Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polymer nanofilms with enhanced microporosity by interfacial polymerization

Abstract

Highly permeable and selective membranes are desirable for energy-efficient gas and liquid separations. Microporous organic polymers have attracted significant attention in this respect owing to their high porosity, permeability and molecular selectivity. However, it remains challenging to fabricate selective polymer membranes with controlled microporosity that are stable in solvents. Here we report a new approach to designing crosslinked, rigid polymer nanofilms with enhanced microporosity by manipulating the molecular structure. Ultrathin polyarylate nanofilms with thickness down to 20 nm are formed in situ by interfacial polymerization. Enhanced microporosity and higher interconnectivity of intermolecular network voids, as rationalized by molecular simulations, are achieved by using contorted monomers for the interfacial polymerization. Composite membranes comprising polyarylate nanofilms with enhanced microporosity fabricated in situ on crosslinked polyimide ultrafiltration membranes show outstanding separation performance in organic solvents, with up to two orders of magnitude higher solvent permeance than membranes fabricated with nanofilms made from non-contorted planar monomers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interfacial synthesis of polyarylate nanofilms.
Figure 2: Polyarylate nanofilms.
Figure 3: Organic solvent nanofiltration.
Figure 4: Gas sorption and transport properties.
Figure 5: Structural analysis of amorphous polymer models.

Similar content being viewed by others

References

  1. Gin, D. L. & Noble, R. D. Designing the next generation of chemical separation membranes. Science 332, 674–676 (2011).

    CAS  Google Scholar 

  2. Marchetti, P., Jimenez Solomon, M. F., Szekely, G. & Livingston, A. G. Molecular separation with organic solvent nanofiltration: a critical review. Chem. Rev. 114, 10735–10806 (2014).

    CAS  Google Scholar 

  3. Guiver, M. D. & Lee, Y. M. Polymer rigidity improves microporous membranes. Science 339, 284–285 (2013).

    CAS  Google Scholar 

  4. Freeman, B. D. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules 32, 375–380 (1999).

    CAS  Google Scholar 

  5. Park, H. B. et al. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318, 254–258 (2007).

    Article  CAS  Google Scholar 

  6. Du, N. et al. Polymer nanosieve membranes for CO2-capture applications. Nature Mater. 10, 372–375 (2011).

    CAS  Google Scholar 

  7. Carta, M. et al. An efficient polymer molecular sieve for membrane gas separations. Science 339, 303–307 (2013).

    CAS  Google Scholar 

  8. Song, Q. et al. Photo-oxidative enhancement of polymeric molecular sieve membranes. Nature Commun. 4, 1918 (2013).

    Google Scholar 

  9. Song, Q. et al. Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes. Nature Commun. 5, 4813 (2014).

    Google Scholar 

  10. Rodenas, T. et al. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nature Mater. 14, 48–55 (2014).

    Google Scholar 

  11. Karan, S., Jiang, Z. & Livingston, A. G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348, 1347–1351 (2015).

    CAS  Google Scholar 

  12. Karan, S. et al. Ultrafast viscous permeation of organic solvents through diamond-like carbon nanosheets. Science 335, 444–447 (2012).

    CAS  Google Scholar 

  13. Li, H. et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 342, 95–98 (2013).

    CAS  Google Scholar 

  14. Nair, R. R. et al. Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 335, 442–444 (2012).

    CAS  Google Scholar 

  15. Peng, Y. et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).

    CAS  Google Scholar 

  16. Kim, H. W. et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science 342, 91–95 (2013).

    CAS  Google Scholar 

  17. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    CAS  Google Scholar 

  18. Kitagawa, S., Kitaura, R. & Noro, S.-i. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    CAS  Google Scholar 

  19. El-Kaderi, H. M. et al. Designed synthesis of 3D covalent organic frameworks. Science 316, 268–272 (2007).

    CAS  Google Scholar 

  20. Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Google Scholar 

  21. Jones, J. T. A. et al. Modular and predictable assembly of porous organic molecular crystals. Nature 474, 367–371 (2011).

    CAS  Google Scholar 

  22. Tozawa, T. et al. Porous organic cages. Nature Mater. 8, 973–978 (2009).

    CAS  Google Scholar 

  23. Song, Q. et al. Porous organic cage thin films and molecular-sieving membranes. Adv. Mater. 28, 2629–2637 (2016).

    CAS  Google Scholar 

  24. Li, Y. S. et al. Controllable synthesis of metal-organic frameworks: from MOF nanorods to oriented MOF membranes. Adv. Mater. 22, 3322–3326 (2010).

    CAS  Google Scholar 

  25. Brown, A. J. et al. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science 345, 72–75 (2014).

    CAS  Google Scholar 

  26. Dobrzańska, L., Lloyd, G. O., Esterhuysen, C. & Barbour, L. J. Guest-induced conformational switching in a single crystal. Angew. Chem. Int. Ed. 45, 5856–5859 (2006).

    Google Scholar 

  27. McKeown, N. B. & Budd, P. M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35, 675–683 (2006).

    CAS  Google Scholar 

  28. McKeown, N. B. et al. Polymers of intrinsic microporosity (PIMs): bridging the void between microporous and polymeric materials. Chem. Eur. J. 11, 2610–2620 (2005).

    CAS  Google Scholar 

  29. Carta, M. et al. Triptycene induced enhancement of membrane gas selectivity for microporous Tröger’s base polymers. Adv. Mater. 26, 3526–3531 (2014).

    CAS  Google Scholar 

  30. Ghanem, B. S., Swaidan, R., Litwiller, E. & Pinnau, I. Ultra-microporous triptycene-based polyimide membranes for high-performance gas separation. Adv. Mater. 26, 3688–3692 (2014).

    CAS  Google Scholar 

  31. McKeown, N. B. & Budd, P. M. Exploitation of intrinsic microporosity in polymer-based materials. Macromolecules 43, 5163–5176 (2010).

    CAS  Google Scholar 

  32. Budd, P. M. et al. Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity. Adv. Mater. 16, 456–459 (2004).

    CAS  Google Scholar 

  33. Budd, P. M. et al. Gas separation membranes from polymers of intrinsic microporosity. J. Membr. Sci. 251, 263–269 (2005).

    CAS  Google Scholar 

  34. Fritsch, D. et al. High performance organic solvent nanofiltration membranes: development and thorough testing of thin film composite membranes made of polymers of intrinsic microporosity (pims). J. Membr. Sci. 401–402, 222–231 (2012).

    Google Scholar 

  35. Tsarkov, S. et al. Solvent nanofiltration through high permeability glassy polymers: effect of polymer and solute nature. J. Membr. Sci. 423–424, 65–72 (2012).

    Google Scholar 

  36. Gorgojo, P. et al. Ultrathin polymer films with intrinsic microporosity: anomalous solvent permeation and high flux membranes. Adv. Funct. Mater. 24, 4729–4737 (2014).

    CAS  Google Scholar 

  37. Murphy, T. M. et al. Physical aging of layered glassy polymer films via gas permeability tracking. Polymer 52, 6117–6125 (2011).

    CAS  Google Scholar 

  38. Ichinose, I., Kurashima, K. & Kunitake, T. Spontaneous formation of cadmium hydroxide nanostrands in water. J. Am. Chem. Soc. 126, 7162–7163 (2004).

    CAS  Google Scholar 

  39. Karan, S. et al. Ultrathin free-standing membranes from metal hydroxide nanostrands. J. Membr. Sci. 448, 270–291 (2013).

    CAS  Google Scholar 

  40. Qian, H., Zheng, J. & Zhang, S. Preparation of microporous polyamide networks for carbon dioxide capture and nanofiltration. Polymer 54, 557–564 (2013).

    CAS  Google Scholar 

  41. Jimenez Solomon, M. F., Bhole, Y. & Livingston, A. G. High flux membranes for organic solvent nanofiltration (OSN)—interfacial polymerization with solvent activation. J. Membr. Sci. 423–424, 371–382 (2012).

    Google Scholar 

  42. Ameloot, R. et al. Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability. Nature Chem. 3, 382–387 (2011).

    CAS  Google Scholar 

  43. Chung, J. Y., Lee, J.-H., Beers, K. L. & Stafford, C. M. Stiffness, strength, and ductility of nanoscale thin films and membranes: a combined wrinkling–cracking methodology. Nano Lett. 11, 3361–3365 (2011).

    CAS  Google Scholar 

  44. Weber, J., Su, Q., Antonietti, M. & Thomas, A. Exploring polymers of intrinsic microporosity—microporous, soluble polyamide and polyimide. Macromol. Rapid Commun. 28, 1871–1876 (2007).

    CAS  Google Scholar 

  45. Robeson, L. M. The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008).

    CAS  Google Scholar 

  46. Du, N., Park, H. B., Dal-Cin, M. M. & Guiver, M. D. Advances in high permeability polymeric membrane materials for CO2 separations. Energy Environ. Sci. 5, 7306–7322 (2012).

    CAS  Google Scholar 

  47. Abbott, L. & Colina, C. Polymatic: A Simulated Polymerization Algorithm (2013); https://nanohub.org/resources/17278

    Google Scholar 

  48. See Toh, Y. H., Lim, F. W. & Livingston, A. G. Polymeric membranes for nanofiltration in polar aprotic solvents. J. Membr. Sci. 301, 3–10 (2007).

    Google Scholar 

  49. Stafford, C. M. et al. A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nature Mater. 3, 545–550 (2004).

    CAS  Google Scholar 

  50. See Toh, Y. H. et al. In search of a standard method for the characterisation of organic solvent nanofiltration membranes. J. Membr. Sci. 291, 120–125 (2007).

    Google Scholar 

  51. Song, Q. et al. Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ. Sci. 5, 8359–8369 (2012).

    CAS  Google Scholar 

  52. Abbott, L., Hart, K. & Colina, C. Polymatic: a generalized simulated polymerization algorithm for amorphous polymers. Theor. Chem. Acc. 132, 1–19 (2013).

    CAS  Google Scholar 

  53. Hart, K. E., Abbott, L. J., McKeown, N. B. & Colina, C. M. Toward effective CO2/CH4 separations by sulfur-containing pims via predictive molecular simulations. Macromolecules 46, 5371–5380 (2013).

    CAS  Google Scholar 

  54. Abbott, L. J., Hughes, J. E. & Colina, C. M. Virtual synthesis of thermally cross-linked copolymers from a novel implementation of polymatic. J. Phys. Chem. B 118, 1916–1924 (2014).

    CAS  Google Scholar 

  55. Abbott, L. J. & Colina, C. M. Porosity and ring formation in conjugated microporous polymers. J. Chem. Eng. Data 59, 3177–3182 (2014).

    CAS  Google Scholar 

  56. Sun, H. Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters. J. Comput. Chem. 15, 752–768 (1994).

    CAS  Google Scholar 

  57. Frisch, M. J. et al. Gaussian 09. Revision A.02 (Gaussian, 2009).

    Google Scholar 

  58. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    CAS  Google Scholar 

  59. Willems, T. F. et al. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Micropor. Mesopor. Mater. 149, 134–141 (2012).

    CAS  Google Scholar 

  60. Pinheiro, M., Martin, R. L., Rycroft, C. H. & Haranczyk, M. High accuracy geometric analysis of crystalline porous materials. CrystEngComm 15, 7531–7538 (2013).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Engineering and Physical Sciences Research Council (EPSRC, UK), 7th Framework Programme of the European Commission’s Marie Curie Initiative, NEMOPUR Project (M.F.J.-S.), Imperial College Junior Research Fellowship (Q.S.), and Royal Society University Research Fellowship (K.E.J.). The authors are grateful to P. R. J. Gaffney for assisting with monophasic reactions.

Author information

Authors and Affiliations

Authors

Contributions

M.F.J.-S. and A.G.L. conceived the idea. M.F.J.-S., Q.S. and A.G.L. designed the research. M.F.J.-S. and Q.S. performed experiments, including synthesis of materials and membranes, and characterization analyses. M.F.J.-S. carried out organic solvent nanofiltration. Q.S. performed gas permeation measurements. K.E.J. performed molecular simulations. M.M.-I. assisted with synthesis of PAR/PI nanofilm composite membranes. M.F.J.-S., Q.S. and A.G.L. wrote the manuscript. A.G.L. guided the project. All of the authors participated in the discussion and read the manuscript.

Corresponding author

Correspondence to Andrew G. Livingston.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5186 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jimenez-Solomon, M., Song, Q., Jelfs, K. et al. Polymer nanofilms with enhanced microporosity by interfacial polymerization. Nature Mater 15, 760–767 (2016). https://doi.org/10.1038/nmat4638

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4638

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing