 113, 190501 (2014).

    Article  ADS  Google Scholar 

  19. Valivarthi, R. et al. Measurement-device-independent quantum key distribution: from idea towards application. J. Mod. Optic. 62, 1141–1150 (2015).

    Article  ADS  Google Scholar 

  20. Scarani, V. & Kurtsiefer, C. The black paper of quantum cryptography: real implementation problems. Theor. Comput. Sci. 560, 27–32 (2014).

    Article  MathSciNet  Google Scholar 

  21. Fröhlich, B. et al. A quantum access network. Nature 501, 69–72 (2013).

    Article  ADS  Google Scholar 

  22. Pirandola, S. et al. High-rate measurement-device-independent quantum cryptography. Nature Photon. 9, 397–402 (2015).

    Article  ADS  Google Scholar 

  23. Comandar, L. C. et al. Room temperature single-photon detectors for high bit rate quantum key distribution. Appl. Phys. Lett. 104, 021101 (2014).

    Article  ADS  Google Scholar 

  24. Lo, H.-K. & Preskill, J. Security of quantum key distribution using weak coherent states with nonrandom phases. Quantum Inf. Comput. 8, 431–458 (2007).

    MathSciNet  MATH  Google Scholar 

  25. Yuan, Z. L. et al. Robust random number generation using steady-state emission of gain-switched laser diodes. Appl. Phys. Lett. 104, 261112 (2014).

    Article  ADS  Google Scholar 

  26. Yuan, Z. L. et al. Interference of short optical pulses from independent gain-switched laser diodes for quantum secure communications. Phys. Rev. Appl. 2, 064006 (2014).

    Article  ADS  Google Scholar 

  27. Rarity, J. G., Tapster, P. R. & Loudon, R. Non-classical interference between independent sources. J. Opt. B 7, S171–S175 (2005).

    Article  ADS  Google Scholar 

  28. Zhou, Y.-H., Yu, Z.-W. & Wang, X.-B. Making the decoy-state measurement-device-independent quantum key distribution practically useful. Preprint at http://arxiv.org/abs/1502.01262 (2015).

  29. Choi, I. et al. Field trial of a quantum secured 10 Gb/s DWDM transmission system over a single installed fiber. Opt. Express 22, 23121–23128 (2014).

    Article  ADS  Google Scholar 

  30. Ma, X., Fung, C. H. F. & Razavi, M. Statistical fluctuation analysis for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 052305 (2012).

    Article  ADS  Google Scholar 

  31. Curty, M. et al. Finite-key analysis for measurement-device-independent quantum key distribution. Nature Commun. 5, 3732 (2014).

    Article  ADS  Google Scholar 

  32. Xu, F., Curty, M., Qi, B. & Lo, H.-K. Practical aspects of measurement-device-independent quantum key distribution. New J. Phys. 15, 113007 (2013).

    Article  ADS  Google Scholar 

  33. Comandar, L. C. et al. Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm. J. App. Phys. 117, 083109 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge useful discussions with M. Curty. L.C.C. acknowledges personal support via the Engineering and Physical Sciences Research Council funded Centre for Doctoral Training in Photonic Systems Development and Toshiba Research Europe.

Author information

Authors and Affiliations

Authors

Contributions

Measurements and calculations were performed by L.C.C. and M.L., respectively. The system was readied by B.F., J.F.D., A.W.S., L.C.C. and S.W.-B.T. Z.L.Y. and A.J.S. conceived the experiment and guided the work. L.C.C. and M.L. wrote the manuscript with contributions from the other authors. All authors discussed experiments, results and the interpretation of results.

Corresponding author

Correspondence to M. Lucamarini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1060 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comandar, L., Lucamarini, M., Fröhlich, B. et al. Quantum key distribution without detector vulnerabilities using optically seeded lasers. Nature Photon 10, 312–315 (2016). https://doi.org/10.1038/nphoton.2016.50

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.50

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing